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Abstract: Switchable luminescent bioprobes whose emission can be turned on as a function of specific
enzymatic activity are emerging as important tools in chemical biology. We report a promising
platform for the development of label-free and continuous enzymatic assays in high-throughput
mode based on the reversible solvent-induced self-assembly of a neutral dinuclear Pt(II) complex. To
demonstrate the utility of this strategy, the switchable luminescence of a dinuclear Pt(II) complex
was utilized in developing an experimentally simple, fast (10 min), low cost, and label-free turn-on
luminescence assay for the endonuclease enzyme DNAse I. The complex displays a near-IR (NIR)
aggregation-induced emission at 785 nm in aqueous solution that is completely quenched upon
binding to G-quadruplex DNA from the human c-myc oncogene. Luminescence is restored upon DNA
degradation elicited by exposure to DNAse I. Correlation between near-IR luminescence intensity and
DNAse I concentration in human serum samples allows for fast and label-free detection of DNAse I
down to 0.002 U/mL. The Pt(II) complex/DNA assembly is also effective for identification of DNAse
I inhibitors, and assays can be performed in multiwell plates compatible with high-throughput
screening. The combination of sensitivity, speed, convenience, and cost render this method superior
to all other reported luminescence-based DNAse I assays. The versatile response of the Pt(II) complex
to DNA structures promises broad potential applications in developing real-time and label-free assays
for other nucleases as well as enzymes that regulate DNA topology.

Keywords: label-free assay; near-infrared; deoxyribonuclease I; platinum; aggregation-induced
emission; supramolecular chemistry

1. Introduction

Developing luminescent probes for rapid detection of biomolecules and/or monitoring of
biochemical processes is an important objective in contemporary bio-organic chemistry [1–5]. Such
probes can provide fundamental insight into mechanistic features of cellular events or function
as diagnostic agents in biomedical applications. Additionally, probes for specific biocatalytic
transformations are important bioanalytical tools for detection and quantification of enzymatic
activity [6–8]. Significantly, elevated or reduced levels of specific enzyme activity often serve as
biomarkers of human disease.

Deoxyribonuclease I (DNAse I) is the most abundant nuclease in human blood plasma. It is a
non-restriction endonuclease that cleaves phosphodiester linkages within polynucleotide chains to
release shorter oligonucleotides [9–12]. DNAse I functions as a waste-management nuclease through
degradation of circulating DNA released into human serum upon cellular death [13]. Clinically,
DNAse I may also serve as a functional biomarker in monitoring the progression of different human
diseases [14–18]. For example, low DNAse activity in blood plasma of prostate cancer patients in
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comparison to healthy controls was demonstrated [14]. Recently, low urinary DNAse I level was
identified as a marker for progression of lupus nephritis [15]. In addition, elevated serum DNAse I
activity is a valuable marker of acute myocardial infarction and transient myocardial ischemia [16].
The correlation between serum DNAse I activity and immunoserological markers in systemic lupus
erythematosus (SLE) patients has been advanced as a means of monitoring SLE progression [17].

Conventional methods for assessing DNAse I activity include enzyme-linked immunosorbent
assays (ELISAs) [10], single radial enzyme-diffusion methods [19], and electrochemical assays [20].
These methods are time-consuming, labor intensive, and/or require use of covalently labelled
DNA. These limitations are partially addressed by luminescence-based DNAse I assays that feature
simplicity, sensitivity and ease of operation [21–23]. However, these methods often rely on the
use of fluorophore-labelled DNA [24–27]. The high cost and synthetic challenges encountered
in developing fluorophore-labelled DNA probes render label-free assays more convenient and
cost-effective alternatives. Most existing label-free DNAse I assays are based on “turn-off” fluorescence
signaling, which can lead to reduced sensitivity and false positive responses [28–33]. Consequently,
“turn-on” luminescence bioassays are more attractive, but only one label-free turn-on DNAse I assay
has been reported. This system, based on DNA-Ag nanocluster composites with graphene oxide,
requires multiple steps and prolonged reaction times that restrict its potential utility, especially in
high-throughput assays for DNAse I activity [23]. To the best of our knowledge, a sensitive, facile,
multiwell-based and label-free luminescent DNAse I assay has not been developed (Table S1).

Luminescent platinum(II) complexes display intriguing photophysical properties and are attracting
increasing interest in materials chemistry and optoelectronics [34–38]. In addition, the d8 electronic
configuration and typical square planar coordination geometry observed in these complexes imparts a
tendency to display metal-metal and/or π-π stacking interactions upon self-assembly [34,35]. These
self-assembly events are often signaled by drastic color changes in the visible region and emergence
of near-infrared (NIR) luminescence. This general emission profile has resulted in the use of several
Pt(II) complexes as components in luminescent sensors for applications in materials chemistry and,
less commonly, as biological probes [39–45].

We recently reported rhenium(I) and platinum(II) complexes of tetraarylethylenes as luminescent
probes for biomacromolecules and mismatched DNA, respectively [46–49]. As part of these efforts
it was observed that cyclometalated Pt(II) complex 1 (Figure 1) displays significantly red-shifted
emission in 9:1 Tris buffer:CH3CN solution compared to pure CH3CN (λem = 594 and 505 nm,
respectively) [48].Similarly, bis(benzothiazole)Pt(II) complex 3 also was found to exhibit a slightly
red-shifted emission in aqueous solution compared to emission in DMSO (Figure S9). We speculate
that these luminescent properties may be affected by Pt···Pt interactions. In this work we have prepared
bimetallic Pt(II) complexes 2 and 4 to test the hypothesis that introduction of additional Pt centers into
the tetraarylethylene scaffold will further enhance the likelihood of metal-metal interactions upon
aggregation-induced self-assembly, in turn resulting in even further bathochromic shifts in emission
into the NIR region. Ultimately, we aim to harness this emission response through development
of new probes for biomolecules and biomolecular processes. Toward this end, we have found that
bis(platinum) complex 4 does indeed exhibit the targeted emission profile, and we have successfully
exploited the switchability of NIR emission in 4 in the presence of DNA oligomers to develop an
experimentally simple, sensitive, and label-free turn-on assay for DNAse I activity.
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obtained (see Supporting Information and Figures S1–S7). Complex 2, however, displayed 
absorbance (λabs = 416 nm, Figure S3) and emission (λem = 591 nm, Figure S8) spectra very similar to 
those obtained for mono-platinum complex 1, and the wavelength of emission was unaffected by 
solvent-induced aggregation (Figure S8).  

In contrast, complex 4 exhibited significant aggregation-induced bathochromic shifts in both 
absorbance and luminescence spectra. The UV–visible spectrum of 4 in DMSO shows a high-energy 
absorption band at 291 nm and a low-energy absorption band at 397 nm (Figure S7). However, 
incremental addition of Tris buffer (pH 7.5) to 4 resulted in dramatic changes in the color of the 
solution from yellow to green (Figure 2a) as well as in the appearance of a new absorption band at 
621 nm (Figure 2b). Concomitant with UV–vis absorption changes, gradual emergence of a NIR 
emission band at 785 nm was also detected in the luminescence spectrum (Figure 2c). These spectral 
changes are attributed to aggregation of 4 via metal-metal and/or π-π stacking interactions, as has 
been previously reported for other platinum(II) complexes [34,35,39–45]. The self-assembly of 4 in 9:1 
Tris buffer:DMSO was further confirmed by detection of nanoaggregates of 54.1 ± 2.7 nm size by 
dynamic light scattering (DLS, Figure S10). Significant signal broadening in 1H NMR spectra as a 
function of solvent was observed as well (Figure S11). The solvent-induced aggregation of 4 is further 
supported by a concentration-dependent UV–vis absorption study that shows deviation from Beer’s 
law for the absorption band at 621 nm (Figure S12). Finally, the disassembly of 4 as a function of 
increasing temperature resulted in significant attenuation of the NIR emission band at 785 nm, 
consistent with an emission signal that arises from intermolecular aggregation (Figure S13).  
  

Figure 1. Structures of Pt(II) complexes 1–4.

2. Results and Discussion

The synthesis of 2–4 was accomplished in high yield using a route similar to that previously
reported for the synthesis of 1. All new compounds were characterized by NMR and mass spectrometry,
and UV–visible spectra of new complexes and their metal-free precursors were obtained (see Supporting
Information and Figures S1–S7). Complex 2, however, displayed absorbance (λabs = 416 nm, Figure S3)
and emission (λem = 591 nm, Figure S8) spectra very similar to those obtained for mono-platinum
complex 1, and the wavelength of emission was unaffected by solvent-induced aggregation (Figure S8).

In contrast, complex 4 exhibited significant aggregation-induced bathochromic shifts in both
absorbance and luminescence spectra. The UV–visible spectrum of 4 in DMSO shows a high-energy
absorption band at 291 nm and a low-energy absorption band at 397 nm (Figure S7). However,
incremental addition of Tris buffer (pH 7.5) to 4 resulted in dramatic changes in the color of the
solution from yellow to green (Figure 2A) as well as in the appearance of a new absorption band
at 621 nm (Figure 2B). Concomitant with UV–vis absorption changes, gradual emergence of a NIR
emission band at 785 nm was also detected in the luminescence spectrum (Figure 2C). These spectral
changes are attributed to aggregation of 4 via metal-metal and/or π-π stacking interactions, as has been
previously reported for other platinum(II) complexes [34,35,39–45]. The self-assembly of 4 in 9:1 Tris
buffer:DMSO was further confirmed by detection of nanoaggregates of 54.1 ± 2.7 nm size by dynamic
light scattering (DLS, Figure S10). Significant signal broadening in 1H NMR spectra as a function of
solvent was observed as well (Figure S11). The solvent-induced aggregation of 4 is further supported
by a concentration-dependent UV–vis absorption study that shows deviation from Beer’s law for
the absorption band at 621 nm (Figure S12). Finally, the disassembly of 4 as a function of increasing
temperature resulted in significant attenuation of the NIR emission band at 785 nm, consistent with an
emission signal that arises from intermolecular aggregation (Figure S13).

Given the ability of (tetraarylethylene)Pt(II) complexes such as 1 to bind DNA structures [48],
we envisioned that potential non-covalent interaction of 4 with DNA oligomers would result in
de-aggregation and shielding of the dinuclear platinum(II) complex from the aqueous environment,
effectively quenching the NIR emission. Subsequent DNA cleavage by DNAse I would then release
4 back into the aqueous buffer resulting in recovery (turn-on) of NIR luminescence (Figure 3). The
dependence of NIR emission of 4/DNA ensembles on the DNA cleavage process would enable a
label-free and turn-on assay of DNAse I activity.
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DNA structures was examined (Figure 4a and Figures S14–S17). Minimal change in the emission 
profile of 4 was observed in the presence of 24-mer single-stranded DNA (ssDNA) as demonstrated 
in Figure S15. However, considerable attenuation of the NIR emission band of 4 was achieved in the 
presence of a 12 base pair double-stranded DNA (dsDNA). Various metal complexes are known to 
bind to G-quadruplex DNA (QDNA) [50–52], and QDNA structures derived from three different 
oligonucleotides also were investigated for their effect on NIR luminescence of 4. A bimolecular G-
quadruplex (QI) was prepared from (5′-(G4T4G3)2-3′), QII is QDNA derived from the 22-mer HTelo 
oligomer (5′-(AG3(T2AG3)3)-3′), and QIII is the G-quadruplex strand from the 22-mer human 
oncogene promoter c-myc (5′-(TGAG3TG3TAG3TG3TA2)-3′). Remarkably, incubation of 4 with QIII 
resulted in virtually complete quenching of NIR luminescence (Figure 4a). A significant reduction in 
the nanoaggregate particle size of 4 in the presence of QIII compared to other DNA structures 
investigated was additionally demonstrated in DLS studies (Figure 4b). A stronger interaction of 4 

Figure 2. (A) Solution of 4 in DMSO/Tris buffer mixtures, [4] = 50 µM. Tris buffer percentage from
left to right: 0, 10, 20, 40, 60, 70, 80, 90%. (B) UV–vis absorption changes of 4 in DMSO/buffer
mixtures, [4] = 4 µM. (C) Emission spectra of 4 in DMSO/buffer mixtures, λex = 445 nm, [4] = 4 µM. All
experiments were performed at room temperature.
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Figure 3. Schematic illustration of the proposed DNAse I assay through self-assembly of 4 in aqueous
buffer upon DNA cleavage.

Accordingly, the luminescence response of 4 in 9:1 Tris buffer:DMSO in the presence of various
DNA structures was examined (Figure 4A and Figures S14–S17). Minimal change in the emission
profile of 4 was observed in the presence of 24-mer single-stranded DNA (ssDNA) as demonstrated
in Figure S15. However, considerable attenuation of the NIR emission band of 4 was achieved in
the presence of a 12 base pair double-stranded DNA (dsDNA). Various metal complexes are known
to bind to G-quadruplex DNA (QDNA) [50–52], and QDNA structures derived from three different
oligonucleotides also were investigated for their effect on NIR luminescence of 4. A bimolecular
G-quadruplex (QI) was prepared from (5′-(G4T4G3)2-3′), QII is QDNA derived from the 22-mer
HTelo oligomer (5′-(AG3(T2AG3)3)-3′), and QIII is the G-quadruplex strand from the 22-mer human
oncogene promoter c-myc (5′-(TGAG3TG3TAG3TG3TA2)-3′). Remarkably, incubation of 4 with QIII
resulted in virtually complete quenching of NIR luminescence (Figure 4A). A significant reduction
in the nanoaggregate particle size of 4 in the presence of QIII compared to other DNA structures
investigated was additionally demonstrated in DLS studies (Figure 4B). A stronger interaction of 4
with QIII compared to dsDNA is also indicated by UV melting curve analysis (i.e., determination
of the temperature (Tm) at which 50% of DNA is denatured). The QIII oligomer exhibited a 6.5 ◦C
increase in Tm in the presence of 4, whereas the Tm of dsDNA only increased 2.4 ◦C (Figures S23–S24).
Consistent with these results, luminescence binding assays indicated greater affinity of 4 for QIII DNA
(Kd = 3.26 µM) compared to dsDNA (Kd = 11.7 µM) (Figures S25–S26).
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Figure 4. (A) Emission intensities of 4 at 785 nm in the absence and in the presence of ssDNA, dsDNA,
QI, QII and QIII; λex = 445 nm. (B) Average particle size measured by DLS of 4 in the absence and in
the presence of ssDNA, dsDNA, QI, QII and QIII. [4] = 4 µM, [DNA] = 8 µM. Error bars represent
standard deviation (n = 3).

Since complete quenching of the NIR emission of 4 was achieved in the presence of QIII DNA,
this DNA oligomer was selected as the digestion substrate in 4/DNA ensembles for construction of
label-free assays to monitor DNAse I activity. As a positive control and a proof of concept to test our
design strategy, degradation of DNA by addition of Fenton’s reagent (1.4 mM FeSO4 + 36 mM H2O2)
to a solution of the non-emissive 4/QIII DNA ensemble resulted in the recovery of NIR luminescence
(Figure S27) [53]. Thus, platinum complex 4 liberated upon DNA cleavage effectively self-assembles
into emissive aggregates without interference from DNA fragmentation products.

The ability of 4/QIII DNA ensembles to monitor DNAse I activity was next examined by measuring
NIR emission in the presence of increasing concentrations of DNAse I (Figure 5A). Luminescence
measurements were performed in 96 well plates using a solution of 4/QIII DNA prepared from 4 µM
4 and 8 µM QIII DNA. The NIR emission intensity at 785 nm (indicative of DNA-free Pt complex
aggregates) exhibited gradual enhancement in intensity as a function of DNAse I concentration and
reached a plateau at ~6 U/mL DNAse I. Treatment of 4/QIII DNA ensembles with heat-inactivated
DNAse I failed to elicit a luminescence response, verifying that the catalytic activity of DNAse I
is crucial for NIR emission (Figure S28). Since DNAse I is a Mg2+-dependent enzyme [9,12], the
degradation of 4/QIII DNA by DNAse I was performed in a reaction buffer without Mg2+, which also
resulted in considerable attenuation of NIR emission (Figure S29). In the absence of QIII, addition of
DNAse I to 4 in 9:1 Tris buffer:DMSO resulted in negligible change in its emission profile (Figure S30).
These results confirm that NIR emission intensity of 4/QIII DNA is correlated with QIII DNA cleavage
by DNAse I.

The inset in Figure 5A reveals a linear relationship in the DNAse I concentration range of 0.01–4
U/mL. In addition, the detection limit of DNAse I is estimated to be 0.002 U/mL (3 × S0/S; S0 is the
standard deviation and S is the slope of the calibration curve). Significantly, the 4/QIII DNA ensemble
is more sensitive in terms of detection of DNAse I activity than previously reported fluorescence-based
DNAse I assays (Table S1). To address the selectivity of this method for DNAse I, other nucleases
(RNAse A, S1 nuclease, Exonuclease I (Exo I), Exonuclease III (Exo III) and Hind III) and proteins
(human serum albumin (HSA), bovine serum albumin (BSA)) were screened for their abilities to elicit
NIR emission of 4/QIII DNA. In each case minimal to no NIR emission was detected (Figure 5B),
demonstrating the selectivity of this assay for DNAse I. Optimal assay pH was determined to be 7.5,
and highest DNAse I activity was observed in the presence of 0.1 mM CaCl2 and 0.25 mM MgCl2
(Figures S31–S32).



Molecules 2019, 24, 4390 6 of 13

Molecules 2019, 24, x FOR PEER REVIEW 6 of 13 

 

determined to be 7.5, and highest DNAse I activity was observed in the presence of 0.1 mM CaCl2 
and 0.25 mM MgCl2 (Figures S31–S32). 

 
Figure 5. (a) Emission intensities of 4/QIII DNA at 785 nm in the presence of different concentrations 
of DNAse I. Inset shows linear relationship with DNAse I concentration in the range of 0.01–4 U/mL. 
(b) Emission intensities of 4/QIII DNA in the presence of different nucleases (4 U/mL) and proteins 
(8 μM). λex = 445 nm. Error bars represent standard deviation (n = 3). All measurements were done 
after incubation at room temperature for 10 min. 

Time curves for digestion of 4/QIII DNA as a function of DNAse I concentration (0–4 U/mL) are 
displayed in Figure 6a. In the absence of DNAse I, negligible NIR emission can be detected over the 
incubation time. However, a rapid enhancement in the NIR emission signal is observed in the 
presence of 0.25 U/mL DNAse I. The emission signal plateaus after only 10 min, demonstrating the 
quick response of this assay to DNAse I activity. The digestion reaction rate increased gradually in 
the presence of higher concentrations of DNAse I (Figure 6a), and a linear relationship between initial 
digestion rate (V0) and DNAse I concentration was observed (Figure S33). In order to further verify 
the validity of this method to study DNAse I kinetics, the initial digestion rates (V0) were determined 
as a function of 4/QIII DNA concentration ([S]). A Lineweaver-Burk double reciprocal plot of 1/V0 
versus 1/[S] revealed a linear correlation (Figure 6b) with a Michaelis–Menten constant (Km) of 1.26 ± 
0.3 μM. This calculated Km value is in good agreement with previously reported Km values for DNAse 
I, which fall in the range of 0.4–2.19 μM [21,22]. These results show that the 4/QIII DNA ensemble is 
an efficient real-time assay of DNAse I activity and its kinetic parameters. 
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of DNAse I. Inset shows linear relationship with DNAse I concentration in the range of 0.01–4 U/mL.
(B) Emission intensities of 4/QIII DNA in the presence of different nucleases (4 U/mL) and proteins
(8 µM). λex = 445 nm. Error bars represent standard deviation (n = 3). All measurements were done
after incubation at room temperature for 10 min.

Time curves for digestion of 4/QIII DNA as a function of DNAse I concentration (0–4 U/mL)
are displayed in Figure 6A. In the absence of DNAse I, negligible NIR emission can be detected over
the incubation time. However, a rapid enhancement in the NIR emission signal is observed in the
presence of 0.25 U/mL DNAse I. The emission signal plateaus after only 10 min, demonstrating the
quick response of this assay to DNAse I activity. The digestion reaction rate increased gradually in the
presence of higher concentrations of DNAse I (Figure 6A), and a linear relationship between initial
digestion rate (V0) and DNAse I concentration was observed (Figure S33). In order to further verify the
validity of this method to study DNAse I kinetics, the initial digestion rates (V0) were determined as a
function of 4/QIII DNA concentration ([S]). A Lineweaver-Burk double reciprocal plot of 1/V0 versus
1/[S] revealed a linear correlation (Figure 6B) with a Michaelis–Menten constant (Km) of 1.26 ± 0.3 µM.
This calculated Km value is in good agreement with previously reported Km values for DNAse I, which
fall in the range of 0.4–2.19 µM [21,22]. These results show that the 4/QIII DNA ensemble is an efficient
real-time assay of DNAse I activity and its kinetic parameters.
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In order to evaluate the performance of 4/QIII DNA as a DNAse I sensor in complex matrices,
this method was used in detecting DNAse I activity in human serum samples. Various concentrations
of DNAse I (0–4 U/mL) were added to human serum samples and subjected to the assay procedure.
A linear correlation between NIR emission signal of 4 and DNAse I concentration in human serum
samples was observed (Figure S34). In addition, assessing DNAse I activity in human serum samples
spiked with 4 different concentrations of DNAse I (0.15, 0.5, 1 and 4 U/mL) revealed satisfactory
reproducibility and precision (Table S2). These results demonstrate the potential of this system to detect
DNAse I activity in real clinical samples. The assay was validated for high-throughput screening (HTS)
mode by calculating the Z’ factor, representing the ratio of data signal variability (standard deviation)
to dynamic range (i.e., difference in luminescence signal for positive and negative controls) [54]. The
mean Z’ factor of the assay is 0.54 (see Supporting Information), which is indicative of a high quality
assay (Z’ ≥ 0.5) [54]. This was accompanied by signal-to-background (S/B) ratio and signal-to-noise
(S/N) ratio of 12.7 and >2000, respectively. These parameters confirm the potential suitability of 4/QIII
DNA assay for HTS of DNAse I activity. A schematic illustration of the general procedure of the
reported assay featuring HTS compatibility is displayed in Figure 7.
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As a further test of this assay, the ability of 4/QIII DNA ensembles to identify DNAse I inhibitors
also was examined. Identification of DNAse I inhibitors is attracting increasing attention as inhibition of
DNAse I may exert tissue-protective effects against necrosis and radiation injury [11,55,56]. In addition,
DNAse I inhibitors are proposed to be effective in the treatment of male infertility through prevention
of sperm DNA fragmentation [57]. The inhibitor assay was performed by monitoring the NIR emission
intensity of 4/QIII DNA in the presence of DNAse I and varying concentrations of three known
DNAse I inhibitors: EDTA, JR-132 (1,4-phenylene-bis-aminoguanidine hydrochloride), and ZnCl2.
Inhibitor IC50 values were determined from plots of log[inhibitor] vs. NIR emission intensity (Figure 8).
Experimentally calculated IC50 values for the three inhibitors (EDTA: 202 µM, JR-132: 2.29 µM,
ZnCl2: 20.7 µM) are all in excellent agreement with previously reported values (Table S3) [21]. Thus,
the 4/QIII DNA luminescence assay is effective for direct determination of DNAse I activity and
detection/quantification of DNAse I inhibition.Molecules 2019, 24, x FOR PEER REVIEW 9 of 13 
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[DNAse I] = 4 U/mL. Error bars represent standard deviation (n = 3).
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3. Materials and Methods

A description of all materials and methods used in this study is provided in the
Supporting Information.

3.1. UV–Visible Spectroscopy

UV–visible spectra were obtained using quartz cuvettes on a Varian Cary 100-Scan dual-beam
spectrophotometer (Agilent, Santa Clara, CA, USA). Each measurement was done in duplicate and
compared to solvent blank. Blank samples were prepared using HPLC grade solvents.

3.2. Fluorescence Spectroscopy

Fluorescence spectra were obtained at room temperature using an Agilent Cary Eclipse fluorescence
spectrophotometer (Agilent, Santa Clara, CA, USA) in quartz cuvettes or white 96-well plates
(Costar, Corning, NY, USA). Each measurement was done in triplicate. Sample stock solutions were
prepared in HPLC grade DMSO. DNA stock solutions were prepared in Tris buffer (50 mM NaCl,
2 mM Tris, pH 7.5).

3.3. General Procedure for Multiwell DNAse I Assay

A reaction mixture (total volume of 100 µL) was prepared using 40 µL of stock solution of QIII (20
µM), 40 µL of probe 4 (10 µM), and 20 µL from the various concentrations tested of DNAse I. The probe
4 and QIII had final concentrations in the reaction mixture of 4 and 8 µM, respectively. Stock solutions
were prepared using 9:1 Tris buffer (10 mM Tris-HCl, 0.25 mM MgCl2, 0.1 mM CaCl2, pH 7.5):DMSO.
Tris buffer was prepared using nuclease-free water. The reaction mixtures were prepared in white
96-well plates (Costar, Corning, NY, USA) and incubated at room temperature for 2 min. Varying
concentrations of DNAse I prepared in Tris buffer (10 mM Tris-HCl, 0.25 mM MgCl2, 0.1 mM CaCl2,
pH 7.5) were added to the reaction mixture and incubated at room temperature for 10 min. Fluorescence
spectra were obtained using Agilent Cary Eclipse fluorescence spectrophotometer (Agilent, Santa Clara,
CA, USA), λex = 445 nm. NIR emission intensity at 785 nm was detected.

3.4. Lineweaver-Burk Plot

The assay was performed in multiwell plates as described in the general procedure above using a
reaction mixture (100 µL) prepared from a starting solution of 4/QIII (4 and 8 µM, respectively, see
General Procedure) diluted with buffer to obtain varying substrate concentrations of QIII (0, 0.25, 0.5,
1, 1.5, 2, 4 and 8 µM). DNAse I (4 U/mL) was added and mixtures were incubated at room temperature
for 10 min. followed by fluorescence measurements. The initial digestion rates (V0) were measured
from time curves of digestion reactions.

3.5. Detection of DNAse I in Human Serum

Human serum from human male AB plasma was purchased from Sigma-Aldrich (St. Louis, MO,
USA). DNAse I assay was performed as previously described. Different concentrations of DNAse I
were prepared in human serum and added to reaction mixtures.

3.6. Determination of IC50 Values of DNAse I Inhibitors

DNAse I assay was performed as previously described in the presence of DNAse I (4 U) and
various concentrations of the inhibitor. Stock solutions of the inhibitors were prepared in Tris buffer
(10 mM Tris-HCl, pH 7.5). The IC50 values were calculated by plotting log[inhibitor] versus NIR
emission intensity of 4. The dose-response curves were analyzed by nonlinear regression using
GraphPad Prism 8.0 (GraphPad Software, Inc., La Jolla, CA, USA).
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4. Conclusions

In summary, we have developed a new G quadruplex-based luminescence assay for sensitive,
label-free, rapid and real-time detection of DNAse I activity and inhibition. The developed assay is
the most sensitive of any luminescence-based assay available for DNAse I activity and has further
advantages of HTS compatibility and cost efficiency. A structurally novel and neutral diplatinum(II)
complex (4) has been easily prepared via cyclometalation of a bis(pyridyl)-bis(benzothiazole)
tetraarylethylene derivative. The complex exhibits switchable near-IR luminescence at 785 nm
as a function of solvent-induced aggregation. Association of 4 with DNA was found to result in varying
degrees of NIR emission quenching as a function of DNA structure, and complete luminescence
quenching was observed in the presence of G-quadruplex DNA derived from the human c-myc
oncogene. Subsequent DNA degradation liberates 4 which then self-assembles to produce a turn-on
luminescence signal. The switchable NIR emission of this 4/DNA ensemble was successfully used
to develop a fast (10 min), sensitive (LOD = 0.002 U/mL), and label-free assay for the endonuclease
DNAse I that possesses distinct advantages over all previously reported DNAse I assays. Furthermore,
the assay can be easily modified to allow screening for DNAse I inhibitors. Assay experiments
were performed in multiwell plates and are compatible with high throughput screening techniques.
Significantly, the suitability of this method for clinical use is demonstrated by utilizing 4/QIII DNA
system for sensitive detection of DNAse I in human serum samples.

Finally, it is notable that the variable response of 4 based on DNA structure should enable
further optimization of the system for different applications in biosensor technology. Moreover, the
organometallic tetra-arylethylene scaffold utilized in this study is representative of a versatile molecular
framework well-suited for development of additional organic and metal-organic bioprobes for use
in diverse chemical biology applications. In particular, we envision that structural modification of
the diplatinum complexes described here may ultimately facilitate use of these agents for in vivo
monitoring of cellular events as activatable NIR luminescent probes.

Supplementary Materials: The following are available online. Detailed synthetic procedures, UV–visible and
emission spectra for 2–4, spectroscopic data for 4, DNA structures, DLS data, copies of 1H and 13C NMR spectra
for all new compounds.
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