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Abstract: Febrile seizures (FSs) in early life are significant risk factors of neurological disorders
and cognitive impairment in later life. However, existing data about the impact of FSs on the
developing brain are conflicting. We aimed to investigate morphological and functional changes
in the hippocampus of young rats exposed to hyperthermia-induced seizures at postnatal day 10.
We found that FSs led to a slight morphological disturbance. The cell numbers decreased by 10%
in the CA1 and hilus but did not reduce in the CA3 or dentate gyrus areas. In contrast, functional
impairments were robust. Long-term potentiation (LTP) in CA3-CA1 synapses was strongly reduced,
which we attribute to the insufficient activity of N-methyl-D-aspartate receptors (NMDARs). Using
whole-cell recordings, we found higher desensitization of NMDAR currents in the FS group. Since
the desensitization of NMDARs depends on subunit composition, we analyzed NMDAR current
decays and gene expression of subunits, which revealed no differences between control and FS rats.
We suggest that an increased desensitization is due to insufficient activation of the glycine site of
NMDARs, as the application of D-serine, the glycine site agonist, allows the restoration of LTP to a
control value. Our results reveal a new molecular mechanism of FS impact on the developing brain.

Keywords: febrile seizures; hyperthermia; long-term potentiation; NMDA receptor; hippocampus

1. Introduction

Infectious diseases with fever can provoke febrile seizures (FSs) [1,2], which con-
stitute one of the most common neurological disorders in children between 3 months
and 5 years [3]. FSs are divided into simple FSs (lasting < 10–15 min) and complex FSs
(lasting >15 min) [4,5]. This classification is currently accepted as having predictive value.
In the vast majority, simple FSs are benign and do not have adverse long-term effects on
children’s development [6]. Clinical studies have shown that adults who experienced more
prolonged FSs in early life frequently demonstrate a broad range of neurological disorders
in later life [7–9]. Retrospective analyses of adults with temporal lobe epilepsy identified
a high prevalence (30–50%) of a history of prolonged FSs during early childhood [5]. As
with many other negative factors acting in early life, the FSs can also cause long-lasting
alteration of cognitive functions, particularly learning and memory [10–14].

To study the mechanisms underlying the impact of FSs on the developing brain, a
model of hyperthermia-induced seizures in neonatal rats was established [7,15,16]. Epilep-
tic seizures strongly affect glutamatergic transmission [17,18]. Since the glutamatergic
transmission is critically involved in learning and memory, it is not surprising that early
seizures lead to cognitive impairment.

It was shown that prolonged experimental FSs induce transient hippocampal neuronal
injury [19,20], leading to long-lasting alterations in properties of hippocampal neurons,
with profound consequences on the excitability of the hippocampal network [21]. These
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and other alterations enhanced rats’ susceptibility to further limbic seizures throughout
life [22] and induce recurrent, spontaneous seizures later in life in 35% of animals [23].

Experimental data on the effect of FSs on synaptic plasticity have been described
in a few studies and are contradictory. Chang et al. (2005) found that repeated FSs
lead to the long-term bidirectional modulation of synaptic plasticity in the CA1 region
of the hippocampus, specifically, the attenuation of long-term potentiation (LTP) and
facilitation of long-term synaptic depression (LTD) [24]. However, Notenboom et al. (2010)
demonstrated an increase in LTP and decreased LTD in rats at P44 following FSs at P10 [25].

The long-term impairment of synaptic plasticity and cognitive function in rodents has
also been observed in other models of induced neonatal seizures [26–32]. For example, in a
model of neonatal seizures induced by hypoxia on P10, an increase in LTP was observed
immediately after the seizure [33]. The attenuation of LTP was recorded 48–72 h after
the seizures, which persisted in the rats at adulthood (P60) [34]. However, the precise
mechanisms that cause changes in hippocampal plasticity following early life seizures have
remained obscure.

In the present study, we aimed to investigate the morphological and functional changes
in the hippocampus of young rats exposed to FSs, in order to better understand the
mechanisms of plasticity impairment. Only animals with prolonged FSs that lasted at least
15 min were included in the experiments. The study was performed 11 days after FSs.

2. Results
2.1. Febrile Seizures Led to a Decrease in the Number of Neurons in the CA1 Area and Hilus
of the Hippocampus

Whether FSs induce neuronal cell death has remained controversial. Prospective
and retrospective clinical studies suggest that prolonged FSs may lead to neuronal cell
death and mesial temporal sclerosis [5,7,8,11,35]. Animal studies indicate that experimental
FSs in early life may lead to sustained dysfunction of hippocampal neurons without cell
death [19,20].

Using Nissl staining (Figure 1), we counted neurons in pyramidal layers of CA1
and CA3 areas of the hippocampus, hilus and granular cell layer of the DG. We detected
a decline in cell numbers in CA1 (51.2 ± 1.0 cells per 100 µm in control, N = 8 rats,
vs. 46.8 ± 1.0 cells per 100 µm after FS, N = 8 rats; t-test = 3.07, p < 0.01) and hilus
(40.9 ± 1.1 cells in control, vs. 36.6 ± 1.1 cells after FS; t = 2.72, p < 0.05). No significant
changes in the number of neurons were observed in CA3 (30.4 ± 0.9 cells in control, vs.
29.1 ± 0.9 cells after FS; t = 1.05, p = 0.31) and DG (68.6 ± 1.1 cells in control; 66.1 ± 1.4 cells
after FS; t = 1.44, p = 0.17).

Thus, we demonstrated that FS leads to as much as a 10% decrease in cell numbers in
some hippocampal areas. CA1 and the hilus are the areas most vulnerable to FSs, while no
apparent changes in the number of cells in CA3 and DG were detected. Since information
processing in the hippocampus was determined by excitatory synaptic connections within
and between regions; changes in the ratio of the number of neurons in the different
hippocampal areas can lead to some functional disturbances in the hippocampus.
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Figure 1. Nissl staining of the neurons in control (CTRL) and FS rats (FS) in the hippocampal areas CA1, CA3, hilus and
dentate gyrus (DG). Group data of the counted Nissl stained neurons per 100 µm of the cellular layer. The rhombuses show
individual values per brain. The bars indicate average values, and error bars show standard errors of the means. * p < 0.05,
** p < 0.01, t-test.
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2.2. The Efficacy of Synaptic Neurotransmission at CA3-CA1 Is Reduced after FS

Next, we investigated whether the efficacy of synaptic neurotransmission at CA3-CA1
pyramidal neuron synapses changes following FS. Afferent fibers from the CA3 area were
electrically stimulated at the CA2/CA1 border using tungsten bipolar electrodes. We
applied currents in a range of intensities from 25 to 300 mA and measured amplitudes of
presynaptic FVs, which indicated the number of CA3 axons that fired action potentials and
fEPSPs, showing the overall excitatory postsynaptic response occurring in CA1 neurons.

First, we compared the relationships between the amplitudes of fEPSPs and current
intensity in control (N = 12 animals, n = 27 slices) and FS animals (N = 23 rats, n = 53 slices);
no differences were found between the groups (repeated measures ANOVA F11,858 = 0.50;
p = 0.90, Figure 2a). In contrast, there was a significant increase in FVs amplitudes following
FS (F11,836 = 8.7; p < 0.001, control: n = 26, FS: n = 52; Figure 2b), suggesting a higher
excitability of presynaptic fibers.

Figure 2. Stimulation–response relationships for fEPSP amplitudes (a) and presynaptic FV amplitudes (b) recorded from the
hippocampal CA1 area in control (CTRL) and FS rats. Each point represents the mean ± SEM. (c) Representative examples
of I/O relationships between the fEPSP and FV amplitudes in hippocampal slices of control and FS rats. (d) The maximal
I/O slopes were smaller in FS rats than in control animals. Each rhombus represents a value obtained in individual brain
slice. One to three slices were used per animal. * p < 0.05, ** p < 0.01—the difference between control and FS groups.

Next, we compared the neuronal input–output (I/O) relationships between the fEPSP
and FV amplitudes in the control and FS groups. The maximal I/O slope in such a curve
is considered a synaptic strength measure [36]. We determined the maximal I/O slope
for each slice by fitting experimental data with a sigmoidal Gompertz function (Figure 2c)
and noticed that the average slope was reduced by 25% in post-FS rats (t-test: t = 2.30;
p < 0.05; control: n = 22, FS: n = 49; Figure 2d). These data indicate that the synaptic
neurotransmission efficacy at CA3–CA1 was reduced after FS.
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2.3. Short-Term Synaptic Plasticity of Hippocampal Neurons Does not Change in Rats that
Underwent FS in Early Postnatal Ontogenesis

The disruption in synaptic transmission efficacy may be due to disturbances of presy-
naptic mechanisms. As a first approximation, changes in the probability of mediator release
can be determined by changes in short-term synaptic plasticity properties [37]. We used a
paired-pulse stimulation to study the possible changes in short-term synaptic plasticity and
compared fEPSP amplitude ratios at different interstimulus intervals, ranging from 10 to
500 ms in animals of the control (N = 7 rats, n = 12 slices) and experimental (N = 9, n = 15)
groups. Figure 3 shows examples of the paired fEPSP at the interstimulus intervals of 30 ms
and 80 ms, and the curves illustrating the dependence of the paired amplitude ratios on the
interstimulus intervals’ values. Repeated measures ANOVA revealed no significant effect
of FS (F1,336 = 0.20; p = 0.66) or interaction of factors (interstimulus interval duration × FS;
F14,336 = 0.26; p = 0.99) on the magnitude of short-term facilitation.

Figure 3. Short-term synaptic plasticity did not change in rat hippocampal slices after FS. (a) Representative examples of
pair-pulse responses from the hippocampal CA1 area in control (CTRL) and post-FS rats (FS), interpulse intervals of 30 ms
and 80 ms. (b) Diagram showing the paired-pulse facilitation in hippocampal slices across different inter-stimuli. Each
point represents the mean ± SEM.

Thus, the absence of differences in short-term plasticity between the control and
experimental groups suggests that the probability of neurotransmitter release in the CA1
field does not change after FS.

2.4. Febrile Seizures Impair Long-Term Synaptic Plasticity and Synaptic Transmission in the
Rat Hippocampus

Next, we investigated whether LTP properties at the CA3–CA1 synapses of the hip-
pocampus change after FSs. We applied two LTP induction protocols: a theta-burst stimula-
tion (TBS) and high-frequency stimulation (HFS). Both protocols were less effective for LTP
induction in the FS group (Figure 4). According to a two-way ANOVA, FSs significantly
attenuated LTP (FS/control, F1,44 = 19.1, p < 0.001), regardless of the type of protocol used
(protocol type × FS/control, F1,44 = 0.001, p = 0.98). The TBS protocol induced an LTP of
1.55 ± 0.09 in the control group (N = 6 rats, n = 9 slices), while only 1.21 ± 0.06 in the FS
group (N = 8, n = 18), HFS protocol—1.61 ± 0.08 (N = 7, n = 9) and 1.27 ± 0.07 (N = 6,
n = 12), respectively.
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Figure 4. Long-term synaptic potentiation (LTP) was weakened in the CA1 of juvenile rats’ hippocampus after early life
FSs. (a) Schema showing the positions of electrodes in the hippocampus. (b) Representative examples of fEPSP before
induction (1) and 60 min after HFS or TBS (2). (c) Diagram showing changes in the value of the normalized slope of fEPSP
in control (CTRL) and experimental (FS) animals after theta-burst stimulation (TBS) or after high-frequency stimulation
(HFS) (stimulation was carried out at time 0). (d) Diagram illustrates the differences in LTP between control (CTRL) and
experimental (FS) animals with different stimulation types. All data in this and the following figures are presented as a
mean ± standard error of the mean. * p < 0.05—the significant difference with the control group (Tukey’s post hoc test).

Thus, a significant weakening of LTP in the CA1 hippocampal field of juvenile rats
was observed following FS.

LTP at CA3–CA1 synapses is believed to depend on NMDAR activation [38,39]. To
evaluate the maintenance of the NMDAR-dependent plasticity mechanism, we applied
the uncompetitive antagonist MK-801 (10 µM). In the control group, MK-801 applica-
tion almost completely prevented LTP induction by both TBS (Figure 5a,c; 1.15 ± 0.06;
N = 6 rats, n = 10 slices) and HFS protocols (Figure 5b,d; 1.07 ± 0.06; N = 8 rats, n = 9 slices).
In the experimental groups, the effect of MK-801 was similar. No significant LTP was
induced in the presence of MK-801 (TBS: 1.08 ± 0.07; N = 5, n = 7; HFS: 1.12 ± 0.08; N = 9,
n = 10). Thus, our results confirm that LTP induction was an NMDAR-dependent process
in both control and FS animals.
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Figure 5. LTP induction in the CA1 hippocampus of juvenile animals after early life FS was NMDAR-dependent. The
normalized fEPSP slope in the control and experimental groups in the presence of the NMDAR blocker MK-801 (10 µM),
before and after TBS (a) or HFS (b). (c,d) Diagrams illustrating the magnitude of plasticity in the control and experimental
groups in the presence of MK-801, after TBS (c) or HFS (d). Note that no synaptic plasticity was detected in the presence of
MK-801 in any group. Two-way ANOVA following Tukey post hoc tests were used. ** p < 0.01, *** p < 0.001.

Synaptic plasticity properties depend on the subunit composition of NMDARs [40].
To assess the impact of GluN2B-containing NMDARs, we used their selective antagonist
ifenprodil (3 µM). We found that ifenprodil significantly affected synaptic plasticity both
with the TBS protocol (Figure 6a,c; two-way ANOVA, ifenprodil (+/−): F1,43 = 8.0, p < 0.01)
and the HFS protocol (Figure 6b,d; F1,36 = 13, p < 0.001). The effect of ifenprodil was similar
in the control and experimental groups (TBS protocol: group (control/FS) × ifenprodil
(+/−), F1,43 = 2.3, p = 0.13; HFS protocol: F1,36 = 0.74, p = 0.39). In control animals,
ifenprodil reduced the magnitude of LTP almost two-fold (TBS: 1.24 ± 0.04; N = 9 rats,
n = 14 slices; Figure 6a,c; HFS: 1.24 ± 0.05; N = 6, n = 7; Figure 6b,d). In experimental rats,
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LTP production was blocked regardless of the protocol used (TBS: 1.11 ± 0.08, N = 6, n = 6;
Figure 6a,c; HFS: 1.08 ± 0.08; N = 7, n = 10; Figure 6b,d).

Figure 6. GluN2B-containing NMDARs were involved in the induction of LTP in both control and post-FS animals. The
relative fEPSP slope in the control and experimental groups in the presence of ifenprodil (Ifen, 3 µM), a selective GluN2B-
containing NMDAR antagonist, before and after TBS (a) or HFS (b). Note that no synaptic plasticity was detected in the
presence of ifenprodil in FS groups. (c,d) Diagrams illustrating the magnitude of plasticity in the control and post-FS groups
in the presence of ifenprodil, after TBS (c) or HFS (d). Note that no synaptic plasticity was detected in the presence of
ifenprodil in FS groups. Two-way ANOVA following Tukey post hoc tests were used. * p < 0.05.

Thus, GluN2B-containing NMDARs were involved in the induction of LTP in both
the control and experimental animals. The complete blockade of LTP in FS rats may be
because GluN2B-containing receptors predominate among NMDARs. Another possibility
is that ifenprodil further blocks the initially lower current through NMDARs. To determine
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which of these causes is more feasible, we examined the expression of different glutamate
receptor subunits.

2.5. The Relative Expression of NMDAR and AMPAR Subunit Genes Does not Change after FS

We compared the expression of NMDAR (Grin1, Grin2a, Grin2b) and AMPAR (Gria1,
Gria2) subunit genes in the dorsal region of the hippocampus in three groups of rats at P21.
In addition to the control and FS groups, a group of intact animals was used in this study.
No changes in the mRNA production of glutamate receptor subunit genes were found; the
Grin2b/Grin2a expression ratio was not changed either (Figure 7).

Figure 7. The relative expression of the Grin1, Grin2a, Grin2b, Gria1, Gria2 genes, and Grin2a/Grin2b ratio in the dorsal
hippocampal area after febrile seizures. CTRL—control group; FS—experimental group. One-way ANOVA followed by
Tukey’s post hoc multiple comparison tests. Data are presented as a mean with a standard error of the mean. Each dot
(circle, rhombus, square) represents a value obtained in individual animal.

The results suggest that changes in the subunit composition of NMDARs and AMPARs
are not likely to occur in this model of febrile seizures. The absence of changes in the
expression value of the obligate subunit GluN1 also indicates that the total number of
NMDARs is most probably not altered. Thus, the possible reason for the decrease in
synaptic plasticity may be due to a dysfunction of NMDARs.

2.6. Febrile Seizures Affect the Properties of NMDAR-Mediated Synaptic Currents Evoked by TBS

The decline of LTP after febrile seizures may be due to the weakening NMDAR-
dependent calcium current. Therefore, we compared the NMDAR-mediated response
during TBS using the whole-cell patch-clamp method. In both control and FS rats, the
amplitude of responses decreased during the trains, but the magnitude of this decrease
was different (Figure 8a,b). We normalized the amplitudes of the EPSCs to the amplitude
of the first peak and performed a mixed-model ANOVA. The analysis revealed that, in
the FS group, the amplitude of NMDAR-mediated current peaks decreased in a more
pronounced manner within each of the five responses (F24,649 = 4.05, p < 0.001). Thus,
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NMDARs exhibited a faster desensitization in FS groups and provided less calcium entry
into the postsynaptic terminals during the induction protocol. In turn, this may be the
reason for the impaired production of LTP.

Figure 8. The properties of NMDAR-mediated currents evoked by TBS were disturbed in FS rats. (a) The representative
voltage-clamp recordings of NMDAR-mediated currents, induced by TBS in CA1 neurons in control (black) and FS rats (red).
(b) The average amplitudes of the individual peaks of current within the responses, normalized to the amplitude of the first
response. Mixed-model ANOVA revealed a significant interaction between the factors (FS × stimulus number). Asterisks
indicate the significant difference between the values of control and FS rats for the same stimulus number according to
Dunnett’s post hoc test. (c) The representative recordings of the 90–10% decays of NDMAR-mediated currents evoked
during the TBS. The currents were fitted with the biexponential function with the time constants of τf ast = 65 ms and
τslow = 300 ms. (d) The relative contribution of the fast and slow components of the response during the TBS. Mixed-model
ANOVA did not reveal a difference between the control and FS rats. Asterisks indicate the significant difference with the
first response. * p < 0.05; ** p < 0.01; *** p < 0.001.

Since the kinetics of NMDAR desensitization strongly depends on their subunit
composition [41], we additionally tested, using an electrophysiological approach, whether
the subunit composition of NMDARs changed after FS. The decay phase of the NMDAR-
mediated eEPSC depends on the type of GluN2 subunits and, in pyramidal neurons, it



Int. J. Mol. Sci. 2021, 22, 8218 11 of 22

can be fitted with a double exponential function with the fast and slow time constants.
Previously, we have shown that the GluN2B-containing NMDAR antagonist ifenprodil
selectively blocks the component with the slow time constant [42]. We investigated whether
the relative contribution of these components is affected by FS and whether the relative
contribution of fast and slow components is affected by TBS differently in control and
FS rats.

We confirmed that, in control and FS rats, the decays of the current fitted by two
exponential functions with the time constants τf ast = 65 ms and τslow = 300 ms (Figure 8c),
and the relative contribution of the fast and slow components, did not differ between
FS and control groups for the first response. Next, using the mixed-model ANOVA, we
revealed that the relative contribution of slow components decreased during the TBS
(F4,109 = 56.3, p < 0.001). Still, no effect of FS (F1,109 = 0.01, p = 0.9), as well as no significant
interactions between the response number and FS, were detected (F4,109 = 0.6, p = 0.7).
Similar results were found for the fast decaying component (stimulus number: F4,109 = 3.5,
p = 0.011; FS: F1,109 = 0.27, p = 0.6; stimulus number × FS: F4,109 = 0.23, p = 0.9).

Together with qRT-PCR data, these results suggest that FSs do not affect the subunit
composition of NMDARs.

2.7. D-Serine Partially Restore LTP in the FS-Rats

The activation of NMDARs requires glutamate and the co-agonist glycine or D-serine
in micromolar concentrations. The binding of glutamate to GluN2 reduces the affinity of
GluN1 for glycine/D-serine through negative allosteric modulation; this leads to a gradual
decrease in ionic current through NMDAR in the presence of agonists.

NMDAR desensitization is manifest with submicromolar glycine and decreases with
higher concentrations of glycine. This is referred to as the glycine-dependent desensi-
tization [41,43,44]. Hippocampal astrocytes retain the ability to control LTP involving
Ca2+-dependent D-serine release [45], and the astrocyte–neuron relationships are disturbed
in epilepsy [46]. Recently, we showed that the application of D-serine fully restored the
initial phase of LTP (5–15 min) in the hippocampus of the rat with a lithium–pilocarpine
model of the temporal lobe epilepsy [47]. Therefore, our next set of experiments was
designed to evaluate the effects of D-serine (10 µM) application.

We found that D-serine affects synaptic plasticity differently in control animals
and FS rats (Figure 9), both when using the TBS protocol (two-way ANOVA, group
(FS/control) × D-serine (+/−), F1,37 = 5.1, p < 0.01) and HFS (F1,39 = 4.3, p < 0.05). In
FS rats, the application of D-serine restored the LTP magnitude to control values. In
the case of the HFS protocol, D-serine application increased the LTP magnitude from
1.27 ± 0.07 (N = 6 rats, n = 12 slices) to 1.63 ± 0.08 (N = 8 rats, n = 16, p < 0.01) in FS rats.
Our findings suggest that the neuron–glial relationships may be impaired after FS.
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Figure 9. D-serine, a co-agonist of NMDARs, enhanced LTP in the FS but not control group. The normalized fEPSP slope in
the control and FS groups in the presence of the NMDAR co-agonist D-serine (10 µM), before and after TBS (a) or HFS (b).
(c,d) Diagrams illustrating the magnitude of plasticity in the control and experimental groups in the presence of D-serine
after TBS (c) or HFS (d). Two-way ANOVA following Tukey post hoc tests: * p < 0.05, ** p < 0.01.

2.8. The Simulation of the NMDAR-Mediated Response to TBS

To examine whether the decrease in ambient glycine/D-serine concentration can
affect NMDAR desensitization during the TBS, we implemented a mathematical model of
NMDAR kinetics (Figure 10).

Figure 10. The kinetic scheme used for simulating the gating mechanisms of NMDARs. Rate
constants above each arrow are given in s−1, except for the glycine-binding and glutamate-binding
rate constants, which are in µM−1s−1. Gly and Glu indicate the glycine and glutamate concentrations
(in µM), respectively.
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The simulations were performed with two concentrations of ambient agonist: 10 µM
and 1 µM. With both concentrations of glycine, the implementation of TBS induced the
NMDAR responses, which resembled the ones observed in the experiment. Each burst
caused a single peak of open state probability, resulting in five responses, each having five
peaks (Figure 11). When the higher concentration of glycine was present, the individual
peaks displayed a slight decrease within each set of five bursts. In the low concentration of
glycine, the amplitude of the probability peaks showed a more substantial reduction during
the train (Figure 11), comparable to the experimental observations of NMDAR currents
during the TBS. Thus, the simulation demonstrates that glycine in low concentration
promotes the use-dependent downregulation of NMDAR during the TBS, similar to that
observed in the experiments.

Figure 11. The simulations of the NMDAR-mediated response to TBS. (a) The sums of the open state probability (O1 + O1),
which reflect the time course of the NMDAR-mediated synaptic currents induced by TBS. The upper traces (black) represent
the 5 responses, simulated with 10 µM of ambient glycine. The lower traces (red) were simulated with 1 µM of ambient
glycine. (b) The amplitudes of the individual peaks of open state probability within the responses normalized to the first
peak amplitude of the first response.

3. Discussion

Considerable evidence has accumulated that suggests prolonged or repeated neonatal
seizures can lead to developing acquired epilepsy and cognitive deficits later in
life [16,28,31,48,49]. The exact mechanisms of seizure-induced epileptogenesis and cogni-
tive abnormalities are not yet fully understood, though it is considered that alterations of
the excitatory synaptic transmission properties contribute to this process. Due to the high
prevalence of seizures in children, understanding the mechanisms of their effects on the
immature brain is one of the most critical tasks.

This study used an animal model closely replicating prolonged FSs [3]; to achieve
this, we monitored the duration of FSs in animals and included only rats with seizures
lasting 15–20 min. The major findings of this study were that febrile seizures in P10 cause a
significant attenuation of LTP induction in the hippocampus in rats at P21. This weakening
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of the hippocampal synaptic plasticity was accompanied by the attenuation of synaptic
transmission efficacy in the CA1 area and a slight reduction in the number of neurons
in the CA1 and the hilus areas. We suggest that the weakening plasticity induction in
FS rats was related to the more pronounced desensitization of NMDARs. The increased
desensitization may be due to an insufficient activation of the glycine site of NMDARs, as
the glycine site co-agonist D-serine application allows the restoration of synaptic plasticity
to a control value.

In this study, we hypothesized that impaired glutamatergic transmission in the FS
model might be primarily related to the disruption in properties of AMPARs and NMDARs,
because such disorders have been shown in various models of neonatal seizures. For
example, early life hypoxia-induced seizures lead to the enhancement of AMPAR-mediated
signaling in CA1, associated with increased receptor phosphorylation [50]. The enhanced
tyrosine phosphorylation of NMDAR subunits was also observed following neonatal
hypoxia–ischemia [51]. In the model of hypoxic neonatal seizures, an increase in GluN2A
phosphorylation in the hippocampus was shown [52]. The hypoxia-induced seizures may
also result in the enhanced expression of GluA2-lacking Ca2+-permeable AMPA receptors
in the hippocampus [31,53]. The most regularly reported disturbances at the early stages
of epileptogenesis include an increase in the relative contribution of GluN2B-containing
NMDARs, which was shown in pilocarpine and lithium-pilocarpine models [42,54,55].
Similar results were obtained in the pentylenetetrazole-induced kindling [56].

The effects of FSs on the glutamatergic system are currently less investigated. Early
life frequently repetitive FSs resulted in selective deficits in GluN2A subunit tyrosine phos-
phorylation after NMDA treatment in the hippocampal CA1 areas of adult rats [24]. Chen
et al. showed that GluN2B Tyr1472 phosphorylation gradually increased and maintained a
high level for 7 days after prolonged FSs, without any apparent change in the total GluN2B
expression level [57].

In the present study, we did not observe any changes in mRNA expression levels of
AMPARs or NMDARs subunits. Although the expression levels of receptor subunits at the
protein and mRNA levels may not coincide, the decays of NMDAR-mediated currents were
similar in control and FS groups, suggesting that the subunit composition of NMDARs was
not affected by FSs. However, the functional activity of NMDARs was altered in the FS
group: NMDARs exhibited a faster desensitization in FS groups compared with controls.

NMDAR desensitization results from several different concurrent processes. After
NMDAR activation, at least two different types of desensitization occur [41]. (1) Glutamate
binding to GluN2 reduces the affinity of GluN1 to glycine via negative allosteric modula-
tion; this results in the gradual reduction in the ion current through the NMDAR in the
presence of agonists [43]. An increase in glycine concentration abolishes this effect [58].
(2) Calcium-dependent desensitization results from calcium binding to the intracellular
portion of the GluN1 subunit after its entrance to the cell [41]. Both types of desensitization
depend on the NMDAR subunit composition [41].

Since we did not detect any changes in the NMDAR subunit composition using a PCR
analysis, we suppose that the changes may be related to the availability of glycine site
agonists. The following data support this assumption. Extracellular glycine concentrations
vary with brain region and neuronal activity. In the hippocampus, the synaptic availabil-
ity of glycine is mainly under the control of glycine transporter 1 (GlyT1) expressed in
astrocytes and postsynaptic neurons [59,60]. Shen et al. (2015), using two different rodent
models of epilepsy, demonstrated a robust overexpression of GlyT1 in the hippocampal
formation, suggesting dysfunctional glycine signaling in epilepsy [61]. It should be noted
that changes in the hippocampal glycine receptor expression have also been reported in
patients with temporal lobe epilepsy, suggesting a dysregulation of glycinergic signaling
in epilepsy [62]. Thus, we can assume a decrease in the concentration of available glycine
after FSs and, consequently, an increase in the desensitization of NMDRs. This assumption
is supported by the fact that the addition of D-serine, a glycine site agonist, restored LTP in
our experiments.
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Another possible cause of increased NMDAR desensitization and impaired synaptic
plasticity could be disturbances in neuron–glial relationships. Hippocampal astrocytes
retain the ability to control LTP within or near their individual territories, involving the
Ca2+-dependent D-serine release [45]. Thus, astrocytes can regulate the local D-serine
supply and might be able to deliver D-serine to specific NMDAR populations, thereby
decreasing their desensitization. Previously, we showed that the application of D-serine
fully restored the initial phase of LTP in hippocampal slices of pilocarpine-treated rats [47].
In this study, the effect of D-serine was more pronounced, suggesting that the hypothesis
of the impaired neuron–glia interactions should be further explored.

Experimentally induced FSs cause a robust inhibition of interastrocytic gap junctional
coupling [63], which may affect the excitability of hippocampal neurons after FS and
facilitate the development of epilepsy [20,22]. In the repetitive FS models, both long-
term astrocyte activation [64] and pronounced ultrastructural changes in the astroglia of
the hippocampus and temporal lobe neocortex were shown. The damage of granular
endoplasmic reticulum and mitochondria was the primary manifestation [65], leading to
disorders in some intercellular biochemical events, such as an abnormal protein synthesis
or the inhibition of oxidative phosphorylation.

In the present study, we also confirmed that early life FSs do not lead to significant
neuronal cell death, supporting the previous studies showing that the immature hippocam-
pus is resistant to seizure-induced neuronal death [20,66]. However, the present study
demonstrates a 10% neuronal loss in the pyramidal layer of the hippocampal CA1 area
and hilus, but not in CA3 or DG. Furthermore, the distribution of affected neurons was
partially similar to that reported in a previous study [19], in which the authors, using the
silver-staining method, identified the most damaging significant and prolonged alterations
in the physicochemical properties of neurons in the pyramidal layer of the hippocampal
CA1 and all of the CA3 subfields.

Thus, our study suggests that early life FSs do not result directly in hippocampal cell
death, but lead to multiple functional disturbances in glutamatergic neurotransmission,
including alterations the in synaptic plasticity. These disturbances could eventually lead to
an epileptic state and be the primary mechanism of cognitive dysfunctions.

4. Materials and Methods
4.1. Animals and FS Model

All the experiments were approved by the Sechenov Institute of Evolutionary Physi-
ology and Biochemistry Ethics Committee and carried out following local guidelines on
the treatment of laboratory animals. These guidelines fully comply with Russian and
international standards for animal studies. Female Wistar rats, together with their litters,
were kept under standard conditions at room temperature, with free access to water and
food. Only 10 pups were abandoned in the litter. FS was induced on P10. Pups were placed
on the bottom of a 10 L glass chamber. The temperature was maintained at 46 ◦C. The
animal temperature was measured rectally [67].

Before the experiment, the temperature was 31.1 ± 0.1 ◦C, and at the beginning of the
seizure, it was 39.8 ± 0.1 ◦C. After the onset of seizures, the temperature was measured
every 2 min. If the temperature raised above 41 ◦C, the pups were moved to a cool surface
for 2 min and then returned to the chamber. Hyperthermic animal temperatures (39–41 ◦C)
were maintained for 25 min.

The behavioral seizures in this paradigm were stereotyped, consisting of the arrest of
heat-induced hyperkinesis followed by facial automatisms, often accompanied by body
flexion, followed by myoclonic twitches and clonic seizures. After hyperthermia, animals
were placed on a cold surface until the core temperature returned to the normal range
and then returned to the home cage. After hyperthermia, the pups’ weight changed
insignificantly (<3% change in body weight), indicating only slight dehydration symptoms.
The mortality rate at hyperthermia and during the following 30 min was less than 1%. Only
animals with FS that lasted at least 15 min were included in the study (N = 43).
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Littermates used for controls were taken from the cage for the same time but main-
tained at room temperature (N = 42). Additionally, a group of intact animals (N = 5) was
used to study the expression of glutamate receptor subunits. Rats from the intact group
were not exposed to any treatments.

4.2. Brain Slices Preparation

Hippocampal slices were prepared as previously described [68]. Briefly, at P21–23, the
rats were decapitated. The brain was rapidly removed. Horizontal brain slices (400 µm)
were cut using a vibratome HM 650 V (Microm, Walldorf, Germany) in chilled artificial
cerebrospinal fluid (ACSF; t = 0 ◦C), which was aerated with carbogen (95% O2 and 5%
CO2). Composition of ACSF (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2,
24 NaHCO3, 10 glucose. The slices were then incubated at 35 ◦C for 1 h and then left at
room temperature. After incubation, the slices were transferred to a recording chamber
where field responses were registered at 25–27 ◦C. In the recording chamber, the ACSF
flow rate was 5–7 mL/min.

4.3. Field Potential Recordings

Extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded from the
CA1 stratum radiatum of the hippocampus with glass microelectrodes (0.2–1.0 MΩ). Each
slice was stimulated with increasing amplitude currents (25 to 300 µA, 25 µA step), and the
amplitude, 20–80% rising phase slope, and fiber volley amplitude (FVs) were measured for
each fEPSP. The efficacy of neurotransmission was determined with a sigmoidal Gompertz
function as described previously [36]. The stimulation current amplitude for the LTP
experiment was 40–50% of the current intensity, inducing population spikes. Stimuli
were delivered every 20 s via an A365 stimulus isolator (World Precision Instruments,
Sarasota, FL, USA). Responses were amplified by a Model 1800 amplifier (A-M Systems,
Carlsborg, WA, USA), then digitized with ADC/DAC NI USB-6211 (National Instruments,
Austin, TX, USA) using WinWCP v5.x.x software (University of Strathclyde, Glasgow,
UK). The recordings were analyzed using Clampfit 10.2 software (Axon Instruments,
San Jose, CA, USA).

Two types of stimulation protocols were used for LTP induction. (1) TBS: five bursts
of five pulses with a frequency of 100 Hz, with an interval of 200 ms between bursts. The
stimulation was repeated five times every 10 s. (2) HFS: 3 trains consisting of 100 pulses at
100 Hz applied every 20 s.

A 20 min baseline period preceded LTP induction. Potentiated fEPSPs were recorded
for 60 min following stimulation. LTP was quantified by calculating the ratio of the average
slope of the potentiated fEPSPs (50–60 min after stimulation) and the baseline ones (10 min
before stimulation). MK-801 (10 µM), an uncompetitive NMDAR antagonist, ifenprodil
(3 µM), a GluN2B subunit-selective NMDAR antagonist, D-serine, a co-agonist of NMDARs
were obtained from Sigma (St. Louis, MO, USA). These drugs were diluted in distilled
water and bath applied.

The paired-pulse ratio (PPR) was calculated as the second to the first fEPSP
amplitude ratio.

4.4. The Whole-Cell Patch-Clamp Recordings

The pyramidal neurons were visualized using a Zeiss Axioskop 2 microscope (Zeiss,
Oberkochen, Germany), equipped with differential interference contrast optics and a
video camera (Grasshopper 3 GS3-U3-23S6M-C; FLIR Integrated Imaging Solutions Inc.,
Wilsonville, OR, USA). Patch electrodes (3–5 MΩ) were pulled from borosilicate glass
capillaries (Sutter Instrument, Novato, CA, USA) using a P-1000 pipette puller (Sutter
Instrument, Novato, CA, USA). A cesium methanesulfonate-based pipette solution (com-
position in mM: 127 CsMeSO3, 10 NaCl, 5 EGTA, 10 HEPES, 6 QX314, 4 ATP-Mg, and 0.3
GTP; pH adjusted to 7.25 with CsOH) was used for voltage-clamp recordings. Whole-cell
recordings were performed using a MultiClamp 700B (Molecular Devices, Sunnyvale, CA,
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USA) patch-clamp amplifier and an NI USB-6343 A/D converter (National Instruments,
Austin, TX, USA) using WinWCP 5 software (University of Strathclyde, Glasgow, UK). The
data were filtered at 10 kHz and sampled at 20 kHz. In all cells included in the sample,
access resistance was less than 20 MΩ and remained stable (≤20% increase) across the
experiment. The liquid junction potential was compensated offline for the voltage-clamp
recordings by subtracting 7 mV. A bipolar stimulating electrode was placed in the same
area as for the field-potential recordings. NMDAR-mediated eEPSCs were recorded at +40
mV in the presence of gabazine (10 µM, Alomone Labs, Jerusalem, Israel) and DNQX (10
µM, Tocris Bioscience, Bristol, UK).

Changes to the time course of the NMDAR-mediated current during the TBS were
described using the non-linear regression analysis on the decay phase (90–10%) [42]. We
utilized the biexponential function:

I
(

t; A f ast, τf ast, Aslow, τslow

)
= A f ast∗ exp

(
− t

τf ast

)
+ Aslow∗ exp

(
− t

τslow

)
(1)

where A f ast and τf ast are the amplitude and time constant of the fast decaying component;
Aslow and τslow are the amplitude and time constant of the slow decaying component.

For each of five NMDAR-mediated currents induced by TBS, the relative shares of the
fast and slow decaying component were calculated as follows:

Rel.share f ast =
A f ast

A f ast1 + Aslow1
(2)

Rel.shareslow =
Aslow

A f ast1 + Aslow1
(3)

where A f ast1 and Aslow1 are the amplitudes of the fast and slow decaying components of
the first out of five responses, respectively.

4.5. Quantitative PCR (qRT-PCR)

Rats were decapitated at P21. Brains were quickly removed, frozen, and stored at
−80 ◦C until dissection. The dorsal hippocampus was dissected using a cryostat OTF5000
(Bright Instrument, Huntingdon, UK) according to the rat brain atlas [69]. Total RNA
was isolated using the ExtractRNA reagent (Evrogen, Moscow, Russia) following the
manufacturer’s protocol. RNA concentration was assessed spectrophotometrically using
NanoDrop™ Lite (Thermo Fisher Scientific, Wilmington, DE, USA).

Total RNA (2 µg), oligo-dT-primers, and 9-mer random primers (0.5 µg per 1 µg RNA
and 0.25 µg per 1 µg RNA, respectively) (DNA Synthesis Ltd., Moscow, Russia) and MMLV
reverse transcriptase (100 units per 1 µg RNA; Evrogen, Moscow, Russia) were used for
reverse transcription. The reaction was carried out in a total volume of 25 µL. We mixed
primers and 8 µL of RNA solution and incubated 10 min at 70 ◦C and quickly cooled to
4 ◦C for primer annealing. Then, we added reverse transcriptase-containing reaction mix,
and samples were incubated 1 h at 42 ◦C and 10 min at 65 ◦C. After this step, all samples
were 7-fold diluted. qPCR was performed in a total volume of 10 µL with 0.8 µL cDNA,
0.75 units of TaqM-polymerase (Alkor Bio, St. Petersburg, Russia), 3.5 mM Mg2+, specific
forward, reverse primers and hydrolysis (TaqMan) probes (see Table 1). Nucleotides were
synthesized by DNA Synthesis Ltd. (Moscow, Russia). PCR reactions were performed in a
C1000 Touch thermal cycler combined with a CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) in triplets, simultaneously with no template and
no reverse transcription control samples. The relative expression of Grin1, Grin2a, Grin2b,
Gria1 and Gria2 genes was calculated using the 2−∆∆Ct method [70], normalized against
the relative expression of Ppia gene, which is stable in the seizure models [71].
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Table 1. Primers and probes used in qRT-PCR.

Gene Symbol
RefSeq Accession Number

Nucleotide Sequences
(Forward, Reverse, TaqMan-Probe) Reference

Ppia
NM_017101

AGGATTCATGTGCCAGGGTG
CTCAGTCTTGGCAGTGCAGA

ROX-CACGCCATAATGGCACTGGTGGCA-BHQ1
[72]

Grin1
NM_017010

GTTCTTCCGCTCAGGCTTTG
AGGGAAACGTTCTGCTTCCA

FAM-CGGCATGCGCAAGGACAGCC-BHQ1
[73]

Grin2a
NM_012573

GCTACACACCCTGCACCAATT
CACCTGGTAACCTTCCTCAGTGA

FAM-TGGTCAATGTGACTTGGGATGGCAA-BHQ1
[74]

Grin2b
NM_012574

CCCAACATGCTCTCTCCCTTAA
CAGCTAGTCGGCTCTCTTGGTT

FAM-GACGCCAAACCTCTAGGCGGACAG-BHQ1
[74]

Gria1
NM_031608

TCAGAACGCCTCAACGCC
TGTAGTGGTACCCGATGCCA

ROX-TCCTGGGCCAGATCGTGAAGCTAGAAAA-BHQ1
[75]

Gria2
NM_017261

CAGTGCATTTCGGGTAGGGA
TGCGAAACTGTTGGCTACCT

FAM-TCGGAGTTCAGACTGACACCCCA-BHQ1
[75]

4.6. Histology

At P21–23, rats were deeply anesthetized with a Zoletil/Xylazine mixture (Virbac,
France) and sacrificed by transcardial perfusion with ice-cold 0.01 M PBS (pH = 7.4) and
next with ice-cold 4% paraformaldehyde (PFA) in 0.1M PB (pH = 7.4) at a rate of 10 mL/min.
Then, the brains were removed and fixed in 4% PFA at 4 ◦C for 24 hs. The brains were
rinsed from PFA and cryoprotected in 30% sucrose in PBS at 4 ◦C for 2–3 days. Finally,
the brains were frozen in cooled (<−50 ◦C) isopentane (78-78-4, Isopentane Solution,
Sigma-Aldrich, St. Louis, MO, USA) and stored at −80 ◦C until cutting. An amount
of 20 µm thick coronal serial sections were cut with a Bright OTF5000 cryostat (Bright
Instrument Co Ltd., Huntingdon, UK) from 2.6 to 3.6 mm caudal to bregma, mounted
on slides with adhesive coating Super Frost Plus (J1800AMNZ, Fisher Scientific UK Ltd.,
Loughborough, UK). Once dried for one day, the unstained slides were treated in a series
of solutions for Nissl staining. Sections were defatted in a mixture of ethanol (EtOH) and
chloroform (Ekos-1, Moscow, Russia) (1:1) for 1–3 h, and then rehydrated in EtOH solutions
of decreasing concentration (3 steps in 96% EtOH and 2 steps in 70% EtOH; 2 min each
step), followed with 2 rinses in distilled water (1 min each), followed by 5 min in 0.05%
thionin solution (pH 4.5). Sections were then rinsed in distilled water (2 steps, 1 min each)
and dehydrated in increasing concentrations of ethanol solutions. Finally, sections were
cleared in microclearing (Diapath, Martinengo, Italy; 2 steps of 15 and 20 min) and then
coverslipped with VitroGel (Ergo Production, Moscow, Russia).

The Nissl stained sections were analyzed using Leica Microscope AF 7000 (Leica
Microsystems, Wetzlar, Germany) under ×400 magnification. For morphological analysis,
neuronal counts were performed on every 5th section (yielding 8–10 sections from one rat
hippocampus). The distance between the analyzed sections was 100 µm. The number of
neurons in digital micrographs was counted per 100 µm for the cell layer in CA1, CA3, hilus
and dentate gyrus using ImageJ (U. S. National Institutes of Health, Bethesda, MD, USA).

4.7. Simulations

A kinetic model of NMDARs proposed by [58] with glutamate-binding steps ap-
pended as described in [76] was used for simulation of TBS-induced NMDAR-mediated
currents. This kinetic scheme (Figure 1) included two glutamate binding steps (R0 and R1),
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three closed states (C3, C2, and C1), two desensitized states (D1 and D2), two open states
(O1 and O2), and two glycine-binding steps (CU and CM). The synaptic input during the
TBS was simulated as the 1 ms pulses of 1 mM glutamate (5 sets of 5 pulses, repeated every
100 s). The concentration of glycine was set equal to a constant value. The corresponding
system of the rate equations (eleven first-order differential equations, one per each state of
probability) was solved numerically using the Wolfram Mathematica 12 (Wolfram Research,
Champaign, IL, USA). As the two open stats of NMDAR have similar conductance [58,77],
the time course of the macroscopic current was calculated as the sum of the solutions for
the two conducting states.

4.8. Statistical Analysis

The statistical analysis and graphical representation of the results were performed
using OriginPro 8 (OriginLab Corporation, Northampton, MA, USA and SigmaPlot 12.5
(Systat Software Inc., Palo Alto, CA, USA). Dixon’s Q test (at a 90% confidence level) was
used to identify and reject outliers. The normality of the sample data was evaluated using
the Kolmogorov–Smirnov test. The equality of variance was assessed using the Levene
median test. Statistical significance was assessed using Student’s t-test and ANOVA as
stated in the text. All data are presented as mean ± standard error of the mean. p < 0.05
was considered statistically significant.
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