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Abstract

Background: The availability of high-throughput omics datasets from large patient cohorts has allowed the
development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence.
Such methods are also important to better understand the biological mechanisms underlying disease etiology and
development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms
(including Support Vector Machines and Random Forests) have been investigated. In this context, deep learning
strategies are of special interest due to their demonstrated superior performance over a wide range of problems and
datasets. One of the main challenges of such strategies is the “small n large p” problem. Indeed, omics datasets
typically consist of small numbers of samples and large numbers of features relative to typical deep learning datasets.
Neural networks usually tackle this problem through feature selection or by including additional constraints during
the learning process.

Methods: We propose to tackle this problem with a novel strategy that relies on a graph-based method for feature
extraction, coupled with a deep neural network for clinical outcome prediction. The omics data are first represented
as graphs whose nodes represent patients, and edges represent correlations between the patients’ omics profiles.
Topological features, such as centralities, are then extracted from these graphs for every node. Lastly, these features
are used as input to train and test various classifiers.

Results: We apply this strategy to four neuroblastoma datasets and observe that models based on neural networks
are more accurate than state of the art models (DNN: 85%-87%, SVM/RF: 75%-82%). We explore how different
parameters and configurations are selected in order to overcome the effects of the small data problem as well as the
curse of dimensionality.

Conclusions: Our results indicate that the deep neural networks capture complex features in the data that help
predicting patient clinical outcomes.

Keywords: Machine learning, Deep learning, Deep neural network, Network-based methods, Graph topology,
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Background
A lot of efforts have been made recently to create and val-
idate predictive models for clinical research. In particular,
the identification of relevant biomarkers for diagnosis and
prognosis has been facilitated by the generation of large
scale omics datasets for large patient cohorts. Candidate
biomarkers are now identified by looking at all bioentities,
including non-coding transcripts such as miRNA [1, 2],
in different tissues, including blood [3, 4] and by investi-
gating different possible levels of regulation, for instance
epigenetics [5–7].

One challenging objective is to identify prognostic
biomarkers, i.e., biomarkers that can be used to predict
the clinical outcome of patients such as whether the dis-
ease will progress or whether the patient will respond
to a treatment. One strategy to identify such biomarkers
is to build classifiers that can effectively classify patients
into clinically relevant categories. For instance, various
machine learning models predicting the progression of
the disease and even the death of patients were pro-
posed for neuroblastoma [8]. Similar models have also
been built for other diseases such as ovarian cancer to
predict the patients’ response to chemotherapy using dif-
ferent variants of classical learning algorithms such as
Support Vector Machines (SVM) and Random Forest (RF)
[9]. More recently, gynecologic and breast cancers were
classified into five clinically relevant subtypes based on
the patients extensive omics profiles extracted from The
Cancer Genome Atlas (TCGA)[10]. A simple decision tree
was then proposed to classify samples and thus predict the
clinical outcome of the associated patients. Although the
general performance of these models is encouraging, they
still need to be improved before being effectively useful in
practice.

This study aims at improving these approaches by inves-
tigating a graph-based feature extraction method, coupled
with a deep neural network, for patient clinical out-
come prediction. One challenge when applying a machine
learning strategy to omics data resides in the proper-
ties of the input data. Canonical datasets usually contain
many instances but relatively few attributes. In contrast,
biomedical datasets such as patient omics datasets usually
have a relatively low number of instances (i.e., few sam-
ples) and a relatively high number of attributes (i.e., curse
of dimensionality). For instance, the large data reposi-
tory TCGA contains data for more than 11,000 cancer
patients, and although the numbers vary from one cancer
to another, for each patient, a least a few dozens of thou-
sands of attributes are available [11]. The situation is even
worse when focusing on a single disease or phenotype, for
which less than 1000 patients might have been screened
[12–14].

Previous approaches to handle omics data (with few
samples and many features) rely on either feature selection

via dimension reduction [15–17] or on imposing con-
straints on the learning algorithm [18, 19]. For instance,
several studies have coupled neural networks to Cox mod-
els for survival analysis [20, 21]. These methods either
perform feature selection before inputing the data to deep
neural network [20, 21] or let the Cox model perform
the selection afterwards [22]. More recently, the GEDFN
method was introduced, which relies on a deep neural
network to perform disease outcome classification [18].
GEDFN handles the curse of dimensionality by imposing
a constraint on the first hidden layer. More precisely, a
feature graph (in this case, a protein-protein interaction
network) is used to enforce sparsity of the connections
between the input layer and the first hidden layer.

We propose a strategy to create machine-learning mod-
els starting from patient omics datasets by first reducing
the number of features through a graph topological anal-
ysis. Predictive models can then be trained and tested,
and their parameters can be fine-tuned. Due to their high
performance on many complex problems involving high-
dimensional datasets, we build our approach around Deep
Neural Networks (DNN). Our hypothesis is that the com-
plex features explored by these networks can improve
the prediction of patient clinical outcomes. We apply this
strategy to four neuroblastoma datasets, in which the gene
expression levels of hundreds of patients have been mea-
sured using different technologies (i.e., microarray and
RNA-sequencing). In this context, we investigate the suit-
ability of our approach by comparing it to state of the art
methods such as SVM and RF.

Methods
Data collection
The neuroblastoma transcriptomics datasets are summa-
rized in Table 1. Briefly, the data were downloaded from
GEO [26] using the identifiers GSE49710 (tag ‘Fischer-M’),
GSE62564 (tag ‘Fischer-R’) and GSE3960 (tag ‘Maris’). The
pre-processed transcriptomics data are extracted from
the GEO matrix files for 498 patients (‘Fischer-M’ and
‘Fischer-R’) and 102 patients (‘Maris’). In addition, clin-
ical descriptors are also extracted from the headers of
the GEO matrix files (‘Fischer-M’ and ‘Fischer-R’) or from
the associated publications (‘Maris’). For ‘Maris’, survival
data for ten patients are missing, leaving 92 patients for
analysis. A fourth dataset (tag ‘Versteeg’) is described in
GEO record GSE16476. However the associated clinical
descriptors are only available through the R2 tool [27]. For
consistency, we have also extracted the expression pro-
files for the 88 patients using the R2 tool. In all four cases,
the clinical outcomes include ‘Death from disease’ and
‘Disease progression’, as binary features (absence or pres-
ence of event) which are used to define classes. Genes or
transcripts with any missing value are dropped. The num-
ber of features remaining after pre-processing are 43,291,
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Table 1 Details about the four expression datasets used in the present study

Name Reference Data type Size Usage

Fischer-M Zhang et al., 2014 [8, 23] Microarray 498 * 43,291 Training, testing

Fischer-R Zhang et al., 2014 [8, 23] RNA-seq 498 * 43,827 Training, testing

Maris Wang et al., 2006 [24] Microarray 92 * 12,625 Testing

Versteeg Molenar et al., 2012 [25] Microarray 88 * 40,918 Testing

43,827, 12,625 and 40,918 respectively for the ‘Fischer-M’,
‘Fischer-R’, ‘Maris’ and ‘Versteeg’ matrices.

Data processing through topological analysis
Each dataset is then reduced through a Wilcoxon analy-
sis that identifies the features (i.e., genes or transcripts)
that are most correlated with each clinical outcome using
only the training data (Wilcoxon P < 0.05). When this
analysis did not return any feature, the top 5% features
were used regardless of their p-values (for Maris’ and ‘Ver-
steeg’). After dimension reduction, there are between 638
and 2196 features left depending on the dataset and the
clinical outcome.

These reduced datasets are then used to infer Patient
Similarity Networks (PSN), graphs in which a node repre-
sents a patient and an edge between two nodes represents
the similarity between the two profiles of the correspond-
ing patients. These graphs are built first, by computing
the Pearson correlation coefficients between all profiles
pairwise and second, by normalizing and rescaling these
coefficients into positive edge weights through a WGCNA
analysis [28], as described previously [29]. These graphs
contain one node per patient, are fully connected and their
weighted degree distributions follow a power law (i.e.,
scale-free graphs). Only one graph is derived per dataset,
and each of the four datasets is analyzed independently.
This means that for ‘Fischer’ datasets, the graph contains
both training and testing samples.

Various topological features are then extracted from the
graphs, and will be used to build classifiers. In particular,
we compute twelve centrality metrics as described previ-
ously (weighted degree, closeness centrality, current-flow
closeness centrality, current-flow betweenness centrality,
eigen vector centrality, Katz centrality, hit centrality, page-
rank centrality, load centrality, local clustering coefficient,
iterative weighted degree and iterative local clustering
coefficient) for all four datasets. In addition, we perform
clustering of each graph using spectral clustering [30] and
Stochastic Block Models (SBM) [31]. The optimal number
of modules is determined automatically using dedicated
methods from the spectral clustering and SBM packages.
For the two ‘Fischer’ datasets and the two clinical out-
comes, the optimal number of modules varies between
5 and 10 for spectral clustering and 25 and 42 for SBM.
This analysis was not performed for the other datasets. All
repartitions are used to create modularity features. Each

modularity feature represents one single module and is
binary (its value is set to one for members of the module
and zero otherwise). All features are normalized before
being feed to the classifiers (to have a zero mean and unit
variance). Two datasets can be concatenated prior to the
model training, all configurations used in this study are
summarized in Table 2.

Modeling through deep neural networks
Classes are defined by the binary clinical outcomes ‘Death
from disease’ and ‘Disease progression’. For the ‘Fischer’
datasets, the original patient stratification [8] is extended
to create three groups of samples through stratified sam-
pling: a training set (249 samples, 50%), an evaluation
set (125 samples, 25%) and a validation set (124 samples,
25%). The proportions of samples associated to each clin-
ical outcome of interest remain stable among the three
groups (Additional file 2).

Deep Neural Networks (DNN) are feed forward neural
networks with hidden layers, which can be trained to solve
classification and regression problems. The parameters of
these networks are represented by the weights connect-
ing neurons and learned using gradient decent techniques.
The DNN models are based on a classical architecture
with a varying number of fully connected hidden layers of
varying sizes. The activation function of all neurons is the
rectified linear unit (ReLU). The softmax function is used

Table 2 List of the possible data configurations (topological
feature sets, datasets) used to train classification models

Datasets Topological features Total size

Fischer-M Centralities 12

Modularities {30, 39}a

Both {42, 51}a

Fischer-R Centralities 12

Modularities {36, 47}a

Both {48, 59}a

Fischerb Centralities 24

Modularities {75, 77}a

Both {99, 101}a

aThe number of modules for each graph, corresponding to one clinical outcomes of
interest, is different
bThis is the combined dataset in which the topological features of both ‘Fischer-M’
and ‘Fischer-R’ are concatenated
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as the activation function of the output layer. The training
is performed by minimizing the cross-entropy loss func-
tion. A mini-batches size of 32 samples is used for training
(total size of the training set is 249) and models are ran
for 1000 epochs with an evaluation taking place every 10
epochs. Sample weights are introduced to circumvent the
unbalance between the classes (the weights are inversely
proportional to the class frequencies). To facilitate repli-
cations, random seeds are generated and provided to each
DNN model. For our application, DNN classifiers with
various architectures are trained. First, the number of hid-
den layers varies between one and four, and the number
of neurons per hidden layer also varies from 2 to 8 (∈
{2, 4, 8}). Second, additional parameters such as dropout,
optimizer and learning rate are also optimized using a grid
search. In particular, dropout is set between 15% and 40%
(step set to 5%), learning rate between 1e-4 and 5e-2 and
the optimizer is one among adam, adadelta, adagrad and
proximal adagrad. Each DNN model is run ten times with
different initialization weights and biases.

Other modeling approaches
For comparison purposes, SVM and RF models are also
trained on the same data. The cost (linear SVM), gamma
(linear and RBF SVM) and number of trees (RF) param-
eters are optimized using a grid search. The cost and
gamma parameters are set to 22p, with p ∈ Z, p ∈[ −4, 4].
The number of trees varies between 100 and 10,000. Since
RF training is non deterministic, the algorithm is run ten
times. The SVM optimization problem is however convex
and SVM is therefore run only once.

GEDFN accepts omics data as input together with a
feature graph. Similarly to the original paper, we use the
HINT database v4 [32] to retrieve the human protein-
protein interaction network (PPIN) to be used as a feature
graph [18]. The mapping between identifiers is performed
through BioMart at EnsEMBL v92 [33]. First, the orig-
inal microarray features (e.g., microarray probesets) are
mapped to RefSeq or EnsEMBL transcripts identifiers.
The RNA-seq features are already associated to RefSeq
transcripts. In the end, transcript identifiers are mapped
to UniProt/TrEMBL identifiers (which are the ones also
used in the PPIN). The full datasets are too large for
GEDFN so the reduced datasets (after dimension reduc-
tion) described above are used as inputs. For comparison
purposes, only the ‘Fischer-M’ data is used for ‘Death from
disease’ and both ‘Fischer’ datasets are concatenated for
‘Disease progression’. GEDFN parameter space is explored
using a small grid search that always include the default
values suggested by the authors. The parameters we opti-
mize are the number of neurons for the second and third
layers (∈ {(64, 16), (16, 4)}), the learning rate (∈ {1e-4, 1e-
2}), the adam optimizer regularization (∈ {True, False}),
the number of epochs (∈ {100, 1000}) and the batch size

(∈ {8, 32}). Each GEDFN model is run ten times with dif-
ferent initialization weights and biases. Optimal models
for the two clinical outcomes are obtained by training for
1000 epochs and enforcing regularization.

Model performance
The performance of each classification model is measured
using balanced accuracy (bACC) since the dataset is not
balanced (e.g., 4:1 for ‘Death from disease’ and 2:1 for
‘Disease progression’ in the ‘Fischer’ datasets, Additional
file 2). In addition, one way ANOVA tests followed by
post-hoc Tukey tests are employed for statistical compar-
isons. We consider p-values smaller than 0.01 as signifi-
cant. When comparing two conditions, we also consider
the difference in their average performance, and the confi-
dence intervals for that difference (noted �bACC). Within
any category, the model associated with the best bal-
anced accuracy is considered optimal (including across
replicates).

Implementation
The data processing was performed in python (using
packages numpy and pandas). The graph inference and
topological analyses were performed in python and C++
(using packages networkx, scipy, igraph, graph-tool and
SNFtool). The SVM and RF classifiers were built in R
(with packages randomForest and e1071). The DNN clas-
sifiers were built in python (with TensorFlow) using the
DNNClassifier estimator. Training was performed using
only CPU cores. GEDFN was run in Python using the
implementation provided by the authors. Figures and sta-
tistical tests were prepared in R.

Results
We propose a strategy to build patient classification mod-
els, starting from a limited set of patient samples asso-
ciated with large feature vectors. Our approach relies on
a graph-based method to perform dimension reduction
by extracting features that are then used for classification
(Fig. 1 and Methods). Briefly, first the original data are
transformed into patient graphs and topological features
are extracted from these graphs. These topological fea-
tures are then used to train deep neural networks. Their
classification performance is then compared with those
of other classifiers, including Support Vector Machines
and Random Forests. We apply this strategy to a pre-
viously published cohort of neuroblastoma patients that
consist of transcriptomics profiles for 498 patients (‘Fis-
cher’, Table 1) [8]. Predictive models are built with a subset
of these data and are then used to predict the clinical
outcome of patients whose profiles have not been used
for training. We then optimize the models and com-
pare their performance by considering their balanced
accuracy. The optimal models obtained on the ‘Fischer’
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Fig. 1 General workflow of the proposed method. Our strategy relies on a topological analysis to perform dimension reduction of both the training
(light green) and test data (dark green). Data matrices are transformed into graphs, from which topological features are extracted. Even if the original
features (light blues) are different, the topological features extracted from the graphs (dark blue) have the same meaning and are comparable.
These features are then used to train and test several models that rely on different learning algorithms (DNN, SVM and RF). These models are
compared based on the accuracy of their predictions on the test data

datasets are then validated using independent cohorts
(Table 1) [24, 25].

Assessment of the topological features
We first compare models that accept different topologi-
cal features extracted from the ‘Fischer’ datasets as input,
regardless of the underlying neural network architecture.
We have defined nine possible feature sets that can be
used as input to the classifiers (Table 2). First, and for
each dataset, three feature sets are defined: graph central-
ities, graph modularities and both combined. Second, we

also concatenate the feature sets across the two ‘Fischer’
datasets to create three additional feature sets. These fea-
ture sets contain between 12 and 101 topological features.

The results of this comparison for the two clinical out-
comes can be found in Fig. 2. For each feature set, the
balanced accuracies over all models (different architec-
tures and replicates) are displayed as a single boxplot.
The full list of models and their balanced accuracies is
provided in Additional file 3. A first observation is that
centrality features are associated with better average per-
formances than modularity features (‘Death from disease’,

Fig. 2 Model performance for different inputs. DNN models relying on different feature sets are compared by reporting their performance on the
validation data for ‘Death from disease’ (a) and ‘Disease progression’ (b). Feature sets are defined by the original data that were used (microarray data,
RNA-seq data or the integration of both) and by the topological features considered (centrality, modularity or both). Each single point represents a
model. For each feature set, several models are trained by varying the neural network architecture and by performing replicates
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p � 1e-7; ‘Disease progression’, p � 1e-7). We note that
the difference between these average accuracies is mod-
est for ‘Death from disease’ (�bACC ∈[ 2.4, 3.9]) but more
important for ‘Disease progression’ (�bACC ∈[ 6.7, 8.2]).
Combining both types of topological features generally
does not improve the average performance.

A second observation is that the features extracted from
the RNA-seq data are associated with lower average per-
formance than the equivalent features extracted from the
microarray data (p � 1e-7). The differences indicate that
once again the effect is not negligible (‘Death from dis-
ease’, �bACC ∈[ 2.1, 3.6]); ‘Disease progression’, �bACC ∈
[ 4.4, 6.0]). In addition, the integration of the data across
the two expression datasets does not improve the average
performance.

Influence of the DNN architecture
Deep neural networks are feed forward neural networks
with several hidden layers, with several nodes each. The
network architecture (i.e., layers and nodes) as well as
the strategy used to train the network can influence
its performance. We have therefore defined 35 possi-
ble architectures in total by varying the number of hid-
den layers and the number of neurons per hidden layer
(“Methods”).

We compare the performance of the models relying on
these different architectures. The results can be found in
Table 3 and Supplementary Figure S1 (Additional file 1).
The full list of models and their balanced accuracies is
provided in Additional file 3. We can observe a small
inverse correlation between the complexity of the archi-
tecture and the average performance. Although signif-
icant, the average performance of simple models (one
hidden layer) is, on average, only marginally better than
the average performance of more complex models (at least
two hidden layers) (p � 1e-7, �bACC ∈[ 2, 4]).

Best models
Although the differences in average performance are
important, our objective is to identify the best mod-
els, regardless of the average performance of any cate-
gory. In the current section, we therefore report the best
models for each feature set and each clinical outcome
(summarized in Table 3). In agreement with the global
observations, the best model for ‘Death from disease’
is based on the centrality features extracted from the
microarray data. The best model for ‘Disease progres-
sion’ relies however on centralities derived from both the
microarray and the RNA-seq data (Table 3), even if the
corresponding category is not associated with the best
average performance. This is consistent with the obser-
vation that the variance in performance increases when
the number of input features increases, which can pro-
duce higher maximum values (Fig. 2). We can also observe

Table 3 Best performing DNN architectures.

Configuration Architecture Balanced accuracy

Clinical outcome = ‘Death from disease’

Fischer-M, centralities [8,8,8,2] 87.3%

Fischer-M, modularities [8,4] 83.9%

Fischer-M, both [8,8,8] 86.8%

Fischer-R, centralities [8,8,8,4] 85.8%

Fischer-R, modularities [8,8,8,2] 82.1%

Fischer-R, both [2,2,2,2] 85.2%

Fischera, centralities [8,2,2] 86.1%

Fischera, modularities [8,2,2] 84.7%

Fischera, both [8,8,4] 84.7%

Clinical outcome = ‘Disease progression’

Fischer-M, centralities [8,8,8,2] 84.3%

Fischer-M, modularities [8,8,2] 82.3%

Fischer-M, both [4,4,2] 83.7%

Fischer-R, centralities [8,8,4] 83.7%

Fischer-R, modularities [8,2,2] 79.1%

Fischer-R, both [8,8,8,8] 77.9%

Fischera, centralities [4,2,2,2] 84.7%

Fischera, modularities [8,8] 79.6%

Fischera, both [4,2] 81.5%

One row corresponds to the best model for a given clinical outcome and
configuration (from Table 2). The best performance (i.e., balanced accuracy) is
displayed in bold for each clinical outcome
aCombined dataset in which the topological features of both ‘Fischer-M’ and
‘Fischer-R’ are concatenated

some level of agreement between the two outcomes of
interest. Indeed, the best feature set for ‘Death from dis-
ease’ is actually the second best for ‘Disease progression’.
Similarly, the best feature set for ‘Disease progression’ is
the third best for ‘Death from disease’.

Regarding the network architecture, models relying on
networks with four hidden layers represent the best mod-
els for both ‘Disease progression’ and ‘Death from disease’
(Table 3). Their respective architectures are still differ-
ent and the ‘Disease progression’ network contains more
neurons. However, the second best network for ‘Disease
progression’ and the best network for ‘Death from disease’
share the same architecture (two layers with four neurons
each followed by two layers with two neurons each) indi-
cating that this architecture can still perform well in both
cases.

Fine tuning of the hyper-parameters
Based on the previous observations, we have selected the
best models for each clinical outcome in order to fine
tune their hyper-parameters. The optimization was per-
formed using a simple grid search (“Methods” section).
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The hyper-parameters we optimized are the learning rate,
the optimization strategy and the dropout (included to
circumvent over-fitting during training [34]). When con-
sidering all models, we can observe that increasing the
initial learning rate seems to slightly improve the aver-
age performance, although the best models are in fact
obtained with a low initial learning rate (Additional file 1,
Supplementary Figure S2). The most important impact is
observed for the optimization strategies, with the Adam
optimizer [35] representing the best strategy, adadelta the
less suitable one, with the adagrad variants in between.
We observe that the performance is almost invariant to
dropout except when it reaches 0.4 where it seems to have
a strong negative impact on performance.

When focusing on the best models only, we observe
similarities between the two clinical outcomes of interest.
Indeed, in both cases, the optimal dropout, optimizer, and
learning rate are respectively 0.3, Adam and 1e-3. Notice
that for ‘Death from disease’, another learning rate value
gives exactly the same performance (5e-4). As mentioned
above, learning rate has little influence on the average
performance. However, for these two specific models, its
influence is important and using a non-optimal value
results in a drop up to 19% for ‘Death from disease’ and
29% for ‘Disease progression’. More important, we observe
no significant increase in performance after parameter
optimization (Table 4), which correlates with the fact that
two of the three optimal values actually correspond to the
default values that were used before.

Table 4 Parameter optimization for all classifiers.

Algorithm Parameters Balanced accuracy

Clinical outcome = ‘Death from disease’,

Data=Fischer-M, centralities

DNN [8,8,8,2] o=Adam, lr=1e-3, d=0.3 87.3% (+0.0)

GEDFNa lr=1e-2, h=[64,16], b=8 79.5% (+8.6)

SVM t=RBF, c=64, g=0.25 75.4% (+5.9)

RF n=100 75.1% (+3.1)

Clinical outcome = ‘Disease progression’,

Data=Fischer, centralities

DNN [4,2,2,2] o=Adam, lr=1e-3, d=0.3 84.7% (+0.0)

GEDFNa lr=1e-4, h=[16,4], b=32 81.2% (+0.4)

SVM t=RBF, c=16, g=0.0625 81.8% (+2.0)

RF n=100 78.1% (+3.2)

One row corresponds to the best model for a given clinical outcome and algorithm.
The optimal parameter values are provided (o: optimizer, lr: learning rate, d: dropout,
h: sizes of the second and third GEDFN hidden layers, b: batch size, t: SVM kernel
type, c: cost, g: gamma, n: number of trees). The gain in balanced accuracy with
respect to the models run with default parameters is indicated between
parentheses (from Table 3 for DNN)
afor GEDFN, the corresponding omics data is used as input instead of the
topological features

Whether we consider the different feature sets or the
different network architectures, we also observe that the
performance varies across replicates, i.e., models built
using the same configuration but different randomization
seeds (which are used for sample shuffling and initializa-
tion of the weights and biases). This seems to indicate that
better models might also be produced simply by running
more replicates. We tested this hypothesis by running
more replicates of the best configurations (i.e., increasing
the number of replicates from 10 to 100). However, we
report no improvement of these models with 90 additional
replicates (Additional file 3).

Comparison to other modeling strategies
We then compare the DNN classifiers to other classi-
fiers relying on different learning algorithms (SVM and
RF). These algorithms have previously demonstrated their
effectiveness to solve the same classification task on the
‘Fischer’ dataset, albeit using a different patient stratifica-
tion [8, 29]. For a fair comparison, all classifiers are input
the same features and are trained and tested using the
same samples. Optimal performance is obtained via a grid
search over the parameter space (“Methods” section). The
results are summarized in Table 4. We observe that the
DNN classifiers outperform both the SVM and RF clas-
sifiers for both outcomes (‘Death from disease’, �bACC ∈
[ 11.9, 12.2]); ‘Disease progression’, �bACC ∈[ 2.9, 6.6]).

We also compare our strategy to GEDFN, an approach
based on a neural network which requires a feature graph
to enforce sparsity of the connections between the input
and the first hidden layers. Unlike the other models,
GEDFN models only accept omics data as input (i.e., orig-
inal features). They are also optimized using a simple grid
search. The results are summarized in Table 4. We can
observe that the GEDFN models perform better than the
SVM and RF models for ‘Death from disease’. For ‘Disease
progression’, the GEDFN and SVM models are on par, and
both superior to RF models. For both clinical outcomes,
the GEDFN models remain however less accurate than the
DNN models that use topological features. (‘Death from
disease’, �bACC = 7.8); ‘Disease progression’, �bACC = 3.5)

Validation with independent datasets
In a last set of experiments, we tested our models using
independent datasets. First, we use the ‘Fischer-M’ dataset
to validate models built using the ‘Fischer-R’ dataset and
vice-versa. Then, we also make use of two fully indepen-
dent datasets, ‘Maris’ and ‘Versteeg’ as validation datasets
for all models trained with any of the ‘Fischer’ datasets. We
compare the performance on these independent datasets
to the reference performance (obtained when the same
dataset is used for both training and testing).

The results are summarized in Table 5. When one
of the ‘Fischer’ dataset is used for training and the
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Table 5 External validation results.

Datasets Balanced accuracy

Training Test DNN SVM RF

Clinical outcome = ‘Death from disease’,

Data = centralities

Fischer-M

Fischer-M 87.3% 75.4% 75.1%

Fischer-R 82.1% 53.5% 66.8%

Maris 53.1% 54.3% 50.0%

Versteeg 75.0% 53.3% 67.5%

Fischer-R

Fischer-R 85.8% 66.0% 62.4%

Fischer-M 81.5% 75.4% 61.2%

Maris 56.2% 49.7% 50.0%

Versteeg 70.8% 68.3% 67.5%

Clinical outcome = ‘Disease progression’,

Data = centralities

Fischer-M

Fischer-M 84.3% 83.7% 80.0%

Fischer-R 77.0% 75.2% 71.8%

Maris 67.5% 66.0% 53.8%

Versteeg 78.1% 82.4% 78.1%

Fischer-R

Fischer-R 83.7% 81.0% 73.3%

Fischer-M 80.0% 76.8% 75.0%

Maris 67.5% 58.8% 58.8%

Versteeg 80.1% 77.2% 73.9%

Models are trained using one of the ‘Fischer’ datasets and then tested using either
the other ‘Fischer’ dataset or another independent dataset (‘Maris’ and ‘Versteeg’).
The ‘Maris’ and ‘Versteeg’ datasets are too small to be used for both training and
therefore are only used for validation. Rows in italics represent reference models
(training and testing extracted from the same datasets)

other dataset for testing, we can, in general, observe
a small decrease in performance with respect to the
reference (DNN, �bACC ∈[ 3.7., 7.3]; SVM, �bACC ∈
[ −9.4, 21.9]; RF, �bACC ∈[ −1.7, 8.3]). For SVM and RF
models, there is sometimes an increased performance
(negative �bACC).

When considering the fully independent datasets, we
observe two different behaviors. For the ‘Maris’ dataset,
the performance ranges from random-like (DNN, 53%
and 56%) to average (DNN, 68%) for ‘Death from disease’
and ‘Disease progression’ respectively. Similar results are
obtained for SVM and RF models (between 50% and 66%).
Altogether, these results indicate that none of the mod-
els is able to classify the samples of this dataset. However,
for the ‘Versteeg’ dataset, and for both clinical outcomes,
the models are more accurate (DNN, from 71% to 80%),
in the range of the state of the art for neuroblastoma. A
similar trend is observed for the SVM and RF models,
although the DNN models seem superior in most cases.
The drop in performance for Versteeg’ (with respect to the

reference models) is within the same range than for
‘Fischer’ (DNN, �bACC ∈[ 3.6., 15.0]; SVM, �bACC ∈
[ −2.3, 22.1]; RF, �bACC ∈[ −5.1, 7.6]). For both ‘Maris’
and ‘Versteeg’ datasets, it is difficult to appreciate the clas-
sification accuracies in the absence of reference models,
due to the small number of samples available for these two
cohorts (less than 100).

Discussion
We evaluate several strategies to build models that use
expression profiles of patients as input to classify patients
according to their clinical outcomes. We propose to tackle
the “small n large p” problem, frequently associated with
such omics datasets, via a graph-based dimension reduc-
tion method. We have applied our approach to four neu-
roblastoma datasets to create and optimize models based
on their classification accuracy.

We first investigate the usefulness of different sets of
topological features by measuring the performance of
classification models using different inputs. We observe
that centrality features are associated with better aver-
age performances than modularity features. We also note
that the features extracted from the RNA-seq data are
associated with lower performance than the equivalent
features extracted from the microarray data. Both seems
to contradict our previous study of the same classification
problem, in which we reported no statistical difference
between models built from both sets [29]. It is impor-
tant to notice however that the learning algorithms and
the data stratification are different between the two stud-
ies, which might explain this discrepancy. In addition,
the accuracies reported here are often greater than the
values reported previously, but not always by the same
margin, which creates differences that were not appar-
ent before. We also observe that the difference is mostly
driven by the weak performance of models relying on
the modularity features extracted from the ‘Fischer-R’
dataset. This suggests that although the individual RNA-
sequencing features do correlate with clinical outcomes,
their integration produces modules whose correlation is
lower (in comparison to microarray data). This corrobo-
rates a recent observation that deriving meaningful mod-
ules from WGCNA co-expression graphs can be rather
challenging [36].

We observe that the combined feature sets are not asso-
ciated with any improvement upon the individual feature
sets. This indicates that both sets might actually measure
the same topological signal, which is in line with our pre-
vious observations [29]. Similarly, the integration of the
data across the two expression datasets does not improve
the average performance. This was rather expected since
the two datasets measure the same biological signal
(i.e., gene expression) albeit through the use of different
technologies.
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Neural networks are known to be rather challenging
to optimize, and a small variation in one parameter can
have dramatic consequences, especially when the set of
instances is rather limited. We indeed observe important
variations in performance within the categories we have
defined (e.g., models using only centralities or four layer
DNN models) as illustrated in Fig. 2 and Supplementary
Figures S1 and S2.

The parameters with the greatest influence on perfor-
mance are the optimization strategy (Adam really seems
superior in our case) and the dropout (it should be below
0.4). In the latter case, it is not surprising that ignoring at
least 40% of the nodes can have a huge impact on networks
that have less than 100 input nodes and at best 8 nodes per
hidden layer.

Regarding the network architecture, models relying on
four layer networks perform the best for both clinical out-
comes (Table 3). This is in agreement with previous stud-
ies that have reported that such relatively small networks
(i.e., with three or four layers) can efficiently predict clini-
cal outcomes of kidney cancer patients [18] or can capture
relevant features for survival analyses of a neuroblastoma
cohort [16].

Even if there are differences, as highlighted above, the
optimal models and parameters are surprisingly similar
for both clinical outcomes. This is true for the input data,
the network architecture and the optimal values of the
hyper-parameters. We also note, however, that this might
be due to the underlying correlation between the two clin-
ical outcomes since almost all patients who died from the
disease have experienced progression of the disease.

When applied on the ‘Fischer’ datasets, the DNN clas-
sifiers outperform both SVM and RF classifiers for both
outcomes. The gain in performance is modest for ‘Dis-
ease progression’ but rather large for ‘Death from disease’,
which was previously considered as the hardest outcome
to predict among the two [8].

We also compare our neural networks fed with graph
topological features (DNN) to neural networks fed with
expression profiles directly (GEDFN). We notice that the
GEDFN models perform at least as good as the SVM and
RF models, but also that they remain less accurate than
the DNN models. Altogether these observations support
the idea that deep neural networks could indeed be more
effective than traditional SVM and RF models. In addition,
it seems that coupling such deep neural networks with
a graph-based topological analysis can give even more
accurate models.

Last, we validate the models using independent
datasets. The hypothesis of these experiments is that the
topological features we derived from the omics data are
independent of the technology used in the first place
and can therefore enable better generalization. As long
as a graph of patients (PSN) can be created, it will be

possible to derive topological features even if microarrays
have been used in one study and sequencing in another
study (or any other biomedical data for that matter). We
therefore hypothesize that a model trained using one
cohort might be tested using another cohort, especially
when this second cohort is too small to be used to train
another model by itself.

We start by comparing the two ‘Fischer’ datasets. As
expected, we observe a small decrease in performance
in most cases when applying the models on the ‘Fis-
cher’ dataset that was not used for training. Surpris-
ingly, for SVM and RF, the performance for the inde-
pendent datasets is sometimes better than the reference
performance. However, this happens only when the ref-
erence performance is moderate at best (i.e., bACC <

75%). For DNN models, the performance on the inde-
pendent datasets is still reasonable (at least 81.5% and
77% for ‘Death from disease’ and ‘Disease progression’
respectively) and sometimes even better than reference
SVM and RF models (in six of the eight comparisons,
Table 5).

We then include two additional datasets that are too
small to be used to train classification models (‘Maris’
and ‘Versteeg’ datasets). Similarly to above, we note that,
in most cases, the DNN models are more accurate than
the corresponding SVM and RF models, especially for the
‘Death from disease’ outcome. Regarding the poor over-
all performance on the ‘Maris’ dataset, we observe that
it is the oldest of the datasets, associated with one of the
first human high-throughput microarray platform (HG-
U95A), that contains less probes than there are human
genes (Table 2). In addition, we note that the median
patient follow-up for this dataset was 2.3 years, which,
according to the authors of the original publication, was
too short to allow them to study the relationship between
expression profiles and clinical outcome, in particular
patient survival [24] (page 6052). In contrast, the median
patient follow-up for the ‘Versteeg’ dataset was 12.5 years,
which allows for a more accurate measure of long term
clinical outcomes. Altogether, these reasons might explain
why the performance remains poor for the ‘Maris’ dataset
(especially for ‘Death from disease’) in contrast to the
other datasets.

Conclusion
We propose a graph-based method to extract features
from patient derived omics data. These topological fea-
tures are then used as input to a deep neural network
that can classify patients according to their clinical out-
come. Our models can handle typical omics datasets (with
small n and large p) first, by reducing the number of
features (through extraction of topological features) and
second, by fine tuning the deep neural networks and their
parameters.
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By applying our strategy to four neuroblastoma datasets,
we observe that our models make more accurate predic-
tions than models based on other algorithms or different
strategies. This indicates that the deep neural networks
are indeed capturing complex features in the data that
other machine learning strategies might not. In addition,
we also demonstrate that our graph-based feature extrac-
tion method allows to validate the trained models using
external datasets, even when the original features are
different.

Additional studies are however needed to explore the
properties of these topological features and their use-
fulness when coupled to deep learning predictors. In
particular, applications to other data types (beside gene
expression data) and other genetic disorders (beside neu-
roblastoma) are necessary to validate the global utility of
the proposed approach. Moreover, other modeling strate-
gies that integrate graphs (and their topology) into the
learning process, such as graph-based CNN [37, 38] would
need to be explored as well.
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