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,is study was aimed to explore the diagnostic features of magnetic resonance imaging (MRI) on hepatocellular carcinoma (HCC)
and hepatic cavernous hemangioma (HCH). A fireworks algorithm optimization (FAO) was proposed based on the fireworks
algorithm (FA), and it was compared with the maximum between-class variance method (OTSU) and the maximum entropy
threshold method (KSW) for analysis. In addition, it was applied to the diagnosis of MRI images of 55 HCC patients in the
experimental group (group E) and 55 HCH patients in the control group (group C). It was found that the FAO showed a greatly
lower difference function (DF) and a shorter running time in contrast to the OTSU and KSW algorithms (P< 0.05); the diagnostic
accuracy (DA) of the T1-weighted image (T1WI) for patients in groups E and C was 85.31% and 95.85%, respectively, and the DA
of the T2-weighted image (T2WI) was 97.84% (group E) and 89.71% (group C), respectively. In short, FAO showed an excellent
performance in segmentation and reconstruction of MRI images for liver tissue, and T1WI and T2WI of MRI images showed high
accuracy in diagnosing the HCC and HCH, respectively.

1. Introduction

HCC is one of the main malignant tumors causing cancer
deaths worldwide and the main cause of death in patients
with liver cirrhosis. It is the most common type of primary
liver cancer [1, 2]. ,e most common clinical symptoms of
HCC are liver pain, hepatomegaly, jaundice, signs of liver
cirrhosis, systemic manifestations (such as weight loss,
fever, loss of appetite, fatigue, and malnutrition), and even
cachexia in severe cases [3]. ,ere are many reasons for
HCC, including various liver diseases, alcoholism, hepatitis
B virus (HBV), and hepatitis C virus (HCV). HCH is the
most common benign tumor, mainly due to the expansion
and proliferation of capillaries in the liver or hepatic si-
nusoids. Academia generally believes that the occurrence of
HCH is related to certain congenital factors, estrogen,

certain drugs, and capillary tissue infections [4, 5]. HCH is
often seen in B-ultrasound or during abdominal surgery,
and there is no obvious clinical phenomenon in general
patients. Only when the tumor is large or the tumor grows
rapidly, will the abdominal mass, gastrointestinal dis-
comfort, tumor rupture and bleeding, rapid growth of
intratumoral bleeding, giant hemangioma, accompanied by
thrombocytopenia and systemic bleeding tendency, and
other related symptoms be found [6]. ,erefore, if HCC
and HCH are accurately identified, it is also a hotspot in
clinical practice.

MRI is a new imaging technology developed in the
1980s. It can not only obtain detailed diagnostic images of
human organs and tissues but also detect the chemical
components and reactions of living organs and tissues. It
is featured with clear images, high resolution, various
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parameters, and good soft tissue display [7, 8]. With the
continuous development of technology in the medical
field, high-end MRI technology based on conventional
MRI has gradually been applied to the liver. Among them,
diffusion-weighted image (DWI) focuses on the com-
parison of the dispersion of water molecules between
tissues. It can obtain the characteristic information of the
distribution and movement of water molecules in the
living body and can be undertaken as a routine sequence
for MRI scanning of the liver [9, 10]. ,e FA is inspired by
the process of firework explosions producing sparks and
continuing to split the explosion. It is mainly an explosion
search mechanism suitable for global optimization and
can be used as the solution space for optimization. In a
feasible solution, the process of generating a certain
number of sparks in the explosion is the process of
searching the neighborhood [11]. Compared with genetic
algorithm (GA), the FA can better avoid premature ma-
turity, achieve excellent global convergence for high-di-
mensional functions, and has better adaptability [12].
,erefore, a new image segmentation and reconstruction
algorithm was intended to be constructed in this study
based on the FA to further explore the clinical diagnosis of
HCC and HCH.

In summary, the FA is superior to the medical image
evaluation. Based on this, an FAO was proposed by opti-
mizing the FA, and it was applied in the MRI image di-
agnosis of 55 HCC patients in group E and 55 HCH patients
in group C. ,e general information, lesion distribution,
different sequence types, and DA of two groups of patients
were compared so as to discuss the clinical characteristics of
MRI images of HCC and HCH.

2. Materials and Methods

2.1. Selection of the Research Samples. 110 patients who were
admitted to the hospital for liver MRI examination from
January 10, 2018, to February 15, 2020, were selected as the
research objects, and they were divided into group E (with 55
HCC patients) and group C (with 55 HCH patients). In
group E, there were 36 males and 19 females, with an age
range of 19–64 years old; in group C, there were 35 males
and 20 females, with an age range of 18–61 years old. ,e
study had been approved by the Medical Ethics Committee
of Hospital, and the patients and their families had un-
derstood the situation of the study and signed the informed
consent forms.

,e inclusion criteria could be defined as follows: pa-
tients diagnosed with HCC or HCH by surgical pathology;
patients with evidence of liver cirrhosis; patients with clear
consciousness and being able to cooperate with the exam-
ination; and patients with elevated alpha-fetoprotein caused
by other causes (pregnancy, active liver disease, and sec-
ondary liver disease).

,e exclusion criteria were defined as follows: patients
younger than 18 years old; patients with mental illness;
patients who had undergone surgery; patients with hyper-
sensitivity to contrast agents; and patients with MRI ex-
amination contraindications.

2.2. MRI Examination. A new generation of 1.5T Signa
HDxt nuclear MRI instrument from GE of the United States
was used to examine the patient, equipped with an 8-channel
phased array coil of the body produced by Jiangyin Wan-
kang Medical Technology Co., Ltd. Before the scan, the
patient was required to be in fasting and be without drinking
water for 8 hours and undergo breathing training. ,e
patient was placed in a supine position, with the feet in front,
and the xiphoid was positioned. ,e scanning parameters
were set as follows: the matrix was 128×128, the layer
thickness was 2.5mm, the layer spacing was 1.5mm, the field
of view was 30× 30 cm, the time of repetition (TR) was
520ms, and the time of echo (TE) was 35ms. After the scan
was completed, the image was sent to the workstation for
image reconstruction and diagnostic analysis. ,e largest
level with more uniform lesion signal was selected, the re-
gion of interest (ROI) within the lesion was determined, the
lesion distribution position and different sequence signal
types are measured, and DA was calculated.

2.3. Image Segmentation and Reconstruction Algorithm Based
on theFA. ,e traditional threshold segmentation algorithm
could obtain good image segmentation results, but it had the
disadvantages of being susceptible to noise interference and
unstable segmentation quality. ,e OTSU [13] was an al-
gorithm to determine the image binarization segmentation
threshold. Its calculation was simple and fast, and it was not
affected by image brightness and contrast. ,erefore, the
gray level of the image was assumed to be [0, . . . , H − 1], and
then the OTSU could be expressed as follows:

Ti �
mi

m
, (1)



H−1

i�0
Ti � 1. (2)

In equation (1), mi referred to the number of pixels with
gray value i, and m � m0 + m1 + mH−1. Ti is the probability
of gray value i. ,en, the threshold x was introduced to
divide the image into two categories, R0 and R1, which could
be written as follows:

R0 � [0, 1, . . . , x],

R1 � [x + 1, x + 2, . . . .H − 1].
(3)

,e sum of the two possibilities could be calculated with
the following equations:

V0 � 
x

i�1
Ti � Vx, (4)

V1 � 

H−1

i�x+1
Ti � 1 − Vx. (5)

In the above equations (4) and (5), V0 represented the
sum of the probabilities of pixels under R0 and V1 repre-
sented the sum of the probabilities of R1 pixels. Next, θ0 and
θ1 were introduced to represent the average value of the two
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categories of pixels and θz represented the total average value
of the pixels of the image, and then following equations
could be obtained:

θ0 � 

x

i�1

iTi

V0
�
θ(x)

V0
, (6)

θ1 � 
H−1

i�x+1

iTi

V1
�
θZ − θ(x)

V1
, (7)

θZ � 
H−1

i�1
iTi � V0θ0 + V1θ1. (8)

In the above equations (6), (7), and (8), θ(x) � 
x
i�1 iTi.

,e variance of R0 and R1 could be expressed as equations (9)
and (10), respectively:

σ20 � 
x

i�1

i − V0( 
2
Ti

V0
, (9)

σ21 � 

H−1

i�x+1

i − V1( 
2
Ti

V1
. (10)

In the above two equations, σ20 represented the pixel
variance of R0 and σ21 referred to the pixel variance of R1.
Similarly, the between-class and within-class variances R0
and R1 could be calculated with the following equations:

σ2J � V0 θ0 − θZ( 
2

+ V1 θ1 − θZ( 
2
, (11)

σ2N � V0σ
2
0 + V1σ

2
1. (12)

In equations (11) and (12) above, σ2J and σ2N represented
the between-class variance and the within-class variance of
R0 and R1, respectively. If threshold x could maximize the
between-class variance and minimize the within-class var-
iance, then x at this time would be the best threshold, which
could be expressed as follows:

x
↔

� arg max
σ2J(x)

σ2N(x)

⎧⎨

⎩

⎫⎬

⎭. (13)

,erefore, solving the optimal threshold of segmented
images was successfully concerted into finding the optimal
value of the fitness function. ,e OTSU was more sensitive
to the image noise, so the between-class variance function
might have double peaks or multiple peaks when the target
and background size ratio was very large. ,erefore, the FA
was introduced to optimize the steps, and the optimal so-
lution was achieved through multiple iterations.

,e operation process is shown in Figure 1. ,e medical
image to be segmented was inputted, the gray value dis-
tribution was obtained, and the value range of the firework
population was defined; a certain number of fireworks were
initialized in the solution space, including the number of
population and number of iterations, and the fitness
function value of each firework was calculated; the number
of sparks produced by each firework and the explosion range

of the firework were obtained so as to determine the location
of the explosion spark; the Gaussian spark was obtained with
the Gaussian mutation based on the original firework. If the
spark exceeded the boundary, the function fitness values of
firework, explosion spark, and Gaussian spark were solved
by mapping rules. ,e optimal fitness function value was
saved with best_val, and the optimal threshold of the seg-
mented image was outputted. ,erefore, the image seg-
mentation reconstruction algorithm was set based on FAO
in this study.

2.4. Performance Evaluation Indicators of the Algorithms.
,e OTSU [14] and KSW [15] were introduced to compare
with the FAO constructed in this study.,e DF, the regional
contrast (GC), and the running time were undertaken as the
evaluation indicators. ,ey could be calculated with fol-
lowing equations:

DF �


p
i�1 

q
j�1 udf(i, j)

p × q
, (14)

udf(i, j) �
0, E(i, j) � E

∗
(i, j)

1, E(i, j)≠E
∗
(i, j)

 , (15)

GC �
d1 − d2




d1 + d2
. (16)

In equations (14), (15), and (16), E represented the
original image, E∗ represented the segmented image, and p ×

q referred to the size of the image.,e value range of DF was
[0, 1]. When the value was close to 0, it meant that the image
had strong antinoise ability, and when it was close to 1, it
meant that the image had weak antinoise ability. d1 rep-
resented the average gray value in a segmented area, and d2
represented the average gray value of adjacent areas of the
segmented area. ,e GC value range was [0, 1]. ,e larger
the value, the better the image segmentation effect.

2.5. StatisticalMethods. ,edata processing was analyzed by
SPSS19.0 version statistical software, the measurement data
was indicated as mean± standard deviation (x ± s), and the
count data was displayed as percentage (%). ,e pairwise
comparisons of DF, GC, and running time of FAO, OTSU,
and KSW algorithms were realized with one-way analysis of
variance. ,e age, height, weight, course of disease, ratio of
male to female, number of cases of T1WI sequence signal,
and the DA were compared in group E and group C by
paired t-test. ,e difference was statistically meaningful at
P< 0.05.

3. Results

3.1. Comparison of Diagnosis Performances of #ree
Algorithms. Figures 2 and 3 show the comparisons of DF,
GC, and running time of the three algorithms. Figure 2
revealed that the DF and GC of the OTSU algorithm were
0.539± 0.084 and 0.588± 0.113, respectively; the DF and GC
of the KSW algorithm were 0.544± 0.069 and 0.603± 0.074,
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respectively; and the DF and GC of the FAO were
0.254± 0.014 and 0.861± 0.102, respectively. Figure 3 dis-
closed that the running time of OTSU, KSW, and FAO was
26.31± 6.96s, 28.06± 7.33s, and 14.62± 10.22s, respectively,
of which, the DF and running time of the FAO were greatly
shorter than those of the other two algorithms with obvious
difference (P< 0.05); the GC of the FAO was higher obvi-
ously than that of the OTSU and KSW algorithms with
observable differences (P< 0.05); and there was no dramatic
difference in DF, GC, and running time of the OTSU al-
gorithm and the KSW algorithm (P> 0.05).

3.2. Comparison of General Information of Two Groups of
Patients. Figure 4 shows the comparison of age, height,
weight, and disease duration of two groups of patients. ,e
ratio of male and female between the two groups is given in
Figure 5. Figures 4 and 5 indicated that the age, height, weight,
disease duration, and ratio of males and females of group E
were not greatly different from those in group C (P> 0.05).

3.3. MRI Images of Some Patients before Surgery. Figure 6
shows an MRI image of a male HCC patient (aged 50 years
old). It displayed that the T2WI sequence was limited; the
HCC signal was slightly high; the tumor was visibly and
uniformly enhanced in the arterial phase; the right lobe
nodules were enlarged; the new, larger, and higher signal foci
in the posterior lobe; the small foci showed isointensity; the
tumor envelope of large foci was strengthened; and the right
portal vein was invaded in the delayed phase. Figure 7 shows
an MRI image of a male HCH patient (aged 61 years old).
,e liquid level showed two different signals on the upper
and lower layers and the point-like enhancement at the edge
of the tumor strengthened towards the center over time.
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Figure 1: Processes for image segmentation and reconstruction based on the FA.
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Figure 2: Comparison between DF and GC of three algorithms.
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Except for the cystic degeneration, the entire tumor pa-
renchyma was strengthened, and the density or intensity was
uniform.

3.4. Comparison of Lesion Distribution of Patients in Two
Groups. ,e distribution of lesions between the two groups

was compared, as shown in Figure 8. It illustrated that there
were 31 patients with lesions in the left lobe, 20 cases with the
lesions in right lobe, and 4 cases with lesions at the junction
of the left and right lobes in group E; there were 30 cases with
lesions in the left lobe, 22 cases with lesions in the right liver,
and 3 cases with lesions at the junctions in group C. Among
them, the number of cases of with lesions in the left liver,
right liver, and junction in the group E was not extremely
visible in contrast to those in group C (P> 0.05).

3.5. Comparison of MRI Signal and Boundary Definition of
Lesions in Patients between Two Groups. Figure 9 shows the
comparison of T1WI sequence signal levels for patients
between the two groups. It revealed that there was 1 case of
T1WI high signal, 34 cases of low signal, 12 cases of equal
signal, and 8 cases of confounding signal in group E; there
was 1 case of T1WI high signal, 50 cases of low signal, 1 case
of equal signal, and 3 cases of confounding signals in group
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Figure 4: Comparison between age, height, weight, and disease duration of two groups of patients. (a) Comparison between age and height
of patients. (b) Comparison between weight and course of disease of patients.
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Figure 6: AnMRI image of a male HCC patient (aged 50 years old).

Figure 7: An MRI image of a male HCH patient (aged 61 years
old).
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C. Among them, the number of T1WI sequence low signal
cases in group E patients was much less than that in group C
(P< 0.05); the number of cases with T1WI equal signal and
confounding signal in group E patients was dramatically
more in contrast to group C (P< 0.05); and the number of
patients with T1WI sequence high signal in the two groups
was not extremely visible (P> 0.05).

Figure 10 shows the comparison of T2WI sequence
signal levels in patients between the two groups. It revealed
that there were 6 cases of T2WI high signal, 0 cases of low
signal, 10 cases of equal signal, and 39 cases of confounding
signal in group E; there were 28 cases of T2WI high signal, 0
cases of low signal, 2 cases of equal signal, and 25 cases of
confounding signals in group C. Among them, the number
of T2WI sequence high signal cases in group E patients was
much less than that in group C (P< 0.05); the number of
cases with T2WI equal signal and confounding signal in
group E patients was dramatically more in contrast to group
C (P< 0.05), and the numbers of patients with T2WI se-
quence low signal in the two groups were not extremely
visible (P> 0.05).

Figure 11 reveals the comparison of DWI sequence
signal levels between the two groups of patients. It disclosed
that there were 16 cases with DWI sequence high signal, 2
cases with low signal, 10 cases with equal signal, and 37 cases

with confounding signal in group E, and there were 19 cases
of DWI sequence high signal, 3 cases of low signal, 0 cases of
equal signal, and 33 cases of confounding signals in group
C. Among them, the number of DWI sequence high, low,
equal, and confounding signal cases of group E patients was
not extremely different from that in group C (P> 0.05).

3.6. Comparison on DAs of Two Groups of Patients Based on
T1WI and T2WI. Comparison of DAs of two groups of
patients based on T1WI and T2WI is given in Figure 12. It
suggested that the DA of T1WI in groups E and C was
85.31% and 95.85%, respectively; while the DA of T2WI in
groups E and C was 97.84% and 89.71%, respectively.

4. Discussion

HCC and HCH are relatively common benign and malig-
nant tumors of the liver. Among them, HCC has the
characteristics of high morbidity and high mortality and is
one of the main causes of death from tumor diseases. HCH
often has no obvious symptoms, and early clinical diagnosis
is difficult [16]. ,erefore, an image segmentation recon-
struction algorithm FAO was proposed based on optimi-
zation of FA, and the OTSU and KSW were introduced for
comparative analysis. It was found that the DF and running
time of the FAO were much shorter in contrast to the Otsu

0

10

20

30

40

50

60

High Low Equal Confounding

Group E
Group C

TI
W

I

∗

∗
∗

Figure 9: Comparison of T1WI sequence signal levels for patients
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and KSW algorithms, and the GC was much higher
(P< 0.05). It was similar to the results of Xu et al. [17],
indicating that the FAO showed excellent performance in
segmentation and reconstruction of MRI images of liver
tissues.

,e FAO constructed was applied to the MRI image
diagnosis of 55 HCC cases and 55 HCH cases. ,e results
showed that the number of patients with lesions at the left,
right, and junction of two liver lobes was not so different
with that in group C (P> 0.05), indicating that the distri-
bution of HCC and HCH showed no great difference. ,e
number of cases with T1WI sequence low signal in group E
was much less, and the number of patients with equal and
confounding signal was extremely more (P< 0.05). Such
results were consistent with the results of Puhr-Westerheide
et al. [18], so it was speculated that the T1WI sequence equal
and confounding signals could be applied for the diagnosis
of HCC, and the T1WI sequence low signal could be applied
for the diagnosis of HCH. ,e number of patients with
T2WI sequence high signal in group E was less, and the
number of equal and confounding signals was more visible.
It indicated that the T2WI sequence equal and confounding
signals could be applied for the diagnosis of HCC, while its
high signal could be utilized for the diagnosis of HCH [19].
,e DA of the T1WI sequence signal for groups E and C
patients was 85.31% and 95.85%, respectively; while the DA
of T2WI sequence signal for the groups C and E was 89.71%
and 97.84%, respectively. It was similar to the research re-
sults of Esposito et al. [20], indicating that T1WI and T2WI
in the MRI image showed high DAs in HCH and HCC,
respectively.

In summary, the new image segmentation reconstruc-
tion model constructed by the FA was very helpful to im-
prove the quality of MRI images and is helpful for assisting
physicians in the interpretation of MRI images. In addition,
different MRI sequences showed various evaluation effects
for HCC and HCH. T1WI was more suitable for the clinical
diagnosis of HCH, and T2WI was more suitable for the
clinical diagnosis of HCC. Finally, it could be seen that MRI
imaging based on the optimized FA image segmentation
model had good application value in the diagnosis of HCH
and HCC.

5. Conclusion

An image segmentation reconstruction algorithm FAO was
proposed based on optimization of FA, and it was compared
with the OTSU and KSW algorithms. In addition, it was
applied in the MRI image diagnosis of 55 HCC patients and
55 HCH patients. ,e results found that the FAO proposed
showed excellent performance in segmentation and re-
construction of liver tissue MRI images. T1WI and T2WI of
MRI images showed high accuracy in the diagnosis of HCC
and HCH. Among them, T1WI could achieve a better di-
agnosis effect for HCH, and T2WI could achieve a better
diagnosis effect for HCC. However, the sample size of pa-
tients selected was too small, and there was a certain de-
viation. In the follow-up, it will consider increasing the
sample size of patients and further exploring the application
value of FA in liver cancer imaging diagnosis. In short, the
results of this study could provide a theoretical basis for the
clinical diagnosis of HCC and HCH.
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