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Abstract

Background: Identifying associations between genetic markers and traits of economic importance will provide
practical benefits for the dairy goat industry, enabling genomic prediction of the breeding value of individuals, and
facilitating discovery of the underlying genes and mutations. Genome-wide association studies were implemented
to detect genetic regions that are significantly associated with effects on lactation yields of milk (MY), fat (FY),
protein (PY) and somatic cell score (SCS) in New Zealand dairy goats.

Methods: A total of 4,840 goats were genotyped with the Caprine 50 K SNP chip (Illumina Inc., San Diego, CA).
After quality filtering, 3,732 animals and 41,989 SNPs were analysed assuming an additive linear model. Four GWAS
models were performed, a single-SNP additive linear model and three multi-SNP BayesC models. For the single-SNP
GWAS, SNPs were fitted individually as fixed covariates, while the BayesC models fit all SNPs simultaneously as
random effects. A cluster of significant SNPs were used to define a haplotype block whose alleles were fitted as
covariates in a Bayesian model. The corresponding diplotypes of the haplotype block were then fit as class variables
in another Bayesian model.

Results: Across all four traits, a total of 43 genome-wide significant SNPs were detected from the SNP GWAS. At a
genome-wide significance level, the single-SNP analysis identified a cluster of variants on chromosome 19
associated with MY, FY, PY, and another cluster on chromosome 29 associated with SCS. Significant SNPs mapped
in introns of candidate genes (45%), in intergenic regions (36%), were 0–5 kb upstream or downstream of the
closest gene (14%) or were synonymous substitutions (5%). The most significant genomic window was located on
chromosome 19 explaining up to 9.6% of the phenotypic variation for MY, 8.1% for FY, 9.1% for PY and 1% for SCS.

Conclusions: The quantitative trait loci for yield traits on chromosome 19 confirms reported findings in other dairy
goat populations. There is benefit to be gained from using these results for genomic selection to improve milk
production in New Zealand dairy goats.
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Background
The majority of dairy goats in New Zealand are housed
and their milk is primarily used to manufacture pow-
dered nutritional products for sale in international mar-
kets. There are estimated to be 92 farms in New Zealand
milking 66,100 dairy goats. Current estimates indicate
that 85% of the dairy goats belong to the Saanen breed,
while Toggenburg, British Alpine, and Nubian type
crosses comprise the remaining 15%. The Dairy Goat
Co-operative (DGC) Ltd. is the main processor of goat
milk in New Zealand, and accounts for 80% of the dairy
goat production. Farms that supply DGC, and undertake
herd testing, participate in an annual genetic evaluation
for lactation yields of milk (MY), fat (FY) and protein
(PY) and for somatic cell score (SCS). Breeding values
for these traits were estimated for each animal from a
multi-trait repeatability animal model using available
pedigree [1].
Genome-wide association studies (GWAS) identify as-

sociations between genetic markers and phenotypic ex-
pression of traits of interest. Genetic markers are
analyzed for variation across the DNA sequence of the
individual’s genome [2]. A GWAS allows the statistical
evaluation or association of polymorphic loci with
phenotypic variance to be quantified in a given popula-
tion and can provide the genetic architecture of the
complex traits which can be useful in medicine, agricul-
ture and evolution [3]. One type of genetic marker
commonly used in GWAS is characterized by single-
nucleotide polymorphisms (SNPs), which exhibit two or
more nucleotide variants at a single base. Genome-wide
association studies have been performed in many live-
stock species, including dairy cattle [4–6], sheep [7] and
pigs [8–10]. Since release of the Illumina Caprine 50 K
BeadChip (Illumina Inc., San Diego, CA), association of
quantitative trait loci (QTL) in goats have been pub-
lished for polledness [11], milking speed [12], wattles
[13], coat colour [14, 15], supernumerary teats [16], milk
production and type traits [17, 18].
Although the simplest and perhaps the most popu-

lar GWAS test for associations is between a single
marker and a quantitative trait, the power of this
method may suffer because a single SNP may have
only low LD with the causal mutation and the LD
contained jointly in flanking markers is ignored. An
alternative method is to fit SNPs simultaneously using
Bayesian methods, which take into account the LD
between neighboring SNPs, limiting the false positive
discoveries [19]. Also, the SNP sliding window ap-
proach of the multi marker methods can be used to
identify the most informative genomic regions, facili-
tating the discovery of associated markers and pos-
sible causal mutations. In addition, SNPs can be
combined into a haplotype block. Clustering SNPs

into a haplotype block combines information of adja-
cent SNPs into composite multilocus haplotype alleles
which may be more informative than individual SNPs
and may also capture the regional LD information,
which is arguably more robust and powerful [20–22].
Knowledge of genetic markers associated with milk

production traits provides an opportunity to increase the
rate of genetic gain using genomic or marker-assisted se-
lection. Animals of above-average genetic merit can be
identified at an early age and with a higher selection ac-
curacy than conventional approaches, creating options
for implementing selection schemes that reduce gener-
ation intervals [23] and increase rates of genetic gain.
To date, few GWAS have been conducted for milking

traits of dairy goats. Studies that identified SNPs associ-
ated with milk production in dairy goats were performed
by Martin et al. [18, 24], Palhière et al. [25] and Mucha
et al. [26]. There are no published papers reporting
GWAS for dairy goats in New Zealand. The objective of
this study was to identify SNPs and genomic regions sig-
nificantly associated with milk production traits in New
Zealand dairy goats using the caprine 50 K SNP chip.

Materials and methods
Data
Phenotypic and pedigree records were provided by
DGC from a dataset maintained by Livestock Im-
provement Corporation (LIC) that included estimates
of 305-day lactation records for MY, FY, PY and SCS.
The test interval method (TIM) (National DHIA,
2002), was used by LIC to calculate MY, FY and PY
for the actual realised lactation length, or up to 305 d
in milk (DIM) for those lactations with more than
305 DIM. The dataset included 106,289 animals and
236,858 lactation records. The breed composition of
the goats included Alpine (592), Nubian (374), Saanen
(63,370), Toggenburg (1,741) and crossbred (34,054)
animals, located in the Waikato region of New Zea-
land. Animals were considered crossbred unless the
proportion of the major breed was > 0.85. Breed com-
position was “unknown” for some goats (4,941). The
pedigree contained 105,072 individuals spanning 5
generations, representing 1,322 sires and 27,180 dams.
The records from a farm were included in the ana-
lysis if the farm supplied milk to DGC, performed
herd-testing during 2017 or 2018, and contributed re-
cords for genetic evaluation. Phenotypes for the
GWAS were pre-corrected for non-genetic factors
using the GLM procedure of Statistical Analysis Sys-
tem version 9.4 (SAS) (SAS Institute Inc., Cary, NC,
USA) that produced residuals after fitting the fixed
effects of herd-year and parity. The significance of as-
sociation between the SNP effect or haplotype effect
and the phenotype adjusted for herd-year and parity,
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as represented by the residual, was calculated at each
SNP position.

Genotyping
Skin samples from 3,894 animals distributed in 21 herds
were collected for SNP genotyping with the Illumina
Caprine 50 K BeadChip (Illumina Inc., San Diego, CA).
For three of the herds, only does in their first or second
parity were sampled (14% of genotyped animals). Does
of all parities were sampled in the remaining 18 herds
(86% of genotyped animals). The recorded ancestors of
the sampled animals were born between 2003 and 2015
and included 154 sires and 2,024 dams. Genotyped ani-
mals were of Saanen (1,436), crossbred (1,669), or un-
known (789) breeds. A total of 51,462 SNPs were
obtained.
The SNP & Variation Suite v8 (SVS) [27] software was

used for quality control, principal component analysis
(PCA) and one of the GWAS. Quality control was per-
formed to remove genotypes from unreliable SNPs or
animals. Records were removed for individuals with >
2% missing genotypes across all SNPs (call rate < 98%
which excluded 162 animals), SNPs with > 1% missing
genotypes across all individuals (call rate < 99%), that de-
viated significantly from Hardy-Weinberg equilibrium
threshold of P > 10− 6 or had minor allele frequency <
1%. After these quality control edits, 3,732 animals and
41,989 SNPs remained for association analysis and the
average distance between SNPs was 58.2 kb and the
average r2 between two neighbouring SNPs was 0.15.

Genome-wide association study
A single-SNP GWAS was performed in SNP & Variation
Suite v8 (SVS) [27] software to identify SNPs signifi-
cantly associated with the milk traits. The single-SNP
GWAS (ssGWAS) is based on a linear regression test of
the fixed covariate effect of a single marker, which treats
each SNP as if it had an additive effect. Population struc-
ture was estimated by principal component analysis
(PCA) in SVS using the method described by Price et al.
[28]. The genomic relationship matrix was used to com-
pute the principal components. The top 50 principal
components captured 47% of the variation and were
subsequently included as fixed effects in the ssGWAS
method. To correct for multiple testing, a Bonferroni
correction of α = 0.05 was applied to the genome-wide
significance threshold (Significance threshold = α/num-
ber of SNP). The SNP effects were declared significant
at a genome-wide level of P = 1.1 × 10− 6 (0.05/41,989).
Quantile-quantile plots were examined to determine the
validity of the P for the ssGWAS.
A BayesC GWAS was implemented in GenSel Soft-

ware [29] fitting all SNPs simultaneously (sBayesC) to
determine the proportion of variance explained by the

SNPs. The algorithm uses MCMC methods to calculate
samples from the posterior distributions of marker ef-
fects and variances, and inferences were made using the
posterior means. The chains include 20,000 iterations
after a burn-in of 1,000 iterations. For this model the
priors for the genetic and residual variances were based
on posterior means in a previous analysis [30]. It was as-
sumed that 99.8% of the SNPs have no effect on the
trait. The genome was partitioned into 1Mb windows
and the multi-locus contribution to genetic variance of
the combined effects of SNPs within every one of these
intervals were simultaneously estimated by sBayesC [19].
The 1Mb windows that explained > 1% of genetic vari-
ance were considered to be associated with the traits.
The seven most significant SNPs clustered on chromo-

some 19 were combined into a haplotype block to fur-
ther investigate true associations from the SNP analyses.
The BayesC method was implemented a second time
but with the alleles in the haplotype block included as
fixed covariates while the remaining panel SNPs were
fitted simultaneously as random effects (hBayesC). Thus,
covariates for haplotype allele dosage were fitted instead
of the dosage of alleles at each individual SNP in the
QTL region. An expectation-maximization (EM) algo-
rithm was used to estimate haplotype allele frequencies
and haplotype alleles with an EM probability ≥ 50% were
included in the analysis (10 of the 28 haplotype alleles).
To test for non-additive effects of the haplotype al-

leles, a BayesC model was re-run again in GenSel, but
fitting diplotypes (pairs of haplotypes) (dBayesC).
Diplotypes were defined as class effects, but were only
constructed for the two most common haplotypes.
The effects of these diplotypes and the remaining
eight haplotypes were fitted as fixed with the
remaining SNPs simultaneously fitted as random
effects.
Effects of haplotypes and diplotypes on the produc-

tion traits were obtained using the GLM procedure of
SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).
The model fitted for each trait and each haplotype,
was Yi = b0 + xib + ei where Yi is the residual pheno-
type of animal i, b0 is the intercept, xi is a row-
vector indicating which haplotype and how many cop-
ies of the haplotype are carried by the animal; b is
the effect of the haplotype and ei is a residual effect.
For the diplotype analysis, diplotype was treated as a
class effect based on the number of copies of the two
most common haplotypes.
Ensembl was used to search for genes closest to the

most significant SNPs [31]. Gene annotation was re-
trieved if the SNP was located on an intron, lying 0–
5 kb upstream or downstream from gene boundaries,
or, if the SNP was located in intergenic regions, the
SNPs were assigned to the closest gene.
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Results
Descriptive statistics for raw lactation yields of first and
second parity genotyped does are in Table 1.
Figure 1 shows the Manhattan plot for the ssGWAS

for lactation yields of MY, FY and PY and average SCS.
The horizontal lines represent the Bonferroni-adjusted
genome-wide significance threshold. A total of 43
genome-wide significant SNPs were detected across all
four traits. A highly significant region (19:24,836,694–19:
28,953,102) was identified on chromosome 19 for all
four traits. In this region, 26 SNPs are associated with
MY, 24 SNPs associated with FY and PY and 11 SNPs
associated with SCS. Another significant region was
identified on chromosome 29 (29:24,850,418–29:25,328,
810) with 11 SNPs associated with SCS. The two top
SNPs associated with MY, FY and PY were detected on
chromosome 19 (19:26,610,610 and 19:26,662,281) with
significance levels of log10(P) = 22.51 and 21.67 for MY,
19.14 and 19.60 for FY, and 19.93 and 19.31 for PY.
These two SNPs were also the top SNPs on chromo-
some 19 associated with SCS [−log10(P) = 8.22 and 7.93,
respectively]. Results obtained from the ssGWAS model
showed that the top SNP (19:26,610,610) explained 4.4%
of the total variance for MY and 3.4% for FY and PY.
The Quantile-Quantile plot (QQ-plot) in Fig. 2 shows

the observed and expected P-values [expressed as
log10(P)] of the ssGWAS for lactation yields of MY, FY,
PY and SCS. The dashed line represents the distribution
of the SNPs under the null hypothesis that there is no
association of SNPs with the trait of interest. The strong
deviation of the observed from the expected P-values for
all four QQ-plots indicate that there were more SNPs
significantly associated with all of the four traits than
would be expected by chance.
In this study the sBayesC model partitioned the gen-

ome into 2,520 1Mb SNP windows with an average of
17 SNPs per window. The windows were sorted based
on the proportion of genetic variance each window cap-
tured. The genomic region with the highest proportion
of explained genetic variance for MY, FY and PY was on

chromosome 19 (19:26,029,220–19:26,956,209). The
combined effect of the 15 SNPs within this window was
estimated to explain 9.62% of the genomic variance for
MY, 8.09% for FY, 9.09% for PY and 0.94% for SCS. The
probability that this window explained more than the
average genetic variance expected under an infinitesimal
model of inheritance was 1.00 for MY, FY and PY and
0.98 for SCS. Other windows of interest included one on
chromosome 6 (6:86,050,148–6:86,990,478) explaining
1% of the genomic variance of MY, chromosome 14 (14:
81,032,694–14:81,952,406) explaining 2% of the genomic
variance of FY and a window on chromosome 29 (29:25,
025,234–29:25,972,909) explaining 3% of genomic vari-
ance of SCS.
Table 2 shows the variances obtained from the Bayes-

ian analyses in GenSel. The proportion of phenotypic
variance explained by all SNPs fitted in the sBayesC
model was 18% for MY, 16% for FY, 14% for PY and
20% for SCS. The genetic variances were reduced for
MY, FY and PY, when the haplotypes or diplotypes in
the QTL region were fitted as fixed effects (hBayesC and
dBayesC models), the reduction representing the genetic
variance explained by the haplotypes and diplotypes.
When the haplotypes were fitted into the hBayesC
model, the remaining SNPs explained 12% of the total
variance for MY, 11% for FY, 9% for PY and 20% for
SCS.
When the BayesC model was adjusted for the effects

of the haplotypes or diplotypes (hBayesC or dBayesC, re-
spectively), the SNPs that showed the highest model fre-
quency were located on chromosomes 6 and 8. This
suggested that all of the informative SNPs located on
chromosome 19 were accurately included in the haplo-
type block.
The population frequency of the haplotype alleles and

their diplotypes are presented in Table 3. The common-
est haplotypes, h1 and h2, had estimated frequencies of
49% and 17%, respectively. Diplotypes were derived
based on the occurrence of h1 and h2, of which, 79% of
the population is estimated to have at least one copy of
h1 and 34% of the population is estimated to have at
least one copy of h2.
Diplotype numbers with a h0 refers to the occur-

rence of any haplotype other than h1 and h2. The es-
timated effect of haplotypes and diplotypes on milk
traits are reported in Table 4. The most frequent
haplotype h1 has the greatest positive effect on MY,
while h9 has the greatest effect on FY and PY. The
diplotype with the greatest effect on yields includes
two copies of h1 (h1-h1), of which 29% of the popu-
lation is estimated to carry. The diplotype with the
largest negative effect on MY and PY comprised of
one copy of h2 (h2-h0), which is estimated to repre-
sent 11% of the population.

Table 1 Descriptive statistics of milking traits of genotyped
New Zealand dairy goats in their first and second parity
(n = 7,284)

Trait Mean SDa Min Max CVb

Lactation length, d 272.3 117.0 60.0 696.0 43

Lactation yields

Milk, kg 804.5 290.4 58.4 2,005.8 36

Fat, kg 26.7 10.3 2.0 76.5 39

Protein, kg 25.0 8.9 2.4 63.0 36

SCSc 8.6 1.3 3.5 13.7 15
aSD = standard deviation across herds
bCV = coefficient of variation
cSCS = somatic cell count calculated as log2 (somatic cell count)
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Fig. 1 (See legend on next page.)
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Table 5 shows the 43 genome-wide significantly asso-
ciated SNPs with the milk production traits and pos-
itional candidate genes (i.e. annotated genes that are
nearest to each marker). Half of significant SNPs on
chromosome 19 are mapped to introns, 27% to inter-
genic regions, 7% introducing synonymous substitutions
and the remaining 17% located upstream or downstream
to the closest genes. The two top SNPs from the
ssGWAS, are located on chromosome 19 at 26,610,610
bp, introducing a synonymous substitution in the RNA-
SEK gene (ENSCHIG00000009505) and at 26,662,281
bp, located within the intron of the ASGR2 gene
(ENSCHIG00000003690). Both SNPs were significantly
associated with all four milk traits. Other SNPs included in
the haplotype block were SNP 19:26,724,454, located within
the intron of the DLG4 gene (ENSCHIG00000009974), and
19:26,780,952, located downstream of the ELP5 gene
(ENSCHIG00000010521), that were also significantly asso-
ciated with MY, FY and PY. The functional annotation of
SNP (19:27,854,624) resulted in a synonymous substitution
in MYH10 (ENSCHIG00000018616) and SNP (19: 28,079,
607) located within an intergenic region but the closest

gene being 166 kb from the MYH10 gene. Both SNPs were
significantly associated with SCS.
Of the 11 SNPs on chromosome 29 significantly asso-

ciated with SCS, 36% were mapped to introns and 64%
were in intergenic regions. The most significant SNP on
chromosome 29 (29: 25,328,810) is located in an inter-
genic region and is 60 kb from the closest gene, PTPN5
(ENSCHIG00000008345). Another significant SNP (29:
25,366,901), is also near the same gene (22 kb). In
addition, two SNPs (29: 25,649,038 and 29: 27,144,973)
significantly associated with SCS were located within in-
trons of the LDHC gene (ENSCHIG00000013476) and
OR8B4 (ENSCHIG00000012776), respectively. The two
remaining SNPs on chromosome 29 (26:25,175,690 and
29:25,206,548), were located within introns are of the
ZDHH13 gene (ENSCHIG00000024992).

Discussion
Genome wide association studies have been used to
identify associations between genetic markers and candi-
date genes for traits of economic importance. This study

(See figure on previous page.)
Fig. 1 Manhattan plot of ssGWAS for lactation yields of milk (a), fat (b) and protein (c) and average somatic cell score (d), using the Illumina
Caprine 50 K BeadChip (Illumina Inc., San Diego, CA) in 3,732 New Zealand dairy goats. The P-values [−log10 (P)] for each SNP are shown on the Y-
axis and chromosomes 1–29 are shown on the X-axis. The horizontal line indicates the Bonferroni-corrected genome-wide threshold at
P-value 0.05

Fig. 2 Quantile-quantile plots observed and expected P-values [expressed as –log10 (P)] of the ssGWAS for yields of milk (a), fat (b), protein (c)
and somatic cell score (d) in New Zealand dairy goats
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evaluated the associations of 41,989 SNPs with MY, FY,
PY and SCS from 3,732 New Zealand dairy goats.
The ssGWAS identified 43 SNPs significantly asso-

ciated with MY, FY, PY and SCS in this population.
A cluster of highly significant SNPs were identified
on chromosome 19 for all four traits and on
chromosome 29 for SCS. The two strongest signals

were identified at SNP 19:26,610,610 and 19:26,662,
281. These two SNPs were in high LD (r2 = 0.94)
and it is highly probable that these SNPs were in
high LD with a QTL or causal variant that had a
very significant effect on MY, FY and PY in this
dairy goat population.

Table 2 Summary of variances estimated from BayesC GWAS for lactation yields of milk, fat and protein and average somatic cell
score, using the Illumina Caprine 50 K BeadChip (Illumina Inc., San Diego, CA) in 3732 New Zealand dairy goats

Trait Modela Genetic variance Phenotypic variance Phenotypic variance explained by SNPs, %

Milk yield sBayesC 12,925 73,865 18

hBayesC 8,739 71,128 12

dBayesC 8,484 70,893 12

Fat yield sBayesC 13.15 83.27 16

hBayesC 9.23 80.82 11

dBayesC 9.06 80.53 11

Protein yield sBayesC 8.61 63.91 14

hBayesC 5.48 62.06 9

dBayesC 5.38 61.89 9

Somatic cell score sBayesC 0.28 1.45 20

hBayesC 0.28 1.45 20

dBayesC 0.28 1.45 20
aModels = sBayesC=BayesC model fitting all SNPs simultaneously, hBayesC = BayesC model fitting 10 haplotype alleles as fixed effect and remaining SNPs as
random effects simultaneously, dBayesC = BayesC model fitting diplotypes of h1 and h2 as well as the 8 remaining haplotypes, and the remaining SNPs as
random effects simultaneously

Table 3 Estimated population frequency of the 10 most
frequent haplotypes, and diplotypes within the most significant
region on chromosomes 19 associated with milk production in
New Zealand dairy goats

Haplotype Frequency

Haplotype number

h1 TCTTCTG 49%

h2 CTCCTGA 17%

h3 CTCCTTG 11%

h4 CCCCTTG 5%

h5 TCCCTTG 4%

h6 CCTCTTG 4%

h7 CCCCTGA 2%

h8 CCTCTGA 2%

h9 CCTTCGA 1%

h10 TTCCTTG 1%

Diplotype number

h1-h0 30%

h1-h1 29%

h1-h2 20%

h2-h0 11%

h2-h2 3%

h0-h0 9%

Table 4 Effects of haplotypes and diplotypes located within the
most significant region on chromosome 19 on milk traits in
New Zealand dairy goats

Milk yield, kg Fat yield, kg Protein yield, kg SCSa,
units

Haplotypes

h1 73.6 (3.1)b 2.15 (0.11)b 1.91 (0.09)b 0.16 (0.02)b

h2 −57.0 (4.1)b −1.87 (0.14)b −1.54 (0.12)b −0.08 (0.02)b

h3 −28.7 (5.6)b −0.59 (0.19)c −0.68 (0.16)b −0.20 (0.03)b

h4 −59.1 (6.9)b − 1.62 (0.24)b − 1.64 (0.20)b − 0.12 (0.04)b

h5 −70.0 (7.9)b − 2.24 (0.27)b − 1.89 (0.23)b − 0.10 (0.04)c

h6 −5.7 (7.7) − 0.10 (0.26) − 0.07 (0.22) − 0.06 (0.04)

h7 − 107.6 (20.9)b −3.59 (0.72)b − 2.58 (0.61)c − 0.07 (0.11)

h8 −43.4 (18.9)c −2.24 (0.65)b −1.92 (0.55)c 0.01 (0.10)

h9 7.8 (13.1) 1.49 (0.45)b 1.04 (0.38)c −0.02 (0.07)

h10 −44.7 (21.7)c −2.15 (0.75)c −1.05 (0.64) 0.16 (0.12)

Diplotypes

h1-h0 53.4 (4.1)b 1.88 (0.14)b 1.61 (0.12)b −0.18 (0.02)b

h1-h1 103.6 (3.8)b 3.10 (0.13)b 2.75 (0.11)b 0.05 (0.02)c

h1-h2 42.4 (4.6)b 1.17 (0.16)b 1.21 (0.14)b −0.11 (0.02)b

h2-h0 −58.0 (6.9)b −1.49 (0.24)b −1.44 (0.20)b −0.17 (0.04)b

h2-h2 −45.9 (13.5)b −1.83 (0.47)b −1.33 (0.40)b −0.41 (0.07)b

h0-h0 −37.3 (8.4)b −1.08 (0.29)b −0.93 (0.25)b −0.32 (0.04)b

aSCS somatic cell score
bP < 0.001, cP < 0.05
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Table 5 Genes linked to the 43 genome-wide significant SNPs for yields of milk, fat, protein and somatic cell score in New Zealand
dairy goats

Chra Position Traitb −log10(P) Annotation Gene name Gene description

14 81,658,443 FY 9.21 Upstream ZNF16 Zinc finger protein 16

19 24,836,694 SCS 6.97 Intron MYBBP1A MYB binding protein 1a

19 25,087,981 MY, PY 6.7.2–7.7 Intron KIAA0753 KIAA0753 ortholog

19 25,413,768 MY, FY, PY 7.2–7.7 Intergenic WSCD1 WSC domain containing 1

19 25,782,297 MY 6.7 Intergenic NLRP1 NLR family pyrin domain containing 1

19 25,823,025 MY, FY, PY 9.9–12.5 Intergenic NLRP1 NLR family pyrin domain containing 1

19 26,072,328 MY, FY, PY 16.3–19.3 Intergenic RABEP1 Rabaptin, RAB GTPase binding effector protein 1

19 26,115,456 MY, FY, PY 6.0–7.4 Intergenic ZNF232 Zinc finger protein 232

19 26,148,755 MY, FY, PY 16.6–20.1 Downstream ZFP3 Zinc finger protein

19 26,192,128 MY, FY, PY 15.2–17.1 Downstream KIF1C KIF1C Kinesin family member 1C

19 26,420,506 MY, FY, PY 13.5–15.2 Intron ZMYND15 Zinc finger MYND-type containing 15

19 26,542,254 MY, FY, PY 6.7.3–7.7 Downstream None Arachidonate 12-lipoxygenase, epidermal-type

19 26,578,775 MY, FY, PY, SCS 6.5–16.4 Intergenic None Arachidonate 12-lipoxygenase, epidermal-type

19 26,610,610 MY, FY, PY, SCS 8.2–22.5 Synonymous RNASEK Ribonuclease K

19 26,662,281 MY, FY, PY, SCS 7.9–21.7 Intron ASGR2 Asialoglycoprotein receptor 2

19 26,724,454 MY, FY, PY 7.9–8.9 Intron DLG4 Discs large MAGUK scaffold protein 4

19 26,780,952 MY, FY, PY 7.5–8.6 Downstream ELP5 Elongator acetyltransferase complex subunit 5

19 27,360,768 MY, FY, PY 7.5–8.4 Intron CNTROB Centrobin, centriole duplication and spindle assembly protein

19 27,401,023 MY, FY, PY, SCS 6.3–13.6 Intron GUCY2D Guanylate cyclase 2D, retinal

19 27,480,793 MY, FY, PY, SCS 6.5–12.7 Intron ALOXE3 Arachidonate lipoxygenase 3

19 27,529,983 MY, FY, PY, SCS 6.1–12.2 Intron None Vesicle associated membrane protein 2

19 27,558,520 MY, FY, PY 10.3–12.0 Intron TMEM107 Transmembrane protein 107

19 27,605,322 MY, FY, PY 9.2–10.5 Intron CTC1 CST telomere replication complex component 1

19 27,744,036 SCS 7.5 Upstream NDEL1 NudE neurodevelopment protein 1 like 1

19 27,854,624 SCS 7.0 Synonymous MYH10 Myosin heavy chain 10

19 28,038,645 MY, FY, PY, SCS 6.7–16.5 Intron PIK3R6 Phosphoinositide-3-kinase regulatory subunit 6

19 28,079,607 SCS 7.8 Intergenic MYH10 Myosin heavy chain 10

19 28,202,268 MY, FY, PY 7.1–8.9 Intergenic NTN1 Netrin 1

19 28,578,424 MY 6.7 Intron STX8 Syntaxin 8

19 28,730,193 MY, FY, PY 9.3–11.0 Intron GLP2R Glucagon like peptide 2 receptor

19 28,953,102 MY, FY, PY 6.8–7.8 Intron None Growth arrest specific 7

29 24,850,418 SCS 6.2 Intergenic NAV2 Neuron navigator 2

29 25,175,690 SCS 11.9 Intron ZDHHC13 Zinc finger DHHC-type containing 13

29 25,206,548 SCS 12.4 Intron ZDHHC13 Zinc finger DHHC-type containing 13

29 25,328,810 SCS 14 Intergenic PTPN5 Protein tyrosine phosphatase, non-receptor type 5

29 25,366,901 SCS 8.3 Intergenic PTPN5 Protein tyrosine phosphatase, non-receptor type 5

29 25,649,038 SCS 8.8 Intron LDHC L-lactate dehydrogenase C chain

29 26,381,310 SCS 6.0 Intergenic OR10D3 Putative olfactory receptor 10D3

29 26,502,551 SCS 8.8 Intergenic None Olfactory receptor 145-like

29 27,144,973 SCS 10.4 Intron OR8B4 Olfactory receptor family 8 subfamily B member 4

29 27,407,592 SCS 6.7 Intergenic PANX3 Pannexin 3

29 27,967,983 SCS 9.2 Intergenic PKNOX2 PBX/knotted 1 homeobox 2
aChromosome, bMY milk yield, FY fat yield, PY protein yield, SCS somatic cell score
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Quantile-quantile plots (Fig. 2) of the observed and ex-
pected P-values of the ssGWAS for each trait indicated
that a large proportion of the observed P-values were
clearly more significant than expected under the null hy-
pothesis. This suggested there were some true associa-
tions between SNPs and genes controlling these traits.
The main advantage of the ssGWAS is the ease of sig-

nificance testing. However, single-SNP analysis relies on
LD between the marker and QTL, therefore the results
do not provide information about the location of the
causal variant, instead they correspond to the location of
the marker. Also, fitting SNPs individually may result in
the same signal picked up in multiple single SNP tests,
thus overestimating the number of actual QTLs de-
tected. And finally, although a significant signal is identi-
fied, if a trait is controlled by many QTLs, which is the
case for most quantitative traits, the single-locus tests
may prove inaccurate compared with methods where
grouped (haplotypes) or all SNPs are jointly considered.
For these reasons, an additional analysis was performed
fitting all SNPs simultaneously in a BayesC GWAS.
The BayesC GWAS that fits all SNPs simultaneously,

can improve the accuracy of detecting QTLs [32] and
the 1Mb window variances provide greater insight for
identifying the genomic region of the casual variant [19]
and estimates the proportion of variance explained by
the SNPs.
In the Bayesian analysis, the percentage of genetic vari-

ance explained by 1Mb genomic windows are used to
make inference about the proportion of variance ex-
plained by a QTL and whether the QTL bleeds over
multiple windows. The genomic window that explained
the greatest level of genetic variance (8–9%) for MY, FY
and PY included 15 SNPs and ranged from 26,420,506
to 26,780,952 bp on chromosome 19. Two of the SNPs
located in this window were also the most frequent
SNPs included in the model (suggesting they are inform-
ative SNPs that contribute to the model) and were the
top SNPs identified in the ssGWAS to be associated with
MY, FY and PY.
Combing these results provides strong evidence that

those SNPs with the highest model frequency within the
genomic window on chromosome 19 with the largest ef-
fect, are likely to be in LD with the causal variant.
To learn more about this potential QTL on chromo-

some 19 the seven most significant SNPs identified in
the ssGWAS were combined into a haplotype block and
the Bayesian analysis was re-run but adjusting for the
SNPs in the haplotype block. Fitting covariates for
haplotype alleles rather than the SNP alleles provides
higher LD between causal mutations and haplotype al-
leles as the multilocus haplotype takes into account not
only the LD information from the SNPs within the
haplotype but also other important polymorphisms

within the QTL cluster region. In addition, the use of
haplotypes can provide information regarding the gen-
etic determinants that cannot be captured by the biallelic
markers. For example, when a SNP is fit in the model
there is no guarantee that its alleles are in high LD with
the QTL allele, whereas in the haplotype, provided there
are enough SNPs to represent them, at least one haplo-
type must contain the favourable QTL allele and at least
one must include the unfavourable allele. When the hap-
lotypes were fitted into the hBayesC model as a fixed ef-
fect, there were no other signals on chromosome 19 of
large effect, indicating that the majority of the QTL was
indeed captured within the genomic region of that
haplotype block. Also, the genetic variance from the
hBayesC model was lower than the sBayesC, indicating
that the seven SNPs located in the haplotype are captur-
ing the variation that exists in that genomic region.
The haplotype effects on milk production in this dairy

goat population were estimated for the 10 haplotypes.
Haplotypes h1 and h9 had the greatest positive effect on
the milk traits. Animals that carry one copy of h1 or h9
are estimated to produce + 73.6 and + 7.8 kg milk, + 2.2
and + 1.5 kg fat and + 1.9 and + 1.0 more protein, re-
spectively, per lactation, compared with the average of
the population. Both h1 and h9 are the only haplotypes
that contain the T allele at the loci 19:26,610,610, which
had the strongest signal on the milk traits as well as the
C allele at the loci 19:2,666,281, which had the second
strongest signal on the milk traits. This suggests that an
animal carrying the T and C alleles at the corresponding
loci will have the greatest yields per lactation compared
to the average of the population. The positive effect of
these loci on milk production traits should be used in
combination with performance and pedigree informa-
tion to generate more accurate breeding values. When
selecting animals for breeding replacements, geno-
typed males carrying the desirable alleles can be used
for mating to females to produce replacements that
carry the desirable alleles and thus the potential to be
high yielding animals.
When haplotypes are fitted in the model as dosage co-

variates we assume the haplotypes have an additive effect,
which may not be true. Therefore, to test whether the ef-
fect of the haplotype block was truly additive, we fit diplo-
types (pairs of haplotypes) into the model. Fitting
diplotypes allows the estimation of the effect of the het-
erozygote without assuming it is intermediate between the
opposite homozygotes, which can determine whether that
haplotype allele is additive, or dominant or over-dominant
etc. Results from the diplotype analysis showed that ani-
mals with the h1h2 haplotype indeed had a greater effect
than the h2h2 diplotype animals, demonstrating that the
h1 haplotype does have an additive effect on milk produc-
tion traits in New Zealand dairy goats.
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The diplotypes included in the trend regression were
derived from the two most frequent haplotypes in the
population, h1 and h2. The predominant diplotype
(29%) in the study population had two copies of h1. Ani-
mals that do not carry either h1 or h2 had an average ef-
fect of − 37.3 kg milk per lactation, relative to the
population average. If an animal has only one copy of h2
then they will have − 58.0 kg, which is 20.7 kg less than
animals with neither h1 nor h2. If an animal carries one
copy of h1, they will have + 53.4 kg milk, producing 90.7
kg more than an animal that carries neither h1 nor h2. If
an animal carries two copies of h1 then it will have +
103.6 kg milk than the population, producing an extra
50.2 kg milk more than an animal with one copy of h1.
These results follow a similar trend for FY and PY and
suggest that h1 has a positive effect on milk traits and
can lead to increased productive value of dairy goats in
New Zealand.
Several studies have identified QTL significantly asso-

ciated with milk production traits in goats (Table 6). Re-
sults from our study confirmed the presence of a QTL
reported on chromosome 19 for MY, FY, PY and SCS
and on chromosome 29 for SCS. In addition, several
novel regions were identified, including a QTL for FY on
chromosome 14 and genetic regions associated with
MY, FY and PY on chromosome 23 and SCS on
chromosome 5.
The QTL on chromosome 19 that was strongly associ-

ated with all four traits, was reported in the French Saa-
nen dairy goat population [12] and a mixed breed
population [26]. In addition to milk traits in dairy goats,
this highly significant region was also associated with
type traits [24], udder floor position [12], functional lon-
gevity [25] and semen production [34], suggesting a
pleiotropic QTL effect. Further investigation into this
genomic region (chromosome 19, 25–29Mb) revealed
that the SNPs significantly associated with MY in the
current study were different to the SNPs identified by
Mucha et al. [26] in their mixed breed goat population.
This could be because both studies analysed mixed
breed populations, thereby having different levels of

linkage disequilibrium [35], thus, the loci on the SNP
have different levels of linkage disequilibrium with the
unknown causal. With that said, although the individual
SNPs differed in statistical significance between the goat
populations, this highly significant region identified in
both studies suggests the segregation of a common gene
that has a major effect on milk production in dairy
goats.
In this study, the most significantly associated SNP

(19:26,610,610) was located on chromosome 19 introdu-
cing a synonymous substitution in the RNASEK gene
(ENSCHIG00000009505). RNASEK is a transmembrane
protein ubiquitously expressed and highly conserved
across mammals. RNASEK localizes to the cell surface
and endosomal pathway and closely associates with the
vacuolar ATPase (V-ATPase) proton pump. RNASEK is
required for endocytosis that prevents the replication of
multiple pathogenic viruses such as rhinovirus, influenza
A and dengue [36]. This most significant SNP was
strongly associated with all four milk traits, but no previ-
ous studies have reported this SNP or any association
with this gene in goats. However, this SNP is in strong
LD (r2 = 0.94) with SNP 19:26,662,281, which was also
strongly associated with all four milk traits. This SNP
(19:26,662,281), is located within the intron of the
ASGR2 gene (ENSCHIG00000003690) and is in the
same region where Mucha et al. [26] reported a loci (19:
26,150,581) that is strongly association with udder depth
of mixed breed dairy goats. The ASGR2 gene encodes a
subunit of the asialoglycoprotein receptor involved with
the glycoprotein metabolic process, lipid homeostasis
and the regulation of protein stability. Therefore, the
possibility of the ASGR2 genes involvement with the
milk production traits is supported by its activity in lipid
homeostasis and protein stability.
Another signal strongly associated with all four milk

traits is SNP (19:27,480,793) which is located within the
intron of the ALOXE3 gene. A SNP (19:26,972,244) in
the same gene region was reported by Mucha et al. [26]
to be associated with udder depth of mixed breed dairy
goats. This gene is part of the lipoxygenase family of

Table 6 Reported QTL associated with milk production traits in dairy goats

Trait Chromosome Reference

Milk yield 6, 8, 14, 19 and 21 Roldán et al. [33], Maroteau et al. [17], Martin et al. [18], Mucha et al. [26]

Fat yield 2, 14 and 19 Maroteau et al. [17], Martin et al. [18]

Protein yield 19 and 20 Maroteau et al. [17], Martin et al. [18]

Fat content 6, 7, 14, 20, 21 and 25 Roldán et al. [33], Maroteau et al. [17], Martin et al. [18]

Protein content 1, 3, 5, 6, 11, 20, 21, 28 Roldán et al. [33], Maroteau et al. [17], Martin et al. [18]

Fatty acid 1, 7, 8, 11, 14 and 29 Maroteau et al. [17]

SCS 19, 29 Maroteau et al. [17], Martin et al. [24]

Morphology traits 29 Maroteau et al. [17], Martin et al. [24]
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enzymes and is involved in the metabolic pathway dur-
ing formation of the epidermal barrier [37]. As this
process includes the activity in cell differentiation, cell
proliferation and fat metabolism, it is possible that this
gene is involved with udder conformation [26], and sub-
sequently milk production.
Another association which was reported by Mucha

et al. [26] was for SNP (19:26,066,457), which is located
near the ALOX12 gene (GOAT_ENSP00000251535) and
has a significant effect on MY in dairy goats [26]. How-
ever, this SNP and chromosome region were not signifi-
cantly associated with milk production traits in this
current dairy goat population.
In the current study, the SNP (19:26,192,128) was signifi-

cantly associated with MY, FY and PY and is located down-
stream from the KIF1C gene (ENSCHIG00000000772).
This gene is involved in the movement of molecules
from the Golgi back to the endoplasmic reticulum. This
SNP was also reported at the genome-wide significance
level, to be associated with functional longevity in
Saanen dairy goats [25]. In the same population, Martin
et al. [18] also reported the same genomic region to be
associated with milk production. This is not surprising
as multiple studies have published a positive genetic
correlation between milk production and longevity in
dairy goats [38, 39].
Two significant SNPs were mapped within and close

to the MYH10 gene (ENSCHIG00000018616) which is
involved in mitotic cytokinesis. The SNP (19: 28,079,
607) causes a synonymous substitution and the 19: 28,
079,607 SNP is located 166 kb from the gene. Both SNPs
were significantly associated with SCS and not with the
other milk traits.
Other genes on chromosome 19 associated with milk

production traits in dairy goats include the GH1 gene lo-
cated in the 47Mb region [40, 41] and the STAT5A gene
located in the 42Mb region [42]. However, in our study
there were no associations for milk traits detected in
these regions.
We identified a peak of significant SNPs on chromo-

some 29 associated with SCS. It is evident there is a
QTL located on this chromosome for SCS as we de-
tected strong signals for 11 SNPs from the ssGWAS.
However, further investigation using Bayesian methods
would provide more information about the genomic re-
gion of the QTL and the level of variance it explains.
Previous studies have reported a chromosome-wide sig-
nificant SNP on chromosome 29 associated with MY
[26] and fatty acid composition [17] in French dairy
goats and associated with gastrointestinal nematode re-
sistance in dairy goats in Zimbabwe [43].
Two of the top SNPs associated with SCS (29: 25,175,

690 and 29:25,206,548) are within introns of the
ZDHHC13 gene (ENSCHIG00000024992), which is

associated with signal transducer activity and palmitoyl-
transferase activity. Palmitoyltransferase is important for
the positive regulation of I-kappaB kinase/NF-kappaB
signalling, which is an inflammatory signalling pathway.
This gives credibility to the SNP being associated with
SCS in this study.
Other genomic regions that may be involved in SCS

include the LDHC gene, which is involved in carbohy-
drate metabolic processes such as the chemical reactions
and pathways resulting in the formation of ATP, a uni-
versally important coenzyme and enzyme regulator. And
the OR8B4 gene, which changes the activity or state of a
cell in response to a chemical stimulus by chemorecep-
tors i.e. smell perception.
Only one genome-wide significant signal was detected

on chromosome 14 (14:81658443) with FY. Although
associated with FY, the genome-wide significant SNP
was not located in the immediate region of the
DGAT1 gene, a gene known to have a major effect
on milk fat content in goats [18] and cattle [44]. In-
stead, the SNP was located upstream of the ZNF16
gene (ENSCHIG00000020215). Although not studied
in goats, this gene promotes cell proliferation and in-
hibits cell apoptosis in humans [45].
Despite only a few papers reporting GWAS studies in

dairy goats, candidate genes related to milk traits have
been widely studied. Some polymorphisms associated
with milk production in goats include the LALBA gene
(chromosome 5) which is linked to milk yield, lactose
content and milk coagulation properties [46], the
MTHFR gene (chromosome 6) involved in milk protein
synthesis [47], the β-lactoglobulin gene (chromosome
11) [48, 49] associated with milk yield and daily fat and
protein yield, the TLR2 gene (chromosome 17) which is
important in the recognition of the innate immune sys-
tem of mastitis causing bacteria [50] and the PRLR gene
(chromosome 20) [51] and the STAT5A gene (chromo-
some 19) [42], both which are associated with milk yield.
But none of the significant SNPs in the current study
were located in the regions of these genes.
Although numerous studies have provided evidence of

polymorphisms within specific genes influencing milk
production, there are limited studies using GWAS meth-
odologies to identify QTL for milk production traits in
dairy goats. All of the previous GWA studies identified
SNPs that were of varying significance levels for different
breeds [18, 24–26]. In our study, the goats were of
mixed breeds, representative of the New Zealand dairy
goat population.
Results from the GWAS strongly show a QTL located

on chromosome 19 and the trend regression analysis
suggest this is biallelic with h1 containing the desirable
allele. This was detected when analysing the effects of
the haplotypes and confirmed by the estimated diplotype
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effects. All diplotypes containing h1 resulted in positive
effects on milk traits, while every diplotype that con-
tained h2 had negative effects on the milk traits, com-
pared with the average of the population. The fact that
animals carrying one copy of both h1 and h2 still had
positive effects on the milk traits shows the greater mag-
nitude of the positive effect of h1 over the negative effect
of h2.
The results from this study provide evidence that

there is a likely QTL strongly associated with milk
traits in this population. It is possible that the QTL
has an additive effect and is biallelic. In addition, it is
concluded that this QTL has a pleiotropic effect as it
has been identified in other goat populations and as-
sociated with a range of traits besides milk produc-
tion traits.
Although the study population was small, the signifi-

cant regions identified were also reported in other stud-
ies, which gives confidence in the results. Nevertheless,
the results require validation. If the new results are con-
sistent with the current results, the identified markers
could be used for marker-assisted-selection. This will
enable the prediction of genetic and phenotypic value of
individuals. For example, to predict the future pheno-
types of offspring so that those with the best breeding
values can be selected as parents of the next generation
[3]. At the same time, the information on the genomic
regions found in this study, can be used to facilitate the
identification of candidate genes for these milk traits.
Doing so would enable a greater understanding of the
biology underlying the response from genomic selection,
and managing possible consequences of selecting for
mutations with undesirable pleiotropic effects [52]. Ul-
timately, these results provide an opportunity for adopt-
ing genomic selection within the New Zealand dairy
goat population. Implementing genomic selection will
increase the accuracy of predicted genetic and pheno-
typic values and reduce the generation interval, leading
to increased rates of genetic improvement within this
dairy goat population.

Conclusion
The study identified one region strongly associated with
milk production traits in New Zealand dairy goats. The
highly significant region identified on chromosome 19
was also reported in French dairy goat populations and
suggests a major pleiotropic QTL for milk production
traits in dairy goats. The significant SNPs will increase
the accuracy of predicted genetic and phenotypic values
of individuals to allow for genomic selection. The results
demonstrated in this study require validation using a lar-
ger dataset before implementing genomic selection
within the New Zealand dairy goat population.
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