The worldwide trend of *Campylobacter* spp., infection from duck-related isolates and associated phenotypic and genotypic antibiotic resistance, since 1985: identifying opportunities and challenges for prevention and control

Saeid Jafari,* Mahdi Ebrahimi,[†] and Taradon Luangtongkum^{*,1}

^{*}Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Bangkok 10330, Thailand; and [†]Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia

ABSTRACT Campylobacter, a leading cause of foodborne diseases, is well recognized worldwide. Poultry and poultry products are considered as major sites for Campylobacter infection in humans. The extensive uses of antibiotics mostly as growth promoters and for therapeutic purposes have led to the emergence of antibioticresistant strains of foodborne pathogens including Campylobacter. A key tenet of this paper is the need for reviewing the previous studies conducted around the globe on the prevalence and antimicrobial resistance of Campylobacter spp. isolates in duck to better understand the sources and trends of infection. Based on published data, the prevalence of Campylobacter spp. in duck and duck-related samples ranged from 0% to 100% and was largely influenced by the isolation method.

Key words: antibiotic resistance, *Campylobacter*, duck, genotyping, prevalence

demonstrated.

INTRODUCTION

Foodborne pathogens (e.g., *Campylobacter*) which are human infections transmitted through food are natural reservoirs in vertebrate animal species (Carrique-Mas and Bryant, 2013). It has been reported that *Campylobacter* spp., are the leading cause of foodborne illnesses compared with other foodborne pathogens (Adzitey et al., 2012). Among *Campylobacter* spp., the most prevalent cause of campylobacteriosis is *C. jejuni*, which is followed by *C. coli*. Poultry and poultry products are considered as major sites for *Campylobacter* infection in humans. Ducks are important food sources around the world especially in Asia which their production plays a significant role in the agricultural economy.

Accepted April 11, 2021.

c, genotyping, prevalence 2021 Poultry Science 100:101213 https://doi.org/10.1016/j.psj.2021.101213

The prevalence of *Campylobacter* spp. from duck isolates showed to vary from study to study as well as country to country. In Malaysia, the prevalence of *Campylobacter* spp. has been increased among duck isolates (Adzitey et al., 2012). In a recent study, duck isolates showed an even higher prevalence of *Campylobacter* spp., compared to chicken isolates (77.5 vs. 32%) in South Korea (Chon et al., 2018). It has also been reported that horizontal transmission through environmental contaminants are also responsible for *Campylobacter* infection in ducks (Saengthongpinit et al., 2014).

Among Campylobacter spp., C. jejuni was the predomi-

nant cause of campylobacteriosis, followed by C. coli.

Campylobacter spp. from ducks were mostly resistant to

fluoroquinolones and tetracycline and a lesser extent to

gentamicin, chloramphenicol, and erythromycin. Some

studies showed that ducks may pose a risk for acquiring

campylobacteriosis because they had genotypes quite

similar to human isolates detected previously. A contin-

ued monitoring approach is needed, at national and

international levels, with enhanced surveillance and

reporting of trends, as well as harmonization of surveil-

lance systems toward a one-health approach to monitor-

ing antimicrobial resistance in animal production

particularly if increased resistance rates are being

Campylobacter infections do not cause a threat for ducks since Campylobacter is commensal in the gastrointestinal tract of the bird, however, in humans, treatment with antibiotics is required in specific clinical circumstances. Therapy with antibiotics may be complicated by the fact that antimicrobial resistance in Campylobacter isolates from human infections has become increasingly common worldwide. (Mason et al., 2017). Consistently, Lee et al. (2017) reported that most of the isolates from ducks showed resistance to nalidixic acid (NAL) and

^{© 2021} The Authors. Published by Elsevier Inc. on behalf of Poultry Science Association Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/(4.0/)).

Received August 9, 2020.

¹Corresponding author: taradon.l@chula.ac.th

ciprofloxacin (CIP). A high multidrug-resistant rate to CIP, NAL, and tetracycline (TET) was also observed from duck isolates from markets in Iran (>60%). As mentioned earlier, ducks and their products are commonly consumed around the world especially in the Asian diet, so, it is important to understand the prevalence and antimicrobial resistance in *Campylobacter* isolates with the contribution of ducks to reduce the burden of infection and to implement safety strategies.

Currently, numerous papers have been published on the prevalence of *Campylobacter* spp., from duck-related isolates and associated antibiotic resistance during the past few years. However, to the best of our knowledge, there is not a compelling review study to put them on perspective. Therefore, the authors of the present manuscript have put their best efforts to fill the current need by conducting precise literature reviewing on peerreviewed publications about the effects of the above mentioned. Therefore, a thorough study has been conducted to elucidate the prevalence of antimicrobial resistance of *Campylobacter* spp. isolates in ducks and highlight gaps in research for the development of control policies to limit the impact of *Campylobacter* infection worldwide.

Worldwide Prevalence Rate, Antibiotic Resistance and Genetic Diversity of Campylobacter spp. from Duck Isolates

We reviewed the available published literature in English worldwide since 1985. We searched mostly PubMed and Google scholar for articles using the following combinations of terms in either the title or the abstract with the keywords of "Antibiotic resistance," "antimicrobial resistance," "prevalence," occurrence," "duck," and *Campylobacter*." We also documented available data on diverse samples tested from duck, as well as prevalence and/or incidence data within animal reservoirs, with a specific focus on the worldwide prevalence of *Campylobacter* infection during years.

The prevalence, antimicrobial resistance rates and genetic diversity of *Campylobacter* spp. isolates in duck since 1985 are shown in Tables 1 and 2, respectively. The early studies on the prevalence of *Campylobacter* spp. from duck isolates were conducted in the US. As an example, a study about the prevalence of C. jejuni in ducks and duck meat were conducted at the farm and processing plant levels in the US in 1985 to 1986 (Kasrazadeh and Genigeorgis, 1987). Results showed that the ducklings were colonized with C. jejuni as early as the 4^{th} day of the age and showed colonization rates of 100% by the 7^{th} to 8^{th} day of age. These results were in contrast with the other studies on chicken-related isolates who suggested that the infection in the broiler chicken houses usually occurred after the first 2 weeks. The isolation of *C. jejuni* as early as the 4^{th} day of age could suggest vertical transmission of the organism. However, no *C. jejuni* was detected in the eggs which rejected the likelihood of the vertical transmission of C.

jejuni in ducks. Isolation rates of *C. jejuni* in liver, gizzard, heart, and skin samples were also reported as 34, 20, 6, and 6.7%, respectively. Kasrazadeh and Genigeorgis (1987) concluded that duck meat had not been incriminated in C. *jejuni* foodborne illness and the C. *jejuni* carrier rats and mice found on the premises were related to their finding as a source of colonization by C. *jejuni*. In 1985, 73% of cloacal swabs obtained from ducks in central Washington were contaminated with *Campylobacter* spp. (Pacha et al., 1988). It was also suggested that waterfowl as well as other migratory birds may play a role in the waterborne spread of C. jejuni. In 1987 to 1988, the prevalence of selected domestic and wild ducks in Louisiana showed that almost 6% (5/89) of isolates obtained from cloacal swabs were colonized with C. jejuni (Yogasundram et al., 1989). Their results showed that ducks (6%) had lower colonization of C. *jejuni* as compared with other fowl species such as Galliformes (25%), Columbiformes (8%) and Falconiformes (7.7%). Consistent to the study of Pacha et al (1988), it was also reported that free-living and migratory waterfowl may serve as carriers of C. *jejuni* infection. In Africa (1988), the isolation of *Campylobacter* spp. from domestic animals and human patients in Kenya showed that healthy ducks (29.4%) had higher prevalence of Campylobacter than other species; healthy goats (6.3%), healthy cattle (5.8%), diarrhoeic humans (3.1%), and healthy sheep (2.0%), but they had lower prevalence of *Campylobacter* than diarrheic pigs (55. 1%), followed by healthy chicken (51.5%), diarrheic dogs (47.2%), and healthy pigs (44%). (Turkson et al., 1988). It was also declared that C. jejuni was more prevalent than C. coli in all animal species. In Poland (1989), 48.0% of the ducks were colonized with *Campylobacter* spp. (Kwiatek et al., 1990). Moreover, the most frequent species of *Campylobacter* was *C. jejuni* (63.5%), followed by C. lari (18.8%), and C. coli (17.7%) which were consistent to the study conducted in Kenya. Modified charcoal cefoperazone deoxycholate agar (mCCDA) medium was also known for more sensitivity and selectivity than *Campylobacter* brucella agar plate (Campy-BAP) medium (93% vs. 62%) for the isolation of Campylobacter spp. from poultry carcasses. In Portugal (1989-1990), the incidence of *Campylobacter* isolated from rectal swabs and stool specimens in ducks was 40.5% which was lower than chicken (60.2%) and swine (59.1%) but higher than cows (19.5%) and sheep (15.3%) (Cabrita et al., 1992).

The half of the fecal samples collected from free-living ducks in metropolitan parks in Ohio state in the US were *Campylobacter* positive (Fallacara et al., 2001). The authors also showed a high prevalence of resistance to multiple antibiotics in *C. jejuni* isolates from ducks. Contrastingly, a low multidrug resistance among *C. jejuni* isolated from raw poultry meat (including duck meat) was observed at retail level in Denmark (1999-2003) (Andersen et al., 2006). Moreover, most of isolates (80%) were fully sensitive to the antibiotics tested. However, a higher frequency of TET resistance was recorded among isolates from other poultry meat

(including duck meat) as compared with chicken meat (32% vs. 7.6%). In Taiwan (2000-2001), almost 44% of cloacal swabs in ducks from 100 duck farms were Campylobacter positive (Tsai and Hsiang, 2005). Furthermore, no colonization of *Campylobacter* was detected in ducks less than 3 weeks of age which was in contrast with the early study of Kasrazadeh and Genigeorgis (1987) in the US. The presence of maternal antibodies was likely attributed to the resistance in the initial period. In addition, the prevalence rate could be influenced by the specimen as well as methods used for the recovery of *Campylobacter* spp. As an example, the caecum was recognized as the major site for the colonization of C. jejuni in poultry as well as the use of enrichment and/or filtration methods could affect and possibly increase the chance of recovery of the organism. To confirm the efficiency of techniques for the isolation and identification of Campylobacter, a variety of techniques were used and compared in duck carcass and caecal content in the UK in 1997 (Ridsdale et al., 1998). The most effective methods for isolating *Campylobacter* spp. from duck carcass was identified as selective enrichment in *Campylobacter* enrichment broth, containing a cefoperazone, amphotericin, teiocoplanin supplement followed by plating onto mCCDA or plating onto non-selective blood agar after filtration with cellulose acetate filter. Contrarily, direct plating onto mCCDA was the most effective method for the recovery of *Campylobacter* from caecal content. In Germany, over seven years of studies (2001-2007) in 68 duck flocks, 59.6% of the Pekin duck flocks and 68.2% of the Muscovy duck flocks were Campylobacter positive (Weber et al., 2014). That study concluded that colonization of *Campylobacter* did not correlate with a specific age, which contradicted the previous studies about the infection of poultry at different age. In Sweden (2003), C. jejuni isolated from meats (e. g., duck) showed no resistance to gentamic (GEN) or erythromycin (ERY) as determined by the microdilution method (Lindmark et al., 2004). Campylobacter isolates in Sweden were also shown as genetically diverse and propagation of resistant clones played a key role in the increase of resistant *Campylobacter* strains. In the UK (2003-2005), duck meat (50.7%) exhibited lower contamination rate of *Campylobacter* as compared with chicken (60.9%) but higher than turkey (33.7%) and other poultry meats (34.2%) (Little et al., 2008). The microbial drug resistance of C. jejuni was also reported as low as 0 and 11% versus 45.5% for C. coli as determined by the disk diffusion method.

Poultry meats in the UK were shown to be more frequently contaminated with *Campylobacter* as compared with other foodborne pathogens such as *Salmonella*. In 2004 to 2005, the prevalence of *C. jejuni* in duck faeces was reported as high as 63.5% around drinking water sources (ponds and wells) in north-central Nigeria (Ofukwu et al., 2008). Moreover, the incidence rate was highest in the month of February (80.0 and 83.3 % for wells and ponds, respectively) and lowest in October (wells, 40%) and March (ponds, 50%). From the study in Nigeria, it could be derived that the season variability could influence the prevalence rate of *Campylobacter*, which further studies are needed in this matter.

In Thailand (2004-2005), the identification of Cam*pylobacter* in ducks was conducted by two different detection methods (standard culture method and multiplex polymerase chain reaction) (Boonmar et al., 2007). The prevalence of *Campylobacter* spp. in duck isolates was higher for PCR (31%) as compared with standard culture method (20%). Using PCR over conventional methods was recommended for the detection and identification of *Campylobacter* spp. In Tanzania (2005), the prevalence of *Campylobacter* isolates from free range domestic ducks was reported as 80% (Nonga and Muhairwa, 2010). The results obtained were higher than those reported previously in Africa (Nigeria, 63.5% and Kenya, 29.4%). The isolation rate of C. jejuni (81.9%) was also reported higher than that of C. coli (18%). Adult ducks (91.3%) showed higher infection rate than that of ducklings (68.2%). Nonga and Muhairwa (2010)speculated that the high infection rates in adult ducks was because of longevity and feeding behavior on wet feeds which increased the chances of infection. The results of antibiotic susceptibility testing revealed that none of the C. jejuni isolates from adult ducks and duckling were resistant to Streptomycin (STR), Nitrofurantoin (NIT) and Amikacin (AMK). The highest prevalence of antimicrobial resistance of C. *jejuni* was reported for ampicillin (AMP, 58 and 24%) and TET (48 and 26%) for adult ducks and duckling, respectively. Overall, C. jejuni isolates from adult ducks showed higher rates of resistance to most antibiotics than did duckling isolates. It was suggested that the longer raising period of adult ducks (more than 6 months) could expose them to different types of antibiotics for a longer period and this may have accounted for the higher rate of resistant *Campylobacter* starins. The prevalence of *Campylobacter* spp. on farm, after transport, and at processing in poultry market in California showed that *Campylobacter*-positive birds (duck) were lower on the final products than on-farm level or during processing (McCrea et al., 2006). In a similar study in Bulgaria (2008), the presence of *Campylobacter* spp. during processing from live bird to prepackaged carcasses of Moulard ducks showed low percentage of *Campylobacter* detection in fatty liver which could be related to the increase of fat content in the liver and further unsuitable conditions for bacteria to grow (Stoyanchev et al., 2009). In 2008-2010, Campylobacter spp. was detected in 39.2% (90% C. jejuni and 10% C. coli) of duck intestinal content samples from wet markets in Tehran, Iran (Jamali et al., 2015). The results of antimicrobial susceptibility testing showed high levels of multidrug resistance among the *Campylobacter* spp. isolates. Moreover, CIP (87%), NAL (75%) and TET (75.4%) had the highest and GEN (0%), Neomycin (NEO, 3.5%), STR (3.5%), ERY (4.4%) and Chloramphenicol (CHL, 4.4%) had the lowest resistance rate among Campylobacter spp. as determined by Kirby-Bauer disc diffusion method. In New Zealand (2008-2009), faeco-prevalence of C. jejuni in urban wild birds and pets showed a higher

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
1985-1986	US	Slaughterhouse. Ceca, heart, liver, gizzard, (n=50); neck skin, scalding water over- flow, feather picker drip water, water left after wax treatment, chiller water overflow (n=30)	Isolation: direct plating Identifica- tion: biochemical procedures	C. jejuni: Ceca 50 (100%), heart 3 (6%), liver 17 (34%), gizzard 10 (20%), neck skin 2 (6.7%), scalding water overflow 2 (6.7%), feather picker drip water 29 (96.7%), water left after wax treatment 6 (20%), chiller water overflow 8 (26.7%).	-	-	Isolation rates of <i>C. jejuni</i> from the organs (liver, gizzard, heart) and neck skins were lower than the average rates reported for chicken and turkey processing plants.	Kasrazadehand Genigeorgis (1987)
1985	US (Washington)	Migratory ducks from the Pacific North American Flyway in central4 Washington. Fecal samples (n=113)	Isolation : enrichment method	Campylobacter spp.: 82 (73%)	-	-	The high frequency of isola- tion in the migratory ducks indicated that these bird populations may play a role in the dissemination of the bacterium.	Pacha etal. (1988)
1987-1988	US (Louisiana)	Samples from ducks killed by hunters in wetland. Cloacal swabs (n=89)	Isolation: selective enrichment Identifica- tion: microscopic mor- phology using basic fuchsin stain, motility under dark-field illu- mination, NAL sensi- tivity, and hippurate hydrolysis	C. jejuni: 5 (5.6%)	-	-	Free-living and migratory waterfowl could be a car- rier of <i>Campylobacter</i> .	Yogasundram etal. (1989)
1988	Kenya (Nairobi)	Samples from slaughterhouses, farms, and private homes. Rectal swabs (n=85)	Isolation: direct plating, Identifi- cation: biochemical tests	Campylobacter spp.: 25 (29.4%), C. jejuni: 17 (68.0%), C. coli: 6 (24.0%)	-	-	Ducks may play a signifi- cant role in the epidemiol- ogy of human campylobacteriosis by serving as reservoirs.	Turkson etal. (1988)
1989	Poland	Slaughterhouse. Car- cass (n=200)	Isolation:d irect plating	Campylobacter spp.: 96 (48.0%), C. jejuni (63.5%), C. lari (18.8%), C. coli (17.7%)	-	-	Ducks had a high preva- lence of <i>Campylobacter</i> at the slaughterhouse level.	Kwiatek etal. (1990)
1989-1990	Portugal (Northeast Portugal)	Food-producing animals and wild ani- mals. Rectal swabs and stool specimens	Isolation: selective medium Identifica- tion: morphology of the colonies, positive oxidase reaction and a microscopic aspect of Gram-negative spiral rods	<i>Campylobacter</i> spp.: 21 (40.5%)	-	-	The prevalence of Campylo- bacter infection in ducks (40.5%) was higher than other species such as cows (19.5%), sheep (15.3%) but lower than chicken (60.2%) in Portugal.	Cabrita etal. (1992)

 Table 1. Prevalence and antimicrobial resistance of Campylobacter spp. isolates in duck (since1985).

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
1997	UK	Slaughterhouse. Carcass (n=10), Caecal content (n=8)	Isolation: direct plating onto mCCDA and selective enrichment in enrichment broth Detection: API Campy test followed by SDS-PAGE and biochemical characterization	Carcass: direct plating: C. coli (1/10), C. jejuni (1/10); Selec- tive enrichment: C. coli (6/10), C. jejuni (0/10) Caecal con- tent: direct plating: C. coli (4/8), C. jejuni (3/8); selective enrich- ment: C. coli (1/8), C. jejuni (2/8)	-	-	The most effective method for isolating <i>Campylobac-</i> <i>ter</i> from carcasses was selective enrichment in <i>Campylobacter</i> enrich- ment broth, while direct plating onto mCCDA was the most effective method for isolation of <i>Campylo-</i> <i>bacter</i> from caecal content.	Ridsdale etal. (1998)
1998–1999	US	Free-living ducks in metropolitan parks in Ohio. Fecal samples (n=82)	Isolation: direct plating onto Campy CVA agar Identification: biochemical tests and <i>Campylobac-</i> <i>ter</i> latex agglutina- tion test	C. jejuni: 33 (40.2%)	Disk diffusion method	STR (38%), PEN (85.9%), LIN (89.1%), GEN (5.4%), NEO (33.7%), TMP (88%), VAN (76.1%), OXY (7.6%), ERY (23.9%), TOB (9.8%), AMK (19.6%),SXT (66.3%), NET (8.7%), BAC (94.6%), FEP (21.7%), CFZ (83.7%), CEF (88%), TZP (54.3%), PIP (58.7%), SAM (17.4%)	Free-living ducks can serve as potential reservoirs for <i>C. jejuni</i> infection in human.	Fallacara et al. (2001)
1999–2003	Denmark	Retail outlets and wholes ale meat (n = 100)	Identification: hippurate hydrolysis and indoxyl acetate tests	-	Disk diffusion method	C. jejuni: TET (32%), GEN (0%), STR (7%), CIP (12%), NAL (12%).	A high prevalence of TET resistance among <i>C. jejuni</i> isolated from raw duck meat at the retail level was reported.	Andersen etal. (2006)
2000-2001	Taiwan	Duck farm (n=100), fae- cal samples (n=2,400)	Isolation: subculture on Preston agar Identifi- cation:b iochemical procedures	$\begin{array}{l} Campylobacter \mbox{ spp.:}\\ 92/100 \ (92\%) \mbox{ for duck}\\ farm \mbox{ and } 1,045/2,400\\ (43.5\%) \mbox{ for faecal}\\ samples \end{array}$	Disk diffusion method and E-test	Disk diffusion method: AMX (84.4%), APR (7.6%), LEX (27.2%), CIP (17.4%), CST (22.8%), DOX (0%), FLO (88%), NAL (85.9%), TET (84.8%) E-test: AZM (54%), CHL (27.2%), CLI (64.1%), ERY (65.2%)	High prevalence of multi- drug resistance was observed in this study.	Tsaiand Hsiang (2005)
2001-2007	Germany (Hannover)	Duck flocks (n=68): Pekin duck (n=46) and Muscovy duck (n=22)	Isolation: direct plating Identification: mor- phology and motility, Gram-stain, catalase and oxidase reaction, and no growth under aerobic and anaerobic conditions	Campylobacter spp.: 59.6% in Pekin duck , 68.2% in Muscovy duck; Summer sea- son: Pekin duck (80%), Muscovy duck (70%); Winter season: Pekin duck (60%), Muscovy duck (63%)	-	-	Campylobacter could be introduced into a duck flock by the presence of vectors as well as environ- mental and seasonal factors.	Weber etal. (2014)

Table 1 (Continued)

(continued on next page)

СЛ

Table 1	(Continued)
---------	-------------

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2003	Sweden	Imported meat (n=1)	Isolation and identifica- tion: selective enrich- ment and PCR methods, respectively	-	Broth microdilution method	None of the tested iso- lates was resistant to GEN or ERY.	Low frequency of antibiotic resistance was revealed.	Lindmark etal. (2004)
2003–2005	UK	Retail raw meat (n=77): Whole bird (n=7) and Portions (n=70)	Isolation: s elective enrichment in Boltonb roth	Campylobacter spp.: 2/ 7 (28.6%) for whole bird and 37/70 (52.9%) for portions	Disk diffusion method	C. jejuni: AMP (66.7%), CHL (0%), TET (77.8%), FZD (0%), GEN (0%), KAN (0%), NEO (0%), NAL (0%), CIP (0%), RAY (0%); C. coli: AMP (45.5%), CHL (0%), TET (54.6%), FZD (0%), GEN (0%), KAN (9%), NEO (9%), NAL (54.6%), CIP (54.6%), CIP	The overall rate of <i>Campylobacter</i> contamination (50.7%) in fresh chicken meat in the present study was higher than that previously reported in the UK.	Little etal. (2008)
2004-2005	Nigeria (Makurdi)	Duck feces (n=192)	Identification: oxidase and catalase produc- tion, and hippurate hydrolysis test	C. jejuni: 122 (63.5%)	-	-	The prevalence of <i>C. jejuni</i> in duck feces was quite high in Makurdi, Nigeria. Contamination of duck feces in water could cause <i>Campylobacter</i> infection in human.	Ofukwu etal. (2008)
2004-2005	Thailand (Nakhon Pathom)	Duck meat and intestine from a slaughterhouse (n=140)	Isolation and i dentification: standard culture method (SCM) and multiplex PCR method	C. jejuni (77.3%) and C. coli (22.7%)	-	-	High prevalence of <i>Campylobacter</i> contamination in duck in Thailand.	Boonmar etal. (2007)
2005	Tanzania (Morogoro)	Free-range duck flocks (n=15), intestinal content (n=90)	Isolation:e nrichment in Preston broth Identification: morphol- ogy and biochemical procedures	Campylobacter spp.: 72/ 90 (80.%); C. jejuni: 59/72 (81.9%) and C. coli: 13/72 (18.1)	Disk diffusion method	C. jejuni: STR (0%), NIT (0%), AMK (0%), NOR (10%), CIP (10%), AMX (20%), CLO (22%), GEN (24%), ERY (42%), CXM (48%), TET (74%), AMP (82%)	A high prevalence of ther- mophilic <i>Campylobacter</i> particularly <i>C. jejuni</i> in ducks. The high rate of antimicrobial resistance recorded may result from the indiscriminate use of antibiotics in animals and may pose a danger to pub- lic health.	Nongaand Muhairwa (2010)
2005	US (California)	Three flocks from two farms in California niche-market poultry	Identification: colony morphology, followed by oxidase and cata- lase tests and gram stain.	Cloacal swab: on-farm (60%), post-transport (33%); Carcass swab: post-picker (26%), post-wax (7%), post- evisceration (14%),p re-packaging (3%)	-	-	The prevalence of <i>Campylobacter</i> -positive birds were lower on the final product than on- farm or during processing.	McCrea etal. (2006)

JAFARI ET AL.

Table 1 (Continued)
Table I	Continucu

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2008	Bulgaria	Moulard ducks flocks (n=4) during slaugh- ter process (n=160)	Isolation: selective agar media Identification: oxidase and catalase produc- tion, hippurate and indoxyl acetate hydro- lysis tests, and API Campy	Campylobacter spp.: caecal content (72.5%), skin surface (12.5%), breast meat with skin (7.5%) , liver (12.5%); C. jejuni: caecal content (72.4%), skin surface (100%), breast meat with skin (100%) , liver (100%); C. coli: caecal content (27.6%) , liver (n/a)	-	-	The results showed a higher prevalence rate in the intestinal tract than other samples during process- ing. <i>C. jejuni</i> was the most commonly found species (81%), followed by <i>C. coli</i> (19%).	Stoyanchev etal. (2009)
2008 –2010) Iran (Tehran)	Wet market. Intestinal content (n=291)	Isolation: Preston agar as selective medium Identification: API Campy	Campylobacter spp.: 114/291 (39.2%); C. jejuni: 102/114 (89.5%) and C. coli: 12/114 (10.5%)	Disk diffusion method	C. jejuni: AMX (32.4%), AMP (12.7%), CHL (4.9%), CIP (89.2%), CST (21.6%), ERY (3.9%), GEN (0%), NEO (2.9%), STR (2.9%), TET (77.5%), NAL (72.5%); C. coli: AMX (16.7%), AMP (8.3%), CHL (0%), CIP (66.7%), CST (41.7%), ERY (8.3%), GEN (0%), NEO (8.3%), STR (8.3%), TET (58.3%), NAL (91.7%)	The presence of <i>Campylo-bacter</i> spp. as well as the detection of multidrug-resistant isolates in this study indicated that consuming of duck meat might be a potential campylobacteriosis risk in Iran.	Jamali etal. (2015)
2008–2009	New Zealand	The Esplanade, The Hokowhitu, Memorial park, Massey Univer- sity, The Square. Fecal sam- ples (n=906)	Isolation: direct plating Identifica- tion: PCR using 16s rRNA gene primers	Campylobacter spp.: The Esplanade (38%), The Hokowhitu (20%), Memorial park (32%), Massey Univer- sity (22%), The Square (34%); C. jejuni: The Esplanade (25%), The Hokow- hitu (17%), Memorial park (22%), Massey University (15%), The Square (24%)	-	-	Fecal contamination in environment is an impor- tant public health risk, particularly to small chil- dren who use the sam- pling sites for play.	Mohan(2015)

(continued on next page)

 ${\bf Table 1} \ ({\it Continued})$

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2008	Northern Ireland (Belfast)	Retail sale (supermar- kets and butcher shops) (n=17)	Isolation: selective enrichment in Bolton broth Identification: motility, Gram stain, presence of catalase and oxidase, hippurate hydrolysis, and resis- tance to NAL and cenhalothin	Campylobacter spp. (100%)	-	-	Most retail poultry on sale in Northern Ireland may have the potential to cause human illness by <i>Campylobacter</i> infection if not handled appropriately.	Moran etal. (2009)
2009-2010	Iran (Gilan)	Retail outlets. Fresh raw meat (n=110)	Isolation:selective enrichment in Preston broth Identification: biochemical tests and PCR	Campylobacter spp.: 39/ 110 (35.5%)	Disk diffusion method	AMX (0%), AMP (9.6%), CHL (0%), CIP (40.4%), ENR (13.5%), ERY (0%), GEN (0%), NAL (30.8%), STR (1.9%), TET (32.7%)	The results showed that duck meat and goose meat from retail shops in Gilan province could be reser- voirs of <i>Campylobacter</i> .	Rahimi etal. (2011)
2009-2011	Malaysia (Penang)	Commercial duck farms. Cloacal swabs (n=75), Wet market floor swabs (n=15), Intesti- nal content (n=102), Wash water (n=38), Cecal content (n=52), Intestinal content (n=50)	Isolation: enrichment followed by direct plating. Identification: Gram stain, oxidase and catalase tests, inability to grow aero- bically at 25°C, glu- cose utilization test, Dry spot <i>Campylobac-</i> <i>ter</i> test, hippurate hydrolysis test and susceptibility to NAL and cephalothin Confirmation: multiplex PCR	Clocal swabs: C. jejuni (80%) and C. coli (20%); Wet market floor swabs: C. jejuni (33%) and C. coli (67%); Intestinal con- tent: C. jejuni (71%) and C. coli (29%); Wash water: C. jejuni (50%) and C. coli (50%); Cecal contents: C. jejuni (86%) and C. coli (7%); Intesti- nal contents: C. jejuni (68%) and C. coli (32%)	Disk diffusion method	C. jejuni: AMP (81%), CTX (20%), CRO (51%), CEF (99%), CHL (7%), CIP (76%), ERY(1%), GEN (5%), NAL (84%), NOR (80%), STR (50%), SXT (96%), TET (96%); C. coli: AMP (21%), CTX (5%), CRO (68%), CEF (100%), CHL (0%), CIP (26%), ERY (0%), GEN (0%), NAL (100%), NOR (100%), STR (5%), SXT (95%), SXT	The occurrence of Campylo- bacter spp. in the duck and duck related samples ranged from 0% to 85%. Campylobacter spp. from ducks were resistant to many antibiotics tested.	Adzitey etal. (2012)
2009-2010	South Korea	Fecal samples (n = $2,164$)	Isolation: selective enrichment in Preston broth. Identification: multiplex PCR	Campylobacter spp.: 15.9% in Mandarin Duck, 11.9% in Mallard, 50% in Falcated Duck, and 12.7% in Spot-Billed Duck	MBinimum inhibi- tory concentration (MIC)	(26%),1E1 (100%) AZM (0%), ERY (0%), , GEN (0%), FLO (0%), TEL (0%), CLI (0%)	Moderate prevalence of <i>Campylobacter</i> was found in ducks, demonstrating that ducks might serve as significant reservoirs for <i>Campylobacter</i> pathogens.	Kwon etal. (2017)
2009-2011	Spain (Catalonia, Malaga, Galicia)	Free-range farm (n=29), Cloacal swab (n=30)	Isolation: selective enrichment in Bolton broth followed by direct plating Identi- fication: PCR	Campylobacter spp. (80%) and C. jejuni (76.7%)	Disk diffusion method	CIP (100%), ENR (12.5%), TET (100%), CHL (0%), ERY (0%), GEN (0%), NAL (100%)	Ducks reared outdoor con- stitute a reservoir for <i>Campylobacter</i> spp. in Spain.	Antillés Silva (2014)

 ${\bf Table 1} \ ({\it Continued})$

		Sampling site, sample						
	Country	type, and number of samples	Detection and/or	Prevalence shown by no. of positive samples	Susceptibility testing	Resistance		
Years	(Province/ state)	tested	identification methods	(%)	method	rates (%)	Conclusion	Citation
2010	South and North Korea (Gyeonggi, Chungcheongnam- do, North Jeolla, North Gyeongsang)	Slaughterhouse. Feces (n=430)	Isolation: selective enrichment Identification: Vitek II compact system and multiplex PCR	Campylobacter spp. (32.9%)	Broth microdilution method	AZM (18.8%), CIP (86.6%), ERY (0.9%), GEN (15.2%), TET (80.4%), FFN (3.6%), NAL (87.5%), CLI (7.1%)	High resistance rates to flu- oroquinolones and TET among duck isolates in Korea.	Kim etal. (2013)
2010-2011	Thailand (Nakhon Pathom, Phra Nakhon Si Ayutthaya, and Suphanburi)	Duck laying flocks con- finement systems (n=7), free-grazing systems (n=7). Cloa- cal swabs (n=1,339) and environment (n=64)	Isolation:selective e nrichment in Preston broth Confirmation:m ultiplex PCR	C. jejuni: 0.3% in cloa- cal swab samples and 20.9% in environmen- tal samples	Broth microdilution method	Confinement system: MDR (16.5% in <i>Campylobacter</i> spp.); Free- grazing system: MDR (63.6% in <i>C. jejuni</i>)	The confinement system increased the risk of <i>Campylobacter</i> infection.	Saengthongpinit et al. (2015)
2010	UK	Wild and domesticated Mallard ducks. Fecal samples (n=60)	Isolation:selective enrichment	Campylobacter spp.: Wild ducks (9.2% -52.2%), Domesti- cated ducks (50.0% -52.2%)	-	-	Duck meat showed a high potential source of human <i>Campylobacter</i> infection.	Colles etal. (2011)
2011	Thailand (Kanchanaburi and Nakhon Pathom)	Laying duckling flocks (n=2). Cloacal swab samples (n=438), Environmental sam- ples e.g. soil, drinking water, and feed (n=39)	Isolation:s elective enrichment in Preston broth Confir- mation: multiplex PCR	Cloacal swab samples: C. jejuni (37.9%), C. coli (42.1%); Environ- mental samples: C. jejuni (50%), C. coli (30%)	-	-	The prevalence of <i>Campylobacter</i> spp. increased as the age increased. Ducks are normally infected with <i>Campylobacter</i> spp. possi- bly originated from envi- ronmental contamination.	Saengthongpinit etal. (2014)
2011	UK	Duck liver pâté $(n = 8)$	Isolation:selective e nrichment in Bolton broth	$\begin{array}{c} Campylobacter{\rm spp.:}6/8\\(75\%);C.jejuni:5/6\\(83.3\%){\rm and}C.coli:1/\\6(16.6\%)\end{array}$	-	-	The cooking process for the pâté was insufficient to kill bacteria inside the liver of a duck.	Abid et al. (2013)
2012	South Korea (Gyonggi, Chung- nam, Chungbuk, Chonnam, and Chonbuk)	Duck farms (n=58). Cloacal swabs (n=5 from each farm)	Isolation:s elective enrichment Identification: multiplex PCR	Campylobacter spp.: 56/ 58 (96.6%)	Agar dilution method	C. jejuni: AMP (64.4%), AZM (22.2%), CIP (86.7%), CLI (6.7%), ERY (11.1%), GEN (8.9%), NAL (84.4%), TET (84.4%); C. coli: AMP (100%), AZM (30%), CIP (80%), CLI (10%), ERY (30%), GEN (10%), NAL (80%), TET (90%)	High levels of contamina- tion by <i>Campylobacter</i> in South Korean duck farms and the high prevalence of resistance to fluoroquino- lones and tetracyclines indicated that South Korean ducks were a potentially important source of human infection.	Wei etal. (2014)
2012-2016	South Korea (Iksan)	Ducks and duck meat (n=155)	Identification: PCR	-	Agar dilution method	Campylobacter spp.: FOS (3.9%)	Fosfomycin may be a valu- able treatment option as the last resort for the treatment of campylobacteriosis.	Weiand Kang (2018)

 ${\bf Table 1} \ ({\it Continued})$

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2012	Vietnam (Dong Thap)	Duck farms (n = 20). Animal (fecal) and farm environment samples	Isolation:direct plating on selective agar Identification: hippurate hydrolysis test and PCR	Campylobacter spp.: 15/83 (18.1%) in ani- mal samples, $5/7$ (71.4%) in farm sam- ples; C. jejuni: 11/83 (13.3%) in animal samples, $5/7$ (71.4%) in farm samples; C. coli: 3/83 (3.6%) in animal samples, 2/7 (28.6%) in farm samples	Disk diffusion method	ERY (100%), SXT (99%), NAL (92%), OFX (92%), CIP (20.8%)	Campylobacteriosis was prevalent in animal pro- duction systems in Viet- nam. The intensification of animal production sys- tems and increased urban- ization could result in a further increase in the incidence of this infection.	Carrique-Mas etal. (2014)
2013-2014	China	Meat samples at retail shops (n=385)	Isolation: selective enrichment Confirmation: API Campy system	C. jejuni: 57/385 (14.8%)	Disk diffusion method	CIP (88.5%), NAL (88.5%). Most isolates were multidrug-resis- tant (data not shown).	Poultry meat might be a major source of <i>C. jejuni</i> in China.	Zhong etal. (2016)
2013-2015	Poland	Fresh duck meat $(n=54)$	Identification: polymerase chain reaction (PCR)	Campylobacter spp. (80%), C. jejuni (23%), C. coli (14%)	-	-	C. jejuni was more preva- lent than C. coli in duck meat in Poland.	Szosland-Fałtyn etal., 2018
2013	South Korea (Jeonlado)	Retail meat samples (n=106): Whole carcass samples (n=52) and Sliced samples (n=54)	Isolation:s elective enrichment Confirmation: PCR assay	$\begin{array}{l} Campylobacter \mbox{ spp.:}\\ 52/52\ (100\%) \mbox{ in whole}\\ carcass \mbox{ samples,}\\ 50/54\ (92.6\%) \mbox{ in sliced}\\ samples; \ C.\ jejuni:\\ 39/52\ (75\%) \mbox{ in whole}\\ carcass \mbox{ samples,}\\ 43/54\ (79.6\%) \mbox{ in sliced}\\ samples; \ C.\ coli:\\ 13/52\ (25\%) \mbox{ in whole}\\ carcass \mbox{ samples,}\\ 6/54\ (11.1\%) \mbox{ in sliced}\\ samples\end{array}$	Agar dilution method	C. jejuni: AMP (69.5%), AZM (0.1%), CIP (87.8%), CLI (1.2%), ERY (4.9%), GEN (13.4%), NAL (92.7%), TET (97.6%); C. coli: AMP (68.4%), AZM (0.2%), CIP (100%), CLI (0%), ERY (26.3%), GEN (21.1%), NAL (100%), TET (100%)	Results showed that retail duck meat had a high prevalence of <i>Campylo-</i> bacter and a high preva- lence of antimicrobial- resistant <i>Campylobacter</i> isolates. Retail duck meat was considered a potential risk of campylobacteriosis for humans living in South Korea.	Wei etal. (2016)
2014	Egypt	Fecal swabs from duck- ling (n=100)	Isolation: selective enrichment in Bolton broth Identification and con- firmation: multiplex PCR	C. jejuni (11%) and C. coli (88.9%)	-	-	The high rate of <i>Campylo-bacter</i> spp. in duckling could be results of poor sanitation and hygienic measures.	Shawky etal. (2015)
2014	India (Erode district)	Duck farms and Slaugh- terhouses. Farm sam- ples (feather, feed, feces) and slaughter- house samples (intes- tine, anus, liver, skin,	Isolation:d irect plating Identifica- tion:u rease, nitrate reduction, catalase and oxidase tests	C. jejuni: feather (41.6%), skin (28.5%), liver (33.3%), anus (45.4%), beak (30%), nail (25%), intestine (61.5%), faeces	Disk diffusion method	AMX (100%), ERY (85%), NAL (68%), NOR (63%), DOX (45%), GEN (43%), CHL (35%), LEX (30%), CIP (18%)	The study revealed that <i>C. jejuni</i> was prevalent in ducks at both farm and slaughterhouse levels. High resistance rates to multiple antibiotics were	Sivasankari etal. (2015)

Table 1 (Continued)

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2014-2015	Finland (Lahti and Seinäjoki)	nail, and beak) (n=89) Fecal droppings col- lected from Mallard ducks (n=108)	Identification: colony morphology Confirmation: PCR	(63.6%), feed (62.5%) <i>C. jejuni:</i> 82/108 (75.9%)	-	-	also observed among duck isolates in India. Hygienic measures during slaughter and meat han- dling warrant special	Kovanen etal. (2019)
2014-2015	Iran (Isfahan)	Duck eggs from different outlets. Eggshell (n=60), Egg white (n=60), Egg yolk (n=60)	Isolation:s elective enrichment in Preston broth Identi- fication: biochemical procedures Confirmation:m ultiplex PCR	Campylobacter spp.: Eggshell (5%), Egg white (1.7%), Egg yolk (1.7%)	Disk diffusion method	NAL (47.1%), CST (29.4%), NEO (8.8%), SPT (2.9%), CIP (53%), ERY (5.9%), TET (73.5%), STR (8.8%), AMP (14.7%), AMX (14.7%), GEN (0%), CHL (5.9%), ENR (41.2%)	Duck eggs collected from different outlets in Isfahan province were highly con- taminated with multiple antibiotic-resistant ther- mophilic <i>Campylobacter</i> species. The primary dis- infection of egg surface with disinfectants and separation of contami- nated eggs from a healthy one can reduce the risk of human campylobacteriosis	Jonaidi-Jafari etal. (2016)
2014-2015	South Korea	Eighteen wet markets. Carcass samples (n=154)	Isolation:s elective enrichment in Bolton broth Identifi- cation: PCR	Campylobacter spp.: 15/80 (18.8%) in Sum- mer and 15/74 (20.3%) in Winter	Disk diffusion method	AMK (44.4%), ERY (4.4%), TET (71.1%), CIP (91.1%), ENR (15.6%), NAL (93.3%), CHL (0%)	Although the prevalence of <i>Campylobacter</i> in South Korea was relatively low compared to that in other countries, antibiotic resis- tance rates were quite high and similar to those found in other countries	Lee etal. (2017)
2014-2015	South Korea	Six slaughterhouses. Carcass samples (n=120)	Isolation: with enrich- ment or without enrichment Confirma- tion: colony PCR	Campylobacter spp.: 48/120 (40.0%) with enrichment and 91/ 120 (75.8%) without enrichment; 55/60 (91.7%) in Sum- mer and 38/60 (63.3%) in Winter	Agar dilution method	C. jejuni: CIP (100%), ENR (93%), NAL (99%), TET (72.7%), ERY (0%), CHL (1.1%); C. coli: CIP (86%), ENR (79.1%), NAL (83.7%), TET (72.1%), ERY (9.3%), CHL (0%)	Most isolates were resistant to ciprofloxacin, enroflox- acin, nalidixic acid, and tetracycline, but only a few isolates were resistant to erythromycin and chloramphenicol.	Chon etal. (2018)
2015	Cambodia (Kam- pong Cham, Bat- tambang and Kampot)	Rural households (n=10). Faecal sam- ples (n=101)	Isolation:selective e nrichment in Bolton broth Confirmation: catalase and oxidase tests and multiplex PCR	Campylobacter spp. (24%), C. jejuni (19%) and C. coli (8%)	-	-	Results suggested that low prevalence of <i>Campylo-</i> <i>bacter</i> was found in ducks in Cambodia. Addition- ally, PCR should be used for detection of <i>Campylo-</i> <i>bacter</i> in livestock where samples need to be frozen and timely culture is not feasible.	Osbjer etal. (2016)
2015	Nigeria (Sokoto)			Campylobacter spp.: 9/ 16 (56.3%); C. coli: 7/	-	-	Transportation of poultry to live bird markets	Nwankwo etal. (2016)

Table 1 (Continued)

Years	Country (Province/ state)	Sampling site, sample type, and number of samples tested	Detection and/or identification methods	Prevalence shown by no. of positive samples (%)	Susceptibility testing method	Resistance rates (%)	Conclusion	Citation
2015-2017	China	Live bird market in four agricultural zones. Cloacal swabs (n=16) Slaughterhouse (n=220)	Isolation:d irect plating Identifica- tion: phenotypic tests Isolation: selective enrichment Identifica- tion: biochemical assays and multiplex PCR	9 (77.8%) and <i>C. lari</i> : 2/9 (22.2%) <i>Campylobacter</i> spp.: fecal samples (79.3%), after defeathering (6.5%),	Broth microdilution method	TET (96.4%), CLI (92.3%), AZM (66.8%), ERY (47.3%), NAL (44.5%), CHL	together with humans in the same truck should be discouraged. High prevalence of antimi- crobial-resistant <i>Cam- pylobacter</i> spp. in duck samples collected from the slaughterhouse in China.	Han etal. (2019)
2016	Nigeria (Kebbi)	Poultry markets. Cloa- cal swabs (n=32)	Isolation: selective enrichment Identifica- tion: oxidase test, hip- purate hydrolysis test, catalase test, hydro- gen sulfide production test and sensitivity to cephalothin and nali- dixic acid	atter evisceration (18.7%), raw meat (1.5%) <i>Campylobacter</i> spp.: 17/ 32 (53.1%); <i>C. jejuni:</i> 1/17 (5.9%), <i>C. coli:</i> 11/17 (64.7%), and <i>C.</i> <i>lari:</i> 5/17 (29.4%)	-	(42.7%), GEN (41.4%), CIP (37.3%)	C. coli were more prevalent than C. jejuni and C. lari. Ade- quate environmental sani- tation and strict hygiene measures should be imple- mented in the backyard poultry houses, slaughter slabs, and processing units	Abba Maiha etal. (2017)
2016-2017	South Korea	Whole carcasses col- lected in winter (n=28) and summer (n=33)	Isolation: selective enrichment in Bolton broth Identification: colony morphology	Campylobacterspp.: 21/33 (63.6%) in Sum- mer and 17/28 (60.7%) in Winter	Broth microdilution method	5AZM (0%), ERY (0%), TEL (0%), CIP (97.8%), NAL (97.8%), TET (57.8%)	in the state. <i>C. jejuni</i> strains from retail duck meat were highly resistant to fluoroquino- lones and tetracycline. Retail duck meat was an important vehicle that could potentially transmit <i>C. jejuni</i> to humans in South Korea	Kim etal. (2019)
2017	Thailand	Three slaughterhouses (n=150)	Isolation : direct plating and selective enrich- ment Confirmation: multiplex PCR	Campylobacter spp.: cloacal swab sample after bleeding (2%), carcass rinse after evis- ceration (30%), and carcass rinse after chilling process (44%)	-	-	The predominant Campylo- bacter strain found in Thailand was C. jejuni. Cross-contamination could result in an increase of Campylobacter preva- lence during the duck slaughtering process.	Chanawanit etal. 2018

C. jejuni (Campylobacter jejuni), C. coli (Campylobacter coli).

Resistance rate to AMK, amikacin; AMP, ampicillin; AMX, amoxicillin; APR, apramycin; AZM, azithromycin; BAC, bacitracin; CEF, ceftazidime;; CFZ, cefazolin; CHL, chloramphenicol; CIP, ciprofloxacin; CLI, clindamycin; CLO, cloxacillin; CRO, ceftriaxone; CST, colistin; CTX, cefotaxime; CXM, cefuroxime; DOX, doxycycline; ENR, enrofloxacin; ERY, erythromycin; FEP, cefepime; FLO, florphenicol; FOS, fosfomycin; FQ, fluoroquinolones; FZD, furazolidone; GEN, gentamicin; KAN, kanamycin; LEX, levofloxacin; LIN, lincomycin; NAL, nalidixic acid; NEO, neomycin; NET, netilmicin; NIT, nitrofurantoin; NOR, norfloxacin; OFX, ofloxacin; OXY, oxytetracycline; PEN, penicillin; PIP, Piperacillin; SAM, ampicillin/sulbactam; SPT, spectinomycin; STR, streptomycin; SXT, Trimethoprim/sulfamethoxazole; TEL, telithromycin; TET, tetracycline; TOB, tobramycin; TZP, pipercillin/tazobactam; VAN, vancomycin. prevalence rate for duck isolates (20%) versus other species such as starlings (18%), Canadian goose (9%), dogs (5%) and cats (7%) (Mohan, 2015). The *C. jejuni* was also more prevalent during warmer months of the year in ducks. Using genotyping techniques such as multilocus sequence typing (MLST) and *flaA*-SVR typing were suggested for providing more insights into the role of different animal species as vectors in the transmission of C. *jejuni* to humans. In Northern Ireland (2008), a 1-year survey of the prevalence of *Campylobacter* spp. in fresh, retail poultry products showed that 100% of duck samples (n = 17) were *Campylobacter* positive by the selective enrichment method (Moran et al., 2009). It was also found that different incubation temperature of the enrichment medium, Bolton broth, at 42°C rather than 37°C, did not affect the range of *Campylobacter* spp. found.

In Iran (2009-2010), the prevalence of Campylobacter spp. isolated from raw duck meat was 35.5% (88.5% for C. *jejuni* and 11.5% for C. coli) which was higher than goose meat (26.5%) (Rahimi et al., 2011). Different methods of identification (conventional bacteriological method vs. PCR assay) did not also affect identification rates. Consistent with the previous studies, the highest incidence of *Campylobacter* spp. occurred in warmer seasons of the year; summer (48.6%) and spring (41.7%). The results of antibiotic susceptibility testing by Kirby-Bauer disc diffusion showed high resistance rates to CIP (40.4%), followed by TET (32.7%), and NAL (30.8%). No resistant rate was also reported for amoxicillin (AMX), CHL, ERY, and GEN. In Malaysia (2009-2011), the overall prevalence of *Campylobacter* species isolated from different parts of ducks, their rearing and processing environments (e.g., soil, drinking water, etc.) was estimated as 15.4%. In that study, duck isolates (e. g., intestinal and caecal contents) had higher prevalence rate than those of environment samples which could be due to the fact that *Campylobacter* spp. survive less in feed, soil, surfaces exposed to high oxygen tension, water and sunlight and dry environments. Adzitey et al. (2012) reported that poultry and poultry products were major sources of Campylobacter infection in humans (Adzitey et al., 2012). It was also shown that the method of isolation (enrichment vs. direct plating) significantly affected the isolation rate. The results of antimicrobial susceptibility testing as determined by disk diffusion method showed that both C. jejuni and C. coli were mostly susceptible to ERY and GEN which could be used for treating patients in Malaysia. Adzitey et al. (2012) also showed that random amplification of polymorphic deoxyribonucleic acid (RAPD) was a reliable method for typing *Campylobacter* isolates with high discriminatory power. In that study, RAPD analysis of C. *jejuni* and *C. coli* produced 58 and 12 distinct band patterns, respectively. Moreover, Campylobacter strains that belong to the same serotype were not always similar genetically and that most C. jejuni/C. coli serotypes comprised heterogeneous genotypes.

In South Korea (2009-2010), migratory birds or wild birds (e.g. falcated duck) showed higher rates of

Campylobacter infection thanindigenous birds (Kwon et al., 2017). In line with previous studies, C. *jejuni* (79.3%) in South Korea study was the most prevalent Campylobacter species, followed by C. coli (9.3%)and C. lari (0.4%). All Campylobacter spp. isolates were also susceptible to Azithromycin (AZM), ERY, GEN, Telithromycin (TEL), and Clindamycin (CLI). The differences in the prevalence of *Campylobacter* in different studies could be because of detection method as well as habitat, diet and health status of the birds. A study in Spain (2009-2010) found that poultry reared outdoor were important reservoir of Campulobacter (Antillés Silva, 2014). The high genetic diversity of *Campylobacter* observed in wild birds as determined by Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and Pulsed-field gel electrophoresis (PFGE) was attributed to the infections by multiple sources. Those results were attributed to the possibility of animal contact to the external environment. Almost 95% of *Campylobacter* isolates from poultry (duck) were resistant to at least one antimicrobial; the main resistances were to quinolones and fluoroquinolones, followed by TET. In Korea (2010), the prevalence and antimicrobial resistance patterns of C. jejuni from duck feces from slaughterhouse were reported (Kim et al., 2013). From 430 duck feces, almost 33% were *C. jejuni* positive. The highest resistance rate of C. *jejuni* was reported for NAL (87.5%), CIP (86.6%), and TET (80.4%) as well as low or moderate resistance rates for AZM (18.8%), ERY (0.9%), GEN (15.2%), Florfenicol (FLO, 3.6%), and CLI (7.1%). In Thailand (2010-2011), the prevalence of Cam*pylobacter* species isolated from cloacal swabs of laying duck flocks in confinement and free-grazing systems showed that confinement system (13.8%) had higher prevalence rate as compared with the free-grazing system (0.3%) (Saengthongpinit et al., 2015). In the confinement system, ducks are living in the same and limited area, which increased the chance of direct defecation to water source for drinking and dispersal of *Campylobacter* to other ducks. Therefore, the opportunity to acquire bacterial infection, including Cam*pylobacter*, in the confinement system is higher than the free-grazing system. Although the prevalence of Campylobacter was different between confinement and freegrazing systems, C. jejuni (68-81%) and C. coli (50-87.5%) isolated from both systems were similarly resistant to STR, NAL, CIP, and Levofloxacin (LEX).

The prevalence of *Campylobacter* populations among wild (9-52%) and domesticated (50.2-52 %) Mallard ducks were shown in the UK (Colles et al., 2011). Furthermore, almost 93% of *Campylobacter* isolates from farmed ducks had sequence types (STs) commonly associated with human disease, in contrast to just one isolate from the wild ducks. It was also concluded that domestic "niche" as well as host type may affect the distribution of *Campylobacter*; therefore, husbandry practices associated with intensive agriculture may be involved in generating a reservoir of human infection. In 2011, a longitudinal study of *Campylobacter* spp. from two laying duckling flocks in the central region of Thailand

 Table 2. Genetic diversity of Campylobacter spp. in duck-related isolates.

Citation	Samples tested	Genotyping method	Results	Conclusion
Adzitey et al. (2012)	Large intestines and ceca samples	Random Amplification of Polymorphic Deoxyribonucleic Acid (RAPD)	 C. jejuni (n = 94) produced 58 RAPD types and C. coli (n = 19) produced 12 RAPD types. High heterogeneity among the C. lari isolates. The determination of similar and different clones among Campylobacter spp. was confirmed by cluster analysis. 	The RAPD could provide a rapid and relatively reliable method for typing <i>Campylobacter</i> isolates with good discriminatory power.
Carrique-Mas et al. (2014)	Fresh fecal samples	Multilocus sequence typing (MLST)	C. jejuni demonstrated a higher level of genetic diversity than C. coli in Vietnam. There was a strong association between the animal species of isolation and the clonal complex of Campylobacter.	Multilocus sequence typing technique showed a high level of genetic diversity within <i>C. jejuni</i> , and predicted <i>C. coli</i> inter-species transmission
Chon et al. (2018)	Carcass samples	rep-PCR fingerprinting	No genetic relatedness among strains from the same slaughterhouse. All strains had less than 95% similarity according to the rep-PCR banding patterns.	Results indicated the diversity of <i>Campylobacter</i> isolates present in duck samples from slaughterhouses in South Korea.
Colles et al. (2011)	Fecal samples from farmed and wild ducks	Multilocus sequence typing (MLST)	Forty-seven sequence types (STs) and 10 STs were found among isolates from wild ducks and farmed ducks, respectively. The average diversity index for f armed ducks ranged 0.15–0.70 and for wild ducks ranged 0.91–0.96. One ST, ST-45, was shared between the two sources, accounting for 0.9% of wild duck isolates and 5% of farmed duck isolates.	The results showed that domestic "niche," as well as host type, may affect the distribution of <i>Campylobacter</i> .
Han et al. (2019)	Samples from slaughterhouse	Polymerase Chain Reaction (PCR)	The prevalence of virulence genes among Campylobacter isolates from ducks in China is as follows: flaA (77.3%), cadF (100.0%), cdtA (60.0%), cdtB (92.3%), cdtC (54.1%), cheY (92.7%), virB11 (7.7%), iamA (71.8%), ciaB (42.7%).	The prevalence of <i>Campylobacter</i> virulence genes and their relationship with clinical severity in humans and the expression of virulence factors should be further investigated.
Kim et al. (2019)	Duck meat samples	Multilocus sequence typing (MLST)	C. jejuni strains belonging to clonal complex CC-21 and CC-45 were dominant on duck meats.	The genetic background of certain <i>C. jejuni</i> isolates from ducks may be different from that of chicken isolates.
Kovanen et al. (2019)	Fecal samples	Multilocus sequence typing (MLST)	Mallard duck ST-2314 isolates represented bacterial clones that were genetically highly similar to human isolates	C. jejuni genotypes highly similar to human isolates were detected
Lee et al. (2017)	Carcass samples from wet markets	DiversiLab System	More than 95% similarity between 84.4% of the isolates was observed. T hree cdt genes ($cdtA$, $cdtB$, and $cdtC$) were present in 71.1% of Campylobacter isolates.	No geographic genetic diversity was detected and a high proportion of <i>cdt</i> genes were present in <i>Campylobacter</i> isolates. Based on the findings , ducks sold in different wet markets

Table 2 (Continued)

Citation	Samples tested	Genotyping method	Results	Conclusion
Antillés Silva (2014)	Fecal samples	Enterobacterial repetitive intergenic consensus (ERIC)- PCR	Isolates from the same bird had the same ERIC-PCR profile. Higher diversity was detected in <i>C. coli</i> compared to <i>C. jejuni</i> .	in Korea may be distributed from only a few slaughterhouses. The study emphasized the importance of practicing good hygiene practices to avoid transmission of zoonotic bacteria to humana
Sivasankari et al. (2015)	Duck-related samples (e.g., intestine, feathers, nails, anus, liver, etc.)	Polymerase Chain Reaction (PCR)	Most multidrug-resistant $C. jejuni$ isolates had $cadF$ and v $irB11$ genes which were responsible for adhesion, colonization, and invasion.	Preventive steps should be taken to control the entry of <i>Campylobacter</i> into duck farms and slaughterhouses.
Wei and Kang (2018)	Duck meat samples	Pulsed-field gel electrophoresis (PFGE)	High genetic diversity among fosfomycin-resistant <i>Campylobacter</i> strains was revealed.	Fosfomycin resistance mechanism in <i>Campylobacter</i> should be further investigated
Wei et al. (2014)	Cloacals wab samples	Multilocus sequence typing (MLST)	Twenty-eight different STs were identified among <i>Campylobacter</i> isolates. Three predominant STs	MLST is an important tool for elucidating the diversity and transmission routes of <i>Campylobacter</i> .
			(ST-21, ST-45 and ST-828) accounted for 60% of all isolates.	The overlapped STs between duck and human isolates indicated that ducks could serve as potential sources of human infection.

revealed an overall isolation rate as 27% (56.6% C. jejuni and 43.4% C. coli) (Saengthongpinit et al., 2014). Moreover, the prevalence of *Campylobacter* spp. increased by the age increase (1 to 30-day-old). It was also concluded that the source of *Campylobacter* infection in ducks was normally from environmental contamination. Since *Campylobacter* spp. could contaminate and be found in duck liver, the correct cooking process for the pâté was emphasized to kill bacteria inside the liver (Abid et al., 2013). In 2012, the occurrence of *Campylobacter* spp. in 58 duck farms in South Korea was investigated (Wei et al., 2014). Almost 97% of the samples were Campylobacter positive. The antimicrobial susceptibilities of C. jejuni (n = 46) and C. coli (n = 9) strains as determined by the agar dilution method indicated that resistance to CIP was the most common (87.0%) for C. *jejuni*, followed by TET (84.8%) and NAL (84.8%). For C. coli strains, 100% were resistant to AMP and 88.9%were resistant to TET. However, a lower resistance rate was reported for macrolides (AZM and ERY). Moreover, the majority of *Campylobacter* isolates (91.5%) in this study were reported as multidrug-resistant strains. Molecular typing of *Campylobacter* by MLST showed that the most common clonal complexes in C. jejuni were the ST-21 and ST-45 complexes, while the ST-828 complex predominated in C. coli. It was also reported that some STs were associated with human infections with ducks as the only source. The results highlighted a high level of *Campylobacter* contamination in South Korean duck farms and the high resistance rates to antimicrobials, such as fluoroquinolones. The study revealed that South Korean ducks were a potentially important source of human infection and emphasized on the role of duck-associated *Campylobacter* risk to human health.

In 2012 to 2016, fosfomycin resistance of Campylobacter isolated from ducks was investigated for the first time (Wei and Kang, 2018). All eight fosfomycin-resistant *Campylobacter* strains were multidrug resistant as determined by the agar dilution method in which six of them were also resistant to fluoroquinolones, AMP, and TET, and two of them were resistant to fluoroquinolones, AMP, TET, and macrolides. The eight PFGE types showed genetic diversity among the eight fosfomycin-resistant *Campylobacter* strains (data not shown). It concluded that fosfomycin resistance has been was emerging and spreading in food animals threatens transmission to humans along the food chain. In an epidemiological investigation of *Campylobacter* in poultry farms in Vietnam (2012), the animal-level and farm-level prevalence of *Campylobacter* from duck isolates were 18% and 71.4%, respectively (Carrique-Mas et al., 2014). As compared with other species, ducks (24%) showed lower animal-level prevalence of *Campylobacter* compared with chickens (32%) and pigs (53.7%). Campylobacter isolates demonstrated high levels of antimicrobial resistance from 21% to 100% against ERY, Trimethoprim/ sulfamethoxazole (SXT), NAL, Ofloxacin (OFX), and CIP. The intensified animal production systems and increased urbanization in Vietnam were attributed to the obtained results. It was also shown that there was a

high level of genetic diversity within *C. jejuni*, and predicted *C. coli* inter-species transmission among duck isolates as determined by multilocus sequencing. In 2013 to 2014, most of *Campylobacter* isolates from poultry meat samples (e.g., duck meat) in China were multidrug resistant (Zhong et al., 2016). A high antibiotic resistance rate was observed for CIP (88.5%) and NAL (88.5%). There was no direct evidence to suggest a connection between antibiotic resistance and virulence genes.

The prevalence of *Campylobacter* spp. in Polish poultry meat indicated that most ducks were colonized with Campylobacter spp, mostly C. jejuni (Szosland-Fałtyn et al., 2018). The highest prevalence of Campylobacter was detected in duck (80%) versus chicken (70%), goose (60%), and turkey (38%) which was contrary to some studies in which other poultries especially chicken showed higher prevalence of Campylobacter. However, the higher prevalence of C. jeju*niversus C. coli* in this study was consistent with others in the literature. In South Korea (2013), a high prevalence (96.2%) of *Campylobacter* and a high prevalence of antimicrobial resistance (47.4%) in Campylobacter isolates from retail duck meat was reported (Wei et al., 2014). *Campylobacter* isolates from ducks had higher resistance rates as compared with chickens to AMP (69.3%), CIP (90.1%), GEN (14.9%), NAL (94.1%) and TET (98%) as determined by the agar dilution method. Wei et al. (2014) also mentioned duck meat as a potential campylobacteriosis risk for humans living in South Korea. In Egypt (2014), the higher prevalence of *Campylobacter* spp. was found in duckling (27%), compared with chicks (3%) and turkey (0%) (Shawky et al., 2015). The higher Campylo*bacter* infection rate in ducks was attributed to the poor hygienic measures and sanitation in duck farms compared to chicken and turkey farms. When the prevalence of *Campylobacter* in different sample types obtained from duck farm (feather, feed, and feces) and slaughterhouse (intestine, anus, liver, skin, nail, and beak) in India (2014) was compared, the study revealed that faeces had the highest prevalence of Campylobacter (63.6%), followed by feed (62.5%) and intestine (61.5%) (Sivasankari et al., 2015). In addition, the study also showed that 100% of C. jejuni isolates were resistant to AMX, followed by ERY (85%), NAL (68%), and Norfloxacin (NOR, 63%) as determined by the disk diffusion assay.

In Iran (2014-2015), the prevalence of *Campylobacter* spp. isolated from eggs of different avian species (n = 440) showed that eggshell of duck (5%) had lower prevalence rate than that of chicken (7%) but equal to quail (5%) and higher than goose (3.3%), ostrich (2.5%), partridge (4.2%), and turkey (3.8%) (Jonaidi-Jafari et al., 2016). The prevalence of *Campylobacter* was also higher in summer than in autumn. Primary disinfection of poultry egg samples especially their surface with disinfectants and separation of contaminated eggs from the clean ones was recommended to reduce the risk of human campylobacteriosi.

17

In Korea (2014-2015), a higher prevalence of *Campylo*bacter was reported from duck carcass (77%) than chicken carcass (31.7%) (Chon et al., 2018). The study also found that *Campylobacter* in ducks was more prevalent in summer (91.7%) than in winter (61.7%), which was different from that reported by Lee et al. (2017). For the results of antimicrobial susceptibility test determined by the agar dilution method, most of Campylobacter isolates from ducks in Korea were resistant to CIP, Enrofloxacin (ENR), NAL, and TET with less resistance to ERY (3.1%) and CHL (0.8%). This finding was consistent with what reported by Lee et al. (2017). In addition, most of the tested strains were also classified into diverse pulsotypes, indicating the diversity of *Campulobacter* isolates in duck samples collected from slaughterhouses in Korea. In Cambodia, the prevalence of Campylobacter in duck fecal samples (24%) was higher than that in human fecal samples (19%), but lower than the prevalence of this organism in feces of chickens (56%) and pigs (72%)(Osbjer et al., 2016). It was also suggested that PCR should be the preferred diagnostic method for detection of *Campulobacter* in humans and livestock where timely culture is not feasible. In Nigeria, the isolation rate of Cam*pylobacter* from cloacal swab samples of duck (56%) was higher than that of chicken (30%), guinea fowl (30%), pigeon (14%), and turkey (50%) (Nwankwo et al., 2016). The higher prevalence of *Campulobacter* in ducks compared with other poultries was likely attributed to the way ducks searching for food on the surface of shallow water which exposed the animal to be contaminated with Campylobacter spp. Consistently, another study on the prevalence of *Campylobacter* in different poultry species in Nigeria also revealed that the highest prevalence was found in duck (53%), followed by turkey (50%), chicken guinea fowl (38%), and pigeon (46%),(28%)(Abba Maiha et al., 2017). Surprisingly, C. coli was reported to be more prevalent than C. jejuni. In a recent study in Thailand, the presence of *Campylobacter* spp. in duck slaughtering process was reported as 25.3% with the higher frequency of C. jejuni than C. coli (68.4% vs. 18.4% (Chanawanit et al., 2018). It was concluded that cross-contamination could result in higher prevalence of Campylobacter during duck slaughtering process.

In South Korea (2019), C. jejuni populations with antibiotic resistance phenotypes (mostly to fluoroquinolones and TET) were highly prevalent on retail duck meat (Kim et al., 2019). The prevalence of Campylobacter from raw duck meat was higher in summer (63.6%) than in winter (60.7%). Moreover, CC-45 was the most common clonal complex found among C. jejuni isolates from duck meat . Kim et al. (2019) suggested that the genetic background of certain C. jejuni isolates from duck meat may be different from that of chicken isolates.

In 2019, a high prevalence (33.5%) of *Campylobacter* contamination in slaughtering process (e.g., after defeathering, after evisceration, etc.) was demonstrated in China (Han et al., 2019). Forty-seven antimicrobial resistance profiles were also found, and 75.9% of the *Campylobacter* isolates were multidrug resistant strains.

Furthermore, 48 virulence gene profiles were observed among *Campylobacter* isolates. Kovanen et al. (2019) demonstrated that *C. jejuni* ST-2314 isolated from mallard duck represented bacterial clones that were genetically highly similar to human isolates detected previously in Finland. Moreover, most of the mallard duck *C. jejuni* isolates represented sequence types that diverged from those previously isolated from human patients and various animal species. The hygienic measures during slaughter and meat handling were also suggested.

CONCLUSIONS AND FUTURE DIRECTIONS

This review has highlighted a large variation in data available for prevalence rate and phenotypic antimicrobial resistance testing worldwide. The worldwide prevalence of Campylobacter spp. in the duck and duck related samples are mostly influenced by the isolation method, type and time of sampling. *Campylobacter* spp. were also more frequently isolated in summer than in winter. Based on the published data, antimicrobial resistance of *Campylobacter* isolates from ducks which varies among studies is becoming increasingly common worldwide, especially for fluoroquinolones and tetracycline. Some studies revealed that duck isolates represented bacterial clones that were genetically highly similar to human isolates. Therefore, hygienic measures warrant special attention. The different results reported in terms of the distribution and prevalence of antimicrobial resistance in *Campylobacter* isolates could probably be due to the variety of methods use, therefore, to support evidence-based decision-making, there is a demand for an integrated understanding of the epidemiology of antimicrobial resistance, so it would be desirable to move towards the harmonization of surveillance systems to monitor antimicrobial resistance in animal production. Monitoring and development of appropriate control strategies in poultry reared outdoors were also recommended. In the meanwhile, the genotypic antimicrobial resistance of *Campylobacter* spp. from duck isolates should be further investigated.

ACKNOWLEDGMENTS

This work is supported by Ratchadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University.

DISCLOSURES

All authors declare no conflicts of interest.

REFERENCES

Abba Maiha, A. S. M., Y. A. Adamu, A. O. Talabi, M. B. Abubakar, and E. A. Abba Maiha. 2017. Epidemiology of thermophilic *Campylobacter* species in rural poultry in Kebbi State, Nigeria. Multidis. Adv. Vet. Sci. 1:219–226.

- Abid, M., H. Wimalarathna, J. Mills, L. Saldana, W. Pang, J. F. Richardson, M. C. Maiden, and N. D. McCarthy. 2013. Duck liver—associated outbreak of campylobacteriosis among humans, United Kingdom, 2011. Emerg. Infect. Dis. 19:1310.
- Adzitey, F., G. Rusul, N. Huda, T. Cogan, and J. Corry. 2012. Prevalence, antibiotic resistance and RAPD typing of *Campylobacter* species isolated from ducks, their rearing and processing environments in Penang, Malaysia. Int. J. Food Microbiol. 154:197–205.
- Andersen, S. R., P. Saadbye, N. M. Shukri, H. Rosenquist, N. L. Nielsen, and J. Boel. 2006. Antimicrobial resistance among *Campylobacter jejuni* isolated from raw poultry meat at retail level in Denmark. Int. J. Food Microbiol. 107:250–255.
- Antillés Silva, N. 2014. Epidemiology and antimicrobial resistance of Salmonella spp. and Campylobacter spp. from wild birds and poultry reared outdoors. Universitat Autònoma de Barcelona.
- Boonmar, S., S. Yingsakmongkon, T. Songserm, P. Hanhaboon, and W. Passadurak. 2007. Detection of *Campylobacter* in duck using standard culture method and multiplex polymerase chain reaction. Southeast Asian J. Trop. Med. Public Health 38:728.
- Cabrita, J., J. Rodrigues, F. Braganca, C. Morgado, I. Pires, and A. P. Gonçalves. 1992. Prevalence, biotypes, plasmid profile and antimicrobial resistance of *Campylobacter* isolated from wild and domestic animals from northeast Portugal. J. Appl. Bacteriol. 73:279–285.
- Carrique-Mas, J. J., and J. E. Bryant. 2013. A review of foodborne bacterial and parasitic zoonoses in Vietnam. EcoHealth 10:465– 489.
- Carrique-Mas, J. J., J. E. Bryant, N. V. Cuong, N. V. M. Hoang, J. Campbell, N. V. Hoang, T. T. N. Dung, D. T. Duy, N. T. Hoa, and C. Thompson. 2014. An epidemiological investigation of *Campylobacter* in pig and poultry farms in the Mekong delta of Vietnam. Epidemiol. Infect. 142:1425–1436.
- Chanawanit, K., D. Pichpol, W. Phimpraphai, C. Saengthongpinit, and T. Meeyam. 2018. Presence of Campylobacter jejuni and Campylobacter coli in Duck Slaughtering Process. In Proc. 5th Food Safety and Zoonoses Symposium for Asia Pacific, Chiang Mai, Thailand.
- Chon, J. W., S. K. Lee, Y. Yoon, K. S. Yoon, H. S. Kwak, I. S. Joo, and K. H. Seo. 2018. Quantitative prevalence and characterization of *Campylobacter* from chicken and duck carcasses from poultry slaughterhouses in South Korea. Poult. Sci. 97:2909–2916.
- Colles, F. M., J. S. Ali, S. K. Sheppard, N. D. McCarthy, and M. C. Maiden. 2011. *Campylobacter* populations in wild and domesticated mallard ducks (*Anas platyrhynchos*). Environ. Microbiol. Rep. 3:574–580.
- Fallacara, D. M., C. M. Monahan, T. Y. Morishita, and R. F. Wack. 2001. Fecal shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in free-living waterfowl. Avian Dis. 128–135.
- Han, X., X. Guan, H. Zeng, J. Li, X. Huang, Y. Wen, Q. Zhao, X. Huang, Q. Yan, and Y. Huang. 2019. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic *Campylobacter* spp. isolated from ducks in a Chinese slaughterhouse. Food Control 104:157–166.
- Jamali, H., A. Ghaderpour, B. Radmehr, K. S. C. Wei, L. C. Chai, and S. Ismail. 2015. Prevalence and antimicrobial resistance of *Campylobacter* species isolates in ducks and geese. Food Control 50:328–330.
- Jonaidi-Jafari, N., F. Khamesipour, R. Ranjbar, and R. Kheiri. 2016. Prevalence and antimicrobial resistance of *Campylobacter* species isolated from the avian eggs. Food Control 70:35–40.
- Kasrazadeh, M., and C. Genigeorgis. 1987. Origin and prevalence of *Campylobacter jejuni* in ducks and duck meat at the farm and processing plant level. J. Food Protect. 50:321–326.
- Kim, N. H., H. S. Chae, Y. I. Kang, B. W. Shin, N. H. Choi, and H. B. Kim. 2013. Prevalence and antimicrobial resistance patterns of *Campylobacter jejuni* from duck feces. Korean J. Vet. Serv. 36:57–60.
- Kim, J., H. Park, J. Kim, J. H. Kim, J. I. Jung, S. Cho, S. Ryu, and B. Jeon. 2019. Comparative analysis of aerotolerance, antibiotic resistance, and virulence gene prevalence in *Campylobacter jejuni* isolates from retail raw chicken and duck meat in South Korea. Microorganisms 7:433.
- Kovanen, S., M. Rossi, M. Pohja-Mykrä, T. Nieminen, M. Raunio-Saarnisto, M. Sauvala, M. Fredriksson-Ahomaa,

M. L. Hänninen, and R. Kivistö. 2019. Population genetics and characterization of *Campylobacter jejuni* isolates from western jackdaws and game birds in Finland. Appl. Environ. Microbiol. 85: e02365–18.

- Kwiatek, K., B. Wojton, and N. J. Stern. 1990. Prevalence and distribution of *Campylobacter* spp. on poultry and selected red meat carcasses in Poland. J. Food Protect. 53:127–130.
- Kwon, Y. K., J. Y. Oh, O. M. Jeong, O. K. Moon, M. S. Kang, B. Y. Jung, B. K. An, S. Y. Youn, H. R. Kim, and I. Jang. 2017. Prevalence of *Campylobacter* species in wild birds of South Korea. Avian Pathol. 46:474–480.
- Lee, J., J. Jeong, H. Lee, J. Ha, S. Kim, Y. Choi, H. Oh, K. Seo, Y. Yoon, and S. Lee. 2017. Antibiotic susceptibility, genetic diversity, and the presence of toxin producing genes in *Campylobacter* isolates from poultry. Int. J. Environ. Res. Public Health 14:1400.
- Lindmark, H., B. Harbom, L. Thebo, L. Andersson, G. Hedin, B. Osterman, T. Lindberg, Y. Andersson, A. Westöö, and E. O. Engvall. 2004. Genetic characterization and antibiotic resistance of *Campylobacter jejuni* isolated from meats, water, and humans in Sweden. J. Clin. Microbiol. 42:700–706.
- Little, C. L., J. F. Richardson, R. J. Owen, E. de Pinna, and E. J. Threlfall. 2008. Prevalence, characterisation and antimicrobial resistance of *Campylobacter* and *Salmonella* in raw poultry meat in the UK, 2003–2005. Int. J. Environ. Health Res. 18:403–414.
- Mason, C. J., S. Sornsakrin, J. C. Seidman, A. Srijan, O. Serichantalergs, N. Thongsen, M. W. Ellis, V. Ngauy, B. E. Swierczewski, and L. Bodhidatta. 2017. Antibiotic resistance in *Campylobacter* and other diarrheal pathogens isolated from US military personnel deployed to Thailand in 2002–2004: a case –control study. Trop. Dis. Travel Med. Vaccines 3:1–7.
- McCrea, B. A., K. H. Tonooka, C. VanWorth, E. R. Atwill, J. S. Schrader, and C. L. Boggs. 2006. Prevalence of *Campylobac*ter and *Salmonella* species on farm, after transport, and at processing in specialty market poultry. Poult. Sci. 85:136–143.
- Mohan, V. 2015. Faeco-prevalence of *Campylobacter jejuni* in urban wild birds and pets in New Zealand. BMC Res. Notes 8:1–7.
- Moran, L., P. A. M. Scates, and R. H. Madden. 2009. Prevalence of *Campylobacter* spp. in raw retail poultry on sale in Northern Ireland. J. Food Protect. 72:1830–1835.
- Nonga, H. E., and A. P. Muhairwa. 2010. Prevalence and antibiotic susceptibility of thermophilic *Campylobacter* isolates from free range domestic duck (*Cairina moschata*) in Morogoro municipality, Tanzania. Trop. Anim. Health Prod. 42:165–172.
- Nwankwo, I. O., O. O. Faleke, M. D. Salihu, A. A. Magaji, U. Musa, and J. Garba. 2016. Epidemiology of *Campylobacter* species in poultry and humans in the four agricultural zones of Sokoto State, Nigeria. J. Public Health Epidemiol. 8:184–190.
- Ofukwu, R. A., A. E. J. Okoh, and C. A. Akwuobu. 2008. Prevalence of *Campylobacter jejuni* in duck faeces around drinking water sources in Makurdi, north-central Nigeria. Sokoto J. Vet. Sci. 7:27–30.
- Osbjer, K., E. V. A. Tano, L. Chhayheng, A. O. Mac-Kwashie, L. L. Fernström, P. Ellström, S. Sokerya, C. Sokheng, V. Mom, and K. Chheng. 2016. Detection of *Campylobacter* in human and animal field samples in Cambodia. APMIS 124:508–515.
- Pacha, R. E., G. W. Clark, E. A. Williams, and A. M. Carter. 1988. Migratory birds of central Washington as reservoirs of *Campylobacter jejuni*. Can. J. Microbiol. 34:80–82.
- Rahimi, E., F. Alian, and F. Alian. 2011. Prevalence and characteristic of *Campylobacter* species isolated from raw duck and goose meat in Iran. IPCBEE 9:171–175.
- Ridsdale, J. A., H. I. Atabay, and J. E. L. Corry. 1998. Prevalence of campylobacters and arcobacters in ducks at the abattoir. J. Appl. Microbiol. 85:567–573.
- Saengthongpinit, C., S. Kongsoi, S. Viriyarampa, and T. Songserm. 2015. Prevalence and antimicrobial resistance of Salmonella and Campylobacter species isolated from laying duck flocks in confinement and free-grazing systems. Thai J. Vet. Med. 45:341.
- Saengthongpinit, C., D. Nane-Siri, P. Aparachita, P. Apiwannarat, P. Buakhao, W. Bowornnantiwath, N. Thengchaisri, and T. Songserm. 2014. Longitudinal study of *Salmonella* and *Campylobacter* species from two laying duckling flocks in the central region of Thailand. Thai J. Vet. Med. 44:355.

- Shawky, H. M., N. M. Kamel, E. M. Farghaly, and A. Samir. 2015. Isolation and molecular characterization of *Campylobacter* spp. in newly hatched poultry in Egypt. J. Global Biosci. 4:2087–2091.
- Sivasankari, M., T. A. Lone, and R. A. Lone. 2015. Prevalence, antibiotic resistance and molecular characterization of Campylobacter jejuni isolated from raw duck meat in Erode district. Am. Eurasian J. Agric. Environ. Sci. 15:1033–1039.
- Stoyanchev, T., I. Vashin, V. Rusev, C. Ring, and V. Atanassova. 2009. Processing of ducks for foie gras liver in Bulgaria. Trakia J. Sci. 7:45–49.
- Szosland-Fałtyn, A., B. Bartodziejska, J. Krolasik, B. Paziak-Domańska, D. Korsak, and M. Chmiela. 2018. The prevalence of *Campylobacter* spp. in Polish poultry meat. Pol. J. Microbiol. 67:117–120.
- Tsai, H. J., and P. H. Hsiang. 2005. The prevalence and antimicrobial susceptibilities of *Salmonella* and *Campylobacter* in ducks in Taiwan. J. Vet. Med. Sci. 67:7–12.
- Turkson, P. K., K. J. Lindqvist, and G. Kapperud. 1988. Isolation of *Campylobacter* spp. and *Yersinia enterocolitica* from domestic animals and human patients in Kenya. APMIS 96:141–146.
- Weber, R., M. Auerbach, J. Auerbach, and G. Glünder. 2014. Campylobacter infections in four poultry species in respect of

frequency, onset of infection and seasonality. Berl. Munch. Tierarztl. Wochenschr. 127:257–266.

- Wei, B., S. Y. Cha, M. Kang, J. H. Roh, H. S. Seo, R. H. Yoon, and H. K. Jang. 2014. Antimicrobial susceptibility profiles and molecular typing of *Campylobacter jejuni* and *Campylobacter coli* isolates from ducks in South Korea. Appl. Environ. Microbiol. 80:7604– 7610.
- Wei, B., S. Y. Cha, R. H. Yoon, M. Kang, J. H. Roh, H. S. Seo, J. A. Lee, and H. K. Jang. 2016. Prevalence and antimicrobial resistance of *Campylobacter* spp. isolated from retail chicken and duck meat in South Korea. Food Control 62:63–68.
- Wei, B., and M. Kang. 2018. *In vitro* activity of fosfomycin against *Campylobacter* isolates from poultry and wild birds. PLoS One 13:e0200853.
- Yogasundram, K., S. M. Shane, and K. S. Harrington. 1989. Prevalence of *Campylobacter jejuni* in selected domestic and wild birds in Louisiana. Avian Dis. 33:664–667.
- Zhong, X., Q. Wu, J. Zhang, and S. Shen. 2016. Prevalence, genetic diversity and antimicrobial susceptibility of *Campylo-bacter jejuni* isolated from retail food in China. Food Control 62:10–15.