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Taxonomic bias in AMP prediction 
of invertebrate peptides
Zoltán Rádai1,2*, Johanna Kiss3 & Nikoletta A. Nagy2,3

Invertebrate antimicrobial peptides (AMPs) are at the forefront in the search for agents of therapeutic 
utility against multi-resistant microbial pathogens, and in recent years substantial advances took 
place in the in silico prediction of antimicrobial function of amino acid sequences. A yet neglected 
aspect is taxonomic bias in the performance of these tools. Owing to differences in the prediction 
algorithms and used training data sets between tools, and phylogenetic differences in sequence 
diversity, physicochemical properties and evolved biological functions of AMPs between taxa, notable 
discrepancies may exist in performance between the currently available prediction tools. Here we 
tested if there is taxonomic bias in the prediction power in 10 tools with a total of 20 prediction 
algorithms in 19 invertebrate taxa, using a data set containing 1525 AMP and 3050 non-AMP 
sequences. We found that most of the tools exhibited considerable variation in performance between 
tested invertebrate groups. Based on the per-taxa performances and on the variation in performances 
across taxa we provide guidance in choosing the best-performing prediction tool for all assessed taxa, 
by listing the highest scoring tool for each of them.

Antimicrobial peptides (AMPs) are low molecular weight components of the innate immunity present virtu-
ally in all living organisms. Their importance has long been recognized, especially in the search for efficient 
therapeutic agents against multi-resistant  bacteria1–3. In the last few decades, invertebrates (mainly arthropods) 
have become central model organisms to identify and classify novel AMPs with potential utility in  medicine4,5. 
With the rapid accumulation of available genomic and proteomic data from a wide range of taxa and novel 
methods for the prediction of structural, physicochemical, and biological properties of peptides, the search for 
therapeutic-potential AMPs is one of the most exciting and promising areas in the life  sciences6,7. In fact, by 
today a considerable number of AMP activity prediction tools has been built, mainly utilizing modern machine-
learning algorithms to identify amino acid sequences with potential antimicrobial capacities, generally on the 
basis of their physicochemical  parameters6,8. Most often these parameters are some combinations of net charge, 
hydrophobicity, amphipaticity, isoelectric point, propensity to form certain structures (α-helix, ß-sheet, loops), 
polarity, and hydrophobic  moment9,10 and sometimes quantification of amino acid composition itself (e.g. as 
standard, normalized or pseudo composition,  see11 and references therein), which properties are associated with 
the capacity to attach to pathogen-specific targets (e.g. permeating bacterial cell membranes).

Beside to other challenges of AMP prediction using peptides from databases  (see12 and references therein), 
neglected taxonomic (and, indeed, phylogenetic) information may also contribute to biases in the training of 
prediction algorithms. Although AMP prediction tools are quite available, and some articles made attempts of 
benchmarking how efficiently these tools can identify AMPs in general (e.g.13), it still remains overlooked whether 
or not these prediction tools may provide the same performance across the taxa from which putative AMPs are 
extracted. This could be rather problematic, owing to that even among phylogenetically related AMPs substan-
tial differences may exist in the evolutionary trajectories of the amino acids between species. For example this 
might be expected to lead to differences in taxon-specific gene clustering (i.e. sequence diversity, affecting scalar 
physicochemical properties), or in the evolved functionality of peptides belonging to the given AMP  family14–17. 
Indeed, the importance of evolutionary origin of sequence diversity in these molecules was emphasized recently 
in  invertebrates18. While there is little knowledge about how such diversity may be associated with physicochemi-
cal properties and structural features of AMPs, it is not unreasonable to assume that unaccounted taxon-specific 
variation in them might affect the performance of prediction tools in recognizing antimicrobial function (e.g. 
due to taxon-based differences in the evolved physicochemical properties). Also, alternative tools using different 
methodological approaches and training sets further complicate the picture and may lead to discrepant perfor-
mances, i.e. to differences between the prediction tools in how efficiently they recognize AMPs and non-AMPs in 
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different taxa, which might depend on the taxonomic composition of the training data sets. In other words, the 
above mentioned factors may play a role in a low generalization-efficiency of the prediction algorithms that were 
trained on taxonomically (phylogenetically) limited training data set. Consequently, neglecting this aspect may 
lead to an increased incidence of both type I (falsely labelling non-antimicrobial peptides as (putative) AMPs) 
and type II (not recognizing true AMPs to have antimicrobial activity) errors when using inadequate tools.

This issue is anything but trivial, as a wide range of researchers rely on these AMP prediction tools and their 
outputs, from the search for invertebrate AMPs with therapeutical  potential4, to ecophysiological and ecoim-
munological  studies19, and to the studies on the evolutionary history of invertebrate  AMPs18. If “taxonomic bias” 
exists in the prediction performance of available tools (i.e. if there are differences between prediction tools in how 
reliably they can distinguish between AMPs and non-AMPs in different taxa), a practical resolution (in terms of 
the usage of available prediction tools) could be the identification of which tool performs best for specific taxa, 
and consistently using these tools in the given groups. As a first approach to address this problem, taxon-specific 
assessment of the performance of currently available AMP prediction tools may help us to shed light on whether 
or not a taxon-bias is present at all. Accordingly, in the present study our aim is not to provide a comprehensive 
list of AMP prediction tools, or to introduce their algorithms and/or modern methods for AMP prediction, but 
to provide guidance in choosing the best-performing prediction tool for specific taxa if taxonomic bias exists. 
In other words: our goal here is not to present the methodology and specific composition of training data sets 
in detail, but to assess whether currently available tools show considerable prediction bias between different 
invertebrate taxa, i.e. we do not yet offer a specific solution to this technical problem at the level of algorithms, 
but highlight a yet neglected aspect of AMP prediction practice.

To do so, we acquired 1525 unique AMP sequences (from the protein database of the National Center for 
Biotechnology  Information20,21 and the Antimicrobial Peptide Database  APD322) and 3050 non-AMP sequences 
(from  UniProt23), from 19 invertebrate taxa, and used 10 freely available AMP prediction tools (with a total of 
20 prediction algorithms), not only to assess the prediction tools’ overall performance, but their performance 
per taxa.

Results
Overall ADAM showed the best performance with both of its algorithms (hidden Markov model, and support 
vector machine). Also, the artificial neural network classifier of  CAMPR3 had relatively good performance, 
similarly to CS-AMPpred (all kernels, although the linear kernel did not perform as good as the polynomial 
and radial), and to iAMP-2L (Fig. 1). Based on  F1 the weakest overall performance was observed in the case of 
StM, although based on Matthew’s correlation coefficient (MCC) the non-artificial-neural-network algorithms 
of  CAMPR3 (discriminant analysis, random forest, and support vector machine) showed weakest performances.

AMP prediction tools showed substantial variation in how well they performed in different taxa (Figs. 1 
and 2). Class AMP and IAMPE classifiers showed almost no between-taxa variation, which was likely due to 
their poor performances, as they almost unanimously predicted AMP activity in all (even non-AMP) amino 
acid sequences. The largest taxonomic bias (i.e. largest median distance in tool performance between taxa) was 
observed in the random forest algorithm of  CAMPR3 and in the linear kernel CS-AMPpred (Fig. 1); in these tools 
the discrepancy between the minimum and maximum value of MCC was 0.98, and 1.06, respectively. Even those 
prediction tools showing best performances based on their  F1 and MCC scores had marked taxonomic biases: 
for example in the hidden Markov model ADAM the difference between minimum and maximum MCC was 
0.44. Still, based on the  F1 and MCC values calculated per taxa, this classifier yielded the highest performance 
for most of the taxa (Table 1).

In most cases taxonomic biases were tool specific, meaning that there were only a few taxa for which most of 
the prediction tools yielded consistently low or high performance (Fig. 3, and see also Supplementary Material 
Fig. S1). Specifically, we found negative bias for Veneroida, Unionida, and Neogastropoda (meaning that for 
these groups  F1 and MCC scores were consistently low across prediction tools), and positive bias for Xiphosura 
and Araneae (meaning that for these groups  F1 and MCC scores were consistently high across prediction tools). 
In taxa for which sample sizes were small (such as Unionida and Neogastropoda) this bias might simply be an 
artefact of chance, as any given prediction affects the estimated performance score much stronger than in taxa 
of larger sample sizes. However, in Veneroida and Araneae the sample sizes were not quite small, and in other 
small-sample-sized taxa no such pattern was observed. At this point it is difficult to find a satisfactory explana-
tion for this observation. Given that most of the tested tools rely on amino acid sequence-based physicochemical 
measures, one possible cause might relate to the similarity of amino acid sequences in a given taxon to those 
used in the training sets of prediction tools. For example, even if a given taxon is not represented in a tool’s 
training set, similar physicochemical properties to the training sequences likely helps better recognition by the 
given tool. On the other hand, if physicochemical properties of a given taxon are significantly different from 
those taxa included in the training set, it will likely lead to poorer performance for that given query taxon not 
represented in the set. This should be addressed in future studies to clarify what mechanisms can lead to such 
biases in prediction performance.

Discussion
The prediction tool ADAM using the hidden Markov model provided the best performance in most assessed 
taxa. While it is out of scope of this study to give in-depth insights on the algorithms behind the prediction tools, 
it should be noted that this tool’s strength likely comes from its set of homologues: it uses a probabilistic model 
based on which the already known AMPs are used to find the most likely homologue for the query peptide. 
This is a strength that few currently available prediction tools possess, namely that, instead of only using scalar 
physicochemical properties based on the amino acid sequence (which approach has its weaknesses, see Porto 
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Figure 1.  Classical performance measures (top panel),  F1 scores and Matthew’s correlation coefficient (MCC; 
middle panel), and taxonomic bias in performance assessed as median of the distances in MCC scores between 
taxa, within a given prediction tool (bottom panel; see “Methods” for details); black segments on the bottom 
panel represent the value range between the first and third quartiles.
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et al.12), sequences are classified based on their resemblance to known AMPs. Notably, such an approach may 
yield null-findings when presented a previously unknown AMP, but might potentially enable for accounting for 
evolutionary information. Although the hidden Markov model ADAM tool technically does not consider phy-
logeny for the taxa from which the query sequences originate, in future prediction tools homolog (and, indeed 
ortholog) finding may be a quite useful approach in the reliable in silico identification of AMPs. Surprisingly, 
tools accounting for (either species, or gene) evolution are still lacking, and studies addressing the question of 
functional typization of AMPs generally use amino acid  composition12, and/or quantitative structure–activity 
 relationships24. Whilst understanding the association between sequence, structure, and biological function is 
indisputably the forefront in the study of AMPs with therapeutical  potential25,26, evolutionary information may 
also help us in the identification (and, indeed, de novo design and synthesis) of candidate AMPs. Arguably, a 
taxonomically, or even phylogenetically informed perspective would be quite useful not only in the more robust 
and reliable identification of AMPs in invertebrates, but also in designing and engineering peptides with desirable 
properties (e.g. efficacy against antibiotic resistant bacteria, but low citotoxicity to eukaryotic cells), through a 
deeper understanding of how different antimicrobial properties evolved in AMPs of invertebrates. (For example, 
how evolutionary trajectories shaped AMPs to possess the advantageous physicochemical properties we observe 

Figure 2.  F1 and Matthew’s correlation coefficient (MCC) scores calculated for each taxon, separately within 
each prediction tool, in order to assess the prediction tools’ performance for each tested taxon.
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Table 1.  Best preforming prediction tools for given taxa based on  F1 and Matthew’s correlation coefficient 
(MCC).

Taxon

Best performing prediction tools

F1 MCC

Acari ADAM (hidden Markov model) 0.86 ADAM (support vector machine) 0.80

Araneae ADAM (support vector machine) 0.93 ADAM (support vector machine) 0.89

Blattodea ADAM (support vector machine) 0.86 ADAM (support vector machine) 0.79

Coleoptera ADAM (hidden Markov model) 0.91 ADAM (hidden Markov model) 0.86

Decapoda iAMP-2L 0.82 iAMP-2L 0.77

Diptera ADAM (hidden Markov model) 0.95 ADAM (hidden Markov model) 0.93

Hemiptera ADAM (hidden Markov model) 0.88 ADAM (hidden Markov model) 0.82

Hymenoptera ADAM (hidden Markov model) 0.90 ADAM (hidden Markov model) 0.85

Lepidoptera ADAM (hidden Markov model) 0.92 ADAM (hidden Markov model) 0.88

Mytiloida iAMP-2L 0.82 iAMP-2L 0.76

Neogastropoda ADAM (hidden Markov model) 0.73 ADAM (hidden Markov model) 0.58

Orthoptera CAMPR3 (artificial neural network) 0.89 CAMPR3 (artificial neural network) 0.84

Ostreoida ADAM (hidden Markov model) 0.85 ADAM (hidden Markov model) 0.78

Pectinoida ADAM (hidden Markov model) 0.80 ADAM (hidden Markov model) 0.71

Scolopendromorpha CS-AMPpred (linear kernel) 0.80 ADAM (support vector machine) 0.71

Scorpiones iAMP-2L 0.78 iAMP-2L 0.67

Unionida CAMPR3 (artificial neural network) 0.89 CAMPR3 (artificial neural network) 0.84

Veneroida ADAM (hidden Markov model) 0.77 ADAM (hidden Markov model) 0.67

Xiphosura ADAM (support vector machine) 0.88 ADAM (support vector machine) 0.82

Figure 3.  To check whether or not there were any taxa for which AMP predictions were consistently biased 
regardless of the used prediction tool we calculated "residual"  F1 and Matthew’s correlation coefficient (MCC) 
scores. These residual measures are simply the difference between the  F1 or MCC score of a given tool for a given 
taxon, and the arithmetic mean  F1 or MCC for the given tool, averaged over all taxa within that tool. Hence, 
if for example a taxon would generally have low prediction successes across all tools, we would see that this 
taxon has consistently low (below zero) residual values in each tool. We would expect to see that these residual 
scores are normally distributed around zero when there is no such effect. To see if these residual  F1 and MCC 
values have a mean significantly different from zero, estimated marginal means (EMM) were calculated by 
fitting a linear regression model with residual  F1 and MCC as responses and taxon as categorical predictor. This 
figure depicts EMMs (black dots) and their standard errors (SE: blue horizontal bars); SE bars not crossing zero 
(dashed line) can be considered as the given EMM statistically significantly differing from zero (at α = 0.05).
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today; see more on this concept  in27.) Hence, comparative phylogenetic analyses of AMPs would be an important 
aspect helping to understand the evolution of antimicrobial function in these molecules.

Substantial variation exists in how reliably given tools can predict AMP function of amino acid sequences 
belonging to different taxa. From a practical perspective this gives reason for caution when selecting the predic-
tion tool for identifying putative AMPs from amino acid sequences of a given invertebrate taxon in silico. The 
substantial taxonomic bias in the different prediction tools’ performance may hint at important differences in 
the properties of amino acid sequences across taxa, but interpretation should be done with care, as this bias can 
have multiple origins. For example, various AMP families (e.g. defensins, cecropins) may have quite different 
physicochemical  properties28, and there may be substantial between-taxa variation in amino acid sequences of 
same AMP  family18. Although these aspects should be taken into account when working with AMPs, it is outside 
of the scope of our present study to go into details of the background and their possible resolutions.

We argue that our results can provide a firm basis for deciding which prediction tool(s) to use when working 
with invertebrate peptides. Joint consideration of tools’ performance and taxonomic bias may help to pick the 
best tools: for example, when one would like to test peptides of multiple taxonomical origins, it might be worth 
to consider tools with relatively low taxonomic bias and good performance, whereas when peptides originate 
from one known taxon, tool-specific performance in that group will be more important than the generalization 
capability of the given tool.

It should also be noted that our current approach is not without drawbacks. Firstly, the considerably uneven 
availability of AMPs for different taxa renders it difficult to consider our results robust for all the assessed taxa. 
As noted before, in taxa with small sample sizes (e.g. Neogastropoda and Unionida)  F1 and MCC scores and 
prediction successes are more likely to be subjected to distortions by random chance than in taxa of larger sample 
sizes. Still, we think that as a practical guide our results are still of value even for taxa with small sample sizes, 
although with more caution. Secondly, one could propose that overlap between our test data set and training sets 
of prediction tools might also bias our performance estimates. However, we found no strong evidence for that, 
since neither the number nor the proportion of common amino acid sequences in our and the used tools’ data sets 
showed significant association with  F1 scores, although the proportion of common sequences showed a weakly 
significant association with MCC (see Supplementary Material Figs. S2 and S3). Notably, however, based on the 
“Supplementary figures”, the moderate level of statistical significance (P = 0.029), and the results that in no other 
association did we find such connection renders it likely that this result is a false positive finding (type I error).

As previously mentioned, the different tools use different methodological approaches (e.g. CS-AMPpred uses 
support vector machine trained on 310 cysteine-stabilized peptides, utilizing scalar physicochemical properties, 
whereas ADAM hidden Markov model is based on profile models of more than 7000 AMPs and 759 identified 
structures; see Table 2 for additional details on the tested tools). Differences in the focus of AMP types undoubt-
edly restricts the potential range of peptides that can be recognized as to have antimicrobial function by a given 
prediction tool. It is also worth mentioning that taxonomic composition of the AMP and non-AMP sequence 
data sets used to train the different models might also shape the models’ performance, in terms of whether or 
not a tested putative AMP sequence comes from a taxon included in the training set. Unexpectedly, there was a 
weak trend that when a query taxon was present in the training set of a tool, then  F1 and MCC scores tended to 
be slightly smaller (see Supplementary Material Fig. S4). In general, however, there was no significant association 
of the number and evenness of taxonomic groups in the training data sets with the tools’  F1 and MCC scores 
(Supplementary Material Fig. S5).

Additionally, due to the variable availability of AMP sequences for the different taxa, AMP family could not 
have been included when testing performance, even though there might be tool-specific differences in it for 
the different AMP families (i.e. a given tool may differ in its capacity to recognize defensins versus cecropins 
as AMPs). Notably, we know about no studies explicitly assessing the effect of AMP family on the efficiency of 
AMP prediction, therefore this aspect might be a quite relevant and important one to address in future studies. 
Furthermore, owing to practical reasons, non-AMPs (used both for training prediction tools, or for the assess-
ment of their performance) are not standardized, i.e. these peptides are generally drawn randomly from those 
peptides that are available for the given taxa, with no known functions in antimicrobial immunity. Indeed, both 
in training and benchmarking data sets, false negative samples may be present in the form of yet-unknown (or 
simply undocumented) antimicrobial activity of some proteins used in the negative (non-antimicrobial) data 
sets. Also, non-overlapping biological functions between peptides from different taxa might introduce additional 
bias in the performance of prediction tools. For example, some membrane-active peptides might be expected to 
be falsely recognized as AMPs more often than others, due to their structural and physicochemical properties 
similar to that of  AMPs6. Hence, if the randomly drawn non-AMPs in a given taxon contain a higher propor-
tion of such membrane peptides than in other taxa, this might confound the per-taxa-performance of the used 
prediction tool. Using standardized sets of non-AMP protein families (preferably of several, distinct biological 
functions) that have available sequence data for a wide range of taxa might help improve the performance of 
new prediction tools.

Although our current study addresses in silico prediction of antimicrobial activity in (invertebrate) peptides 
based on amino acid sequence, some of the details we have discussed are connected to the recent aspiration 
to improve upon currently used methodological standards of (pre)clinical testing of AMPs (such as in antimi-
crobial susceptibility testing, e.g.  see29,30). Indeed, more reliable and robust in silico prediction tools utilizing 
modern algorithms and ever larger data sets undoubtedly require standardization of quality of data. As such, 
AMP records could contain biologically and clinically relevant informations about the given peptides (as they 
have started to do so, see e.g.  APD322 or  DRAMP31). Similarly, standardized sets of non-AMPs characterized 
by laboratory-confirmed absence of antimicrobial activity in relevant contexts (in vitro, ex vivo, in vivo), and/
or model organisms would quite likely help us improve current and future prediction tools and AMP design.
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Overall, the results presented here highlight the necessity of taking taxonomic information into account when 
predicting antimicrobial function of putative invertebrate AMPs. At this point, although arguably crucial, find-
ing the specific background of taxonomic bias (e.g. composition of training sets, or characteristics of prediction 
algorithms) in prediction performance of the assessed tools is outside the scope of our paper, and we are not able 
to offer technical details or solutions. We merely aimed to highlight an overlooked phenomenon, and to provide 
a practical guide to use the currently available and most popular tools. We hope that our results will serve as a 
useful guide in choosing the appropriate AMP prediction tool for testing candidate peptides in invertebrates to a 
wide range of researchers. This could be useful for the big-data/bioinformatic data style search for candidates in 
open databases and repositories, and for the identification of AMPs in invertebrates for ecophysiological studies 
as well. In the search for putative AMPs based on genomic and/or proteomic data, and immune profiling based 
on transcriptomics (i.e. screening produced peptides using transcriptome) in invertebrates may also benefit from 
our proposed approach. In addition, future studies to implement refined AMP prediction techniques, inclusion 
of taxonomic and/or phylogenetic information, utilization of explicit categorization of AMPs, and standardized 
sets of non-AMP sequences will undoubtedly help us to achieve more robust prediction of antimicrobial func-
tion in invertebrate models throughout our endeavour to identify peptides of potential therapeutical utility.

Methods
All data handling and analyses were performed in the R software for statistical computing (ver. 4.0.1)32. AMP 
sequences were acquired from the protein database of the National Center for Biotechnology  Information20,21 
and the Antimicrobial Peptide Database  APD322 (specific keywords used in the search are listed in the “Sup-
plementary Material”). Taxa for which we acquired AMP sequences were Acari (n = 76), Araneae (n = 45), Blat-
todea (n = 162), Coleoptera (n = 62), Decapoda (n = 64), Diptera (n = 447), Hemiptera (n = 63), Hymenoptera 
(n = 183), Lepidoptera (n = 136), Mytiloida (n = 31), Neogastropoda (n = 5), Orthoptera (n = 8), Ostreoida (n = 62), 
Pectinoida (n = 4), Scolopendromorpha (n = 10), Scorpiones (n = 103), Unionida (n = 4), Veneroida (n = 48), and 
Xiphosura (n = 12). The quantiles for length of amino acid sequences were:  Qmin = 8,  Q25 = 39, median  (Q50) = 63, 
 Q75 = 95,  Qmax = 452.

Table 2.  Additional informations about the used prediction tools. In the “Size of training set” column the 
number of sequences separately for AMPs and non-AMPs were not always available. In the “Type of training 
set” column where not indicated separately, both AMPs and non-AMPs were drawn from the name source(s).

Prediction tool Size of training set (AMP + non-AMP) Type of training set Modus operandi

ADAM 7000 < AMPs Unique AMP sequences from 12 databases Clustering based on structural folds

AmpGram 4926 (2463 + 2463)
Unique AMP sequences of standard amino acids from 
dbAMP; unique cytoplasmic non-AMP proteins from 
UniProt

Identifying n-grams (amino acid motifs) with antimicro-
bial potential

AMP scan 2 4042 (2021 + 2021) Unique AMP sequences from APD3; unique non-AMP 
proteins from UniProt

Using amino acid sequences (through embedding, 
convolutional, max pooling, and LSTM layers) to predict 
probability of AMP activity

CAMPR3 10 247 AMPs AMP sequences from UniProt, PDB, PubMed, CAMP 
database

Using Hidden Markov models to identify conserved 
AMP-specific motifs

Class AMP 10 247 AMPs CAMP database

Predicting antibacterial, antifungal, and antiviral proper-
ties from amino acid sequences based on physicochemi-
cal properties: charge, hydrophobicity, conformational 
similarity, normalized van der Waals volume, polarity, 
polarizability, secondary structure propensity, frequencies 
of dipeptides and tripeptides

CS-AMPpred 620 (310 + 310) Cysteine-stabilized (4 + cysteine residues) AMPs from 
APD2; non-AMPs acquired from PDB

Identification of cystein-stabilized peptides with anti-
microbial activity, based on physicochemical properties: 
charge, hydrophobicity, hydrophobic moment, amphip-
athicity, α-helix propensity, flexibility, indices of α-helix 
formation, ß-sheet formation, and loop formation

iAMP 6214 (3107 + 3107) AMP sequences were acquired from AntiBP2, CAMP, 
APD3, LAMP, AVPred

Predicting antimicrobial function using support vector 
machine, based on compositional (pseudo and normal-
ized amino acid composition), structural (α-helix, 
ß-sheet, and turn propensity), and physicochemical 
(isoelectric point, hydrophobicity, net charge) properties 
of amino acid sequences

iAMP-2L 3283 (878 + 2405) Unique AMP sequences were acquired from APD/APD2; 
non-AMP sequences were acquired from UniProt

Predicting antimicrobial function using fuzzy K-nearest 
neighbour classification, based on the pseudo amino acid 
composition, utilizing five physicochemical properties: 
hydrophobicity, pK1  (Cα-COOH), pK2 (NH3), PI (25 °C), 
molecular weight

IAMPE 5739 (4349 + 1390) CAMP, LAMP, ADAM, AntiBP

Predicting antimicrobial function by using algorithms 
(naive Bayes, k-nearest neighbours, support vector 
machine, random forest, and extreme gradient boosting) 
utilizing 13CNMR-based clustering and physicochemical 
properties

StM 684 (342 + 342) APD2 Identifying AMPs based on their geometric average of 
three hydrophobic moment measures
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Non-AMP sequences were downloaded from  UniProt23: for each taxon, a large batch of proteins without 
known antimicrobial activity was acquired, between the length of 10 and 200 amino acids (for specific search 
expression see “Supplementary Material”), from which 2n for each taxon were randomly drawn (where “n” refers 
to the number of acquired AMP sequences in the given taxa), without duplicate sequences.

After the acquisition, both AMPs and non-AMPs were used with 10 AMP prediction tools; as some of the 
tools included multiple algorithms, in total there were 20 algorithms for the prediction of AMP properties for 
each acquired sequence (for the detailed list of the used prediction tools see Table 3).

In the case of prediction tools providing a probability for a given amino acid sequence to be an AMP, we used 
the conventional 0.5 threshold (i.e. sequences with > 50% probability were considered to be classified as AMP). 
Results from the prediction tools were evaluated using the typical binary classification performance measures:

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False Negative prediction, 
respectively. We also calculated the  F1 score, a standard measure of classification efficiency, as the harmonic 
mean of precision and  sensitivity40:

F1 scores can range between 0 and 1, the former indicating that either sensitivity and/or precision is zero, 
whereas the latter indicates perfect precision and sensitivity. Furthermore, we have calculated Matthew’s cor-
relation coefficient (MCC) as well, using the R-package “mltools”41. MCC was found to be unbiased in imbal-
anced confusion matrices in binary classification, and was suggested to be adopted as the standard performance 
measure in the evaluation of binary classification  tasks42. MCC values range between − 1 and 1: larger positive 
values reflect better prediction, zero indicates prediction no better than random chance, and negative values 
indicate consistent disagreement between prediction and observation. In our evaluations and analyses we decided 
to report both  F1 scores and MCC, because  F1 is still widely used and a large number of researchers may find it 
helpful to see both performance measures while interpreting our findings.

Accuracy =
TP + TN

TP + FP + TN + FN

Presicion =
TP

TP + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 =
TP

TP +
1

2
(FP + FN)

=
2

Sensitivity−1
+ Precision−1

Table 3.  List of the used prediction tools (and algorithms within some tools). a Used on local computer, not on 
web-server.

Prediction tool Algorithm URL References

ADAM
Hidden Markov models http:// bioin forma tics. cs. ntou. edu. tw/ 

ADAM/ tool. html Lee et al. (2015)33

Support vector machine

AmpGrama N-gram encoding and random forest http:// biong ram. biote ch. uni. wroc. pl/ 
AmpGr am/ Burdukiewicz et al. (2020)34

AMP scan 2 Deep neural network https:// www. dvelt ri. com/ ascan/ v2/ ascan. 
html Veltri et al. (2018)35

CAMPR3

Artificial neural network

http:// www. camp. bicni rrh. res. in/ predi ct/ Waghu et al. (2016)36
Discriminant analysis

Random forest

Support vector machine

Class AMP
Random forest http:// www. bicni rrh. res. in/ class amp/ predi 

ct. php Joseph et al. (2012)37

Support vector machine

CS-AMPpreda

Support vector machine: linear kernel
https:// sourc eforge. net/ proje cts/ csamp 
pred/ Porto et al. (2012)10Support vector machine: polynomial kernel

Support vector machine: radial kernel

iAMP Support vector machine http:// cabgr id. res. in: 8080/ amppr ed/ server. 
php Meher et al. (2017)38

iAMP-2L Multi-label fuzzy K-nearest neighbour http:// www. jci- bioin fo. cn/ bioin fo/ iAMP- 2L Xiao et al. (2013)11

IAMPE

K-nearest neighbour

http:// cbb1. ut. ac. ir/ AMPCl assifi er/ Index Kavousi et al. (2020)39
Support vector machine

Random forest

Extreme gradient boosting (XGBoost)

StM Hydrophobic momentum threshold http:// www. porto repor ts. com/ stm Porto et al. (2020)12

http://bioinformatics.cs.ntou.edu.tw/ADAM/tool.html
http://bioinformatics.cs.ntou.edu.tw/ADAM/tool.html
http://biongram.biotech.uni.wroc.pl/AmpGram/
http://biongram.biotech.uni.wroc.pl/AmpGram/
https://www.dveltri.com/ascan/v2/ascan.html
https://www.dveltri.com/ascan/v2/ascan.html
http://www.camp.bicnirrh.res.in/predict/
http://www.bicnirrh.res.in/classamp/predict.php
http://www.bicnirrh.res.in/classamp/predict.php
https://sourceforge.net/projects/csamppred/
https://sourceforge.net/projects/csamppred/
http://cabgrid.res.in:8080/amppred/server.php
http://cabgrid.res.in:8080/amppred/server.php
http://www.jci-bioinfo.cn/bioinfo/iAMP-2L
http://cbb1.ut.ac.ir/AMPClassifier/Index
http://www.portoreports.com/stm
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Tool performances were also assessed separately for taxa. When inferring on the best performing tool for 
each taxon, we used the “highest score” rule of thumb, and we listed the prediction tools both with the highest 
 F1 score and highest MCC for each specific taxon. We also presented all scores for all tool-taxon combinations 
(see “Results”). Additionally, taxonomic bias in prediction power of tools was calculated as the median distance 
between MCC scores within taxa, separately for each prediction tool. The utilized measure of taxonomic bias is 
expected to range between 0 and 2, with smaller values indicating no or small differences in MCC across taxa 
within a given prediction tool, whereas larger values indicate substantial variation in MCC across taxa within 
the given prediction tool.

Data availability
Amino acid sequences and data tables used in our study have been made available at figshare (https:// figsh are. 
com/ proje cts/ Taxon omic_ bias_ in_ AMP_ predi ction/ 114585).
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