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Abstract: To investigate the effects of viscoelasticity on the stick-slip behaviour, a new model repro-
ducing the partial slip of viscoelastic materials under fully coupled conditions is developed in this
paper. The ratio of retardation time to relaxation time is employed to characterize the rheological
property of a viscoelastic material. It is found that materials with higher ratios exhibit more fluid-like
behaviours while those with lower ratios perform more like solid. As long as the contact input
(load or displacement) is constant, the stick ratio (ratio of stick area to contacting area) is found
to be insensitive to the viscoelasticity of materials. However, the separation pattern of the stick
and slip regions varies with time when different contact phenomena (creep or stress relaxation) are
encountered in the lateral and normal directions. The transition process from partial slip to gross
sliding of viscoelastic materials, unlike the elastic response, tends to be abrupt when fully coupled
conditions between shear tractions and pressure are introduced. When identical contact parameters
are specified for different viscoelastic materials, the more fluid-like material always experiences a
quicker transition from partial slip to gross sliding.

Keywords: contact mechanics; coupled partial slip; viscoelasticity; friction

1. Introduction

Owing to the dimensional stability and capacity to sustain loads over long periods of
time, viscoelastic materials have been extensively applied in many engineering fields, for
example, as rubbers in automotive parts [1] and polymers in prosthetic joints [2]. When it
comes to the design optimization and tribological analysis of these engineering components,
the mechanical response of viscoelastic materials must be considered. However, a closed-
form mathematical solution to viscoelastic contact problems is a significant challenge
within the framework of classical contact mechanics as the structural complexity and
time-dependent properties of these materials impede its development.

Great efforts have been made over the past few decades to provide solutions to various
viscoelastic contact problems. Based on the assumption that the contact area increases
monotonically without surface adhesion, a solution to the spherical indentation problem
of linear viscoelastic materials was developed by Lee and Radok [3]. An essential concept
known as the ‘elastic–viscoelastic correspondence principle’ was proposed in this study,
in which the theory of Boltzmann hereditary integral is applied. This principle has now
become the foundation for many recently developed analytical and numerical models of
viscoelastic contact problems. The application of this tentative analytical method, including
the limited contact geometry and monotony of the contact radius, was later extended
somewhat by many researchers including Hunter [4], Graham [5], Yang [6], Ting [7,8], and
Greenwood [9] using different approaches. A solution for the real contact area for a vis-
coelastic solid squeezed into a randomly rough surface was proposed by Persson et al. [10]
using a contact-mechanics-based theory. However, these updated analytical solutions are
still limited in the applications where they could be employed. Considering the existence
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of surface roughness, arbitrary loading history, and complicated rheological behaviour
of viscoelastic materials in practical contact problems, it is difficult to obtain a valid time-
varying solution based on existing analytical theories. A numerical model presents itself
as a suitable alternative in this dilemma for which several simulation tools have been
developed to assist in the analysis of viscoelastic components. A robust numerical model
solving the point contact problem between a rigid indenter and a homogeneous viscoelastic
half-space was presented by Chen et al. [11] using the semi-analytical method (SAM).
Although the model was initially developed to simulate the normal and non-conformal
contacts of polymer-based materials characterized by a wide spectrum of relaxation times
and complicated surface topographies, it was extended to investigate more complicated
contact problems. Yu et al. [12] included surface adhesion, Koumi et al. [13] considered
heterogeneous viscoelastic materials and Spinu [14] analyzed the line contact configuration.

Apart from indentation problems, the sliding or rolling contact of viscoelastic mate-
rials has been one of the most investigated topics in the last few decades. Based on the
correspondence principle, the rolling contact of a rigid cylinder on a viscoelastic half-space
was analyzed by Hunter [15]. The solution to the rolling friction between a hard cylin-
der and a viscoelastic sphere was provided by Persson [16], and the sliding contact of a
rigid wavy surface against a viscoelastic half-space was investigated by Menga et al. [17].
The geometrical limitations of the contacting bodies in these analytical solutions were
overcome by numerical models developed later. Carbone and Putignano [18] proposed a
novel method to analyze steady-state viscoelastic contact, in which a correction factor was
introduced that takes into account the thickness of the contacting viscoelastic surface as well
as the sliding speed. The model was employed to simulate the frictionless sliding contact
of rough viscoelastic materials in different applications (half-space [19] and layer [20]).
To further understand the complexity of viscoelastic sliding contact problems in practice,
an ellipsoidal inhomogeneity was included by Koumi et al. [21] The rolling and sliding
contacts of a layered viscoelastic half-space, in which the viscoelastic layer and substrate
exhibit distinct properties, were simulated by Wallace et al. [22]. Meanwhile, the effects of
interfacial imperfections between the layer and substrate on the transient and steady-state
solutions were investigated by Zhang et al. [23].

Compared to the above-mentioned models of the frictionless sliding or rolling contacts
of viscoelastic surfaces, less attention has been paid to the partial slip aspect of tangential
contact problems. Under such a contact condition a global relative sliding does not occur.
Instead, the contacting area is separated into stick zones, in which no relative motion
happens, and slip zones, in which local relative movement exists. This type of contact phe-
nomenon is commonly encountered in practice when two contacting surfaces are subjected
to a tangential load that is not enough to induce gross sliding. An early viscoelastic partial
slip solution was obtained by Goryacheva [24], where a viscoelastic cylinder rolling on a
half-space of the same material was studied. Based on Coulomb’s friction law, the partial
slip analysis on the rolling contact of viscoelastic multi-layered cylinders was provided by
Kaller [25], whereas Goryacheva and Sadeghi [26] considered a different contact configu-
ration (a cylinder sliding or rolling on a viscoelastic layer bonded to an elastic half-space)
using the Goodman approximation [27].

The assumptions and approximations implemented in these tentative viscoelastic
partial slip solutions become inapplicable when it comes to the contact of two dissimilar
materials due to the significant interactions between normal pressures and shear tractions.
Considering that a metal–polymer contact is one of the most common interfacial material
combinations used in engineering practice, such as in medical devices [28], the coupling
effects must be considered to obtain a valid solution. Numerical modelling of the coupled
partial slip contact of viscoelastic materials was attempted by Spinu and Cerlinca [29], who
considered the fretting of a steel sphere against a viscoelastic half-space under oscillating
tangential loads. Based on the partial slip model of elastic materials by Gallego et al. [30],
the stick–slip analysis in a frictional sliding contact of a rigid sphere on a viscoelastic layered
half-space was presented in the work of Wallace et al. [22]. The partial slip periodic contact
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between a sinusoidal surface and a viscoelastic layer of finite thickness was analyzed by
Bonari and Jacopo [31] using the finite element method (FEM), in which the coupling
between the shear tractions in lateral directions was neglected. To date, the number of
studies reporting the influence of viscoelasticity on the separation of stick and slip regions
under fully coupled conditions is rather limited, and there is still a lack of understanding
of the transition from partial slip to gross sliding in the field of viscoelastic contact. This is
the problem we intend to address in the current paper.

By applying the elastic–viscoelastic correspondence principle, the novel conjugate
gradient method (CGM)-based algorithm for the coupled normal and tangential contacts
of dissimilar elastic materials, developed by the authors of the current manuscript [32],
was extended here to obtain solutions to the stick–slip contact problems of viscoelastic
surfaces. The numerical technique known as Discretized Convolution Fast Fourier Trans-
form (DC-FFT) was implemented to improve the computational efficiency of the algorithm.
The well-validated model was extended to investigate the effects of the time-dependent
properties of viscoelastic materials on stick–slip solutions, where materials characterized by
different rheological models were tested. A novel generalized view to understanding the
responses of viscoelastic materials exhibiting different rheological properties is provided to
explain why the shape of the contact tractions of a viscoelastic contact problem may vary
significantly from the elastic solutions and why the unconventional transition process from
partial slip to gross sliding occurs for viscoelastic materials.

2. Theory and Algorithm Description

To explain how the viscoelastic model is developed, some of the basic principles
about viscoelasticity are reviewed here for clarity. Viscoelastic materials exhibiting a linear
relationship between stress and strain at any time point are known as linear viscoelastic
materials. The viscoelastic surfaces being addressed in this work are assumed to behave
linearly and the simulation of the nonlinear viscoelastic contact problems is beyond the
scope of the current paper. Considering that viscoelastic materials are usually soft, they
can hardly deform plastically. Therefore, plastic contact is not considered in the modelling
work. In addition, the temperature during contact is assumed to be constant.

2.1. Theory of Linear Viscoelasticity

Within the framework of linear viscoelasticity, the responses of stress/strain to suc-
cessive strain /stress stimuli are cumulative. The constitutive law of linear viscoelastic
materials can be explained by two Heaviside step response functions to excitations known
as the creep compliance function (Φ(t)) and relaxation modulus function (Ψ(t)). As their
names suggest, the creep compliance function reveals the creep phenomenon and mathe-
matically it describes the viscoelastic strain response to a unit change in stress. On the other
hand, the relaxation modulus function characterizes the stress relaxation of viscoelastic
materials and mathematically it represents the viscoelastic stress response to a unit change
in strain. The Boltzmann hereditary integral is applied to characterize such a contact be-
haviour, where the response to sequential excitations can be the summation of the responses
that would have been generated by each excitation applied alone.

To consider the stress σ1(t) at time t under the acting of a certain strain ∆ε1 applied at
the time t′1, it can be expressed as

σ1(t) = Ψ
(
t− t′1

)
∆ε1 (1)

Likewise, the stress σ2(t) at time t under the performance of a strain ∆ε2 applied at t′2
is determined by

σ2(t) = Ψ
(
t− t′2

)
∆ε2 (2)



Materials 2022, 15, 5182 4 of 32

Given a number of input strain increments that could be treated as a continuous
distribution, the response of the strain to such an arbitrary sequence of strain becomes [33]

σ(t) =
∫ t

0
Ψ
(
t− t′

) dε(t′)
dt′

dt′ (3)

When the input quantity is the stress instead of the strain, the following relationship
is obtained via an analogous derivation:

ε(t) =
∫ t

0
Φ
(
t− t′

)dσ(t′)
dt′

dt′ (4)

Unlike the case of an ideal elastic contact problem where the compliance and elastic
modulus are mutually reciprocal, the relationship between the creep compliance and the
relaxation modulus of viscoelastic materials is expressed as follows [34]:∫ t

0
Φ
(
t− t′

)
ψ(t)dt′ = t (5)

In the Laplace transform domain, there exists the following essential mathematical
relationship [34]:

Φ(s) Ψ(s) =
1
s2 , (6)

where s is the variable in the Laplace transform domain (s = a + jb).
Such time-dependent behaviours of linear viscoelastic materials can be expressed in

terms of rheological models established with linear springs (perfectly elastic body) and
dashpots (ideal Newtonian fluid). When a spring and a dashpot are arranged in a series
as presented in Figure 1a, such a rheological model is known as the Maxwell model. The
Kelvin–Voigt model is established if the two elements are arranged in parallel as illustrated
in Figure 1b. It is acknowledged that a Maxwell model demonstrates the stress relaxation
of linear viscoelastic materials appropriately, but it fails to account for their creep and
recovery characteristics. On the contrary, the Kelvin–Voigt model performs oppositely.
Furthermore, it exhibits no instantaneous elastic response. A detailed analysis of these
two models can be found in the work of Popov [33]. Considering that these two-element
models can only provide qualitative descriptions, a more sophisticated model, such as the
generalized Weichert model, comprising more elements as shown in Figure 1c is usually
used to characterize the linear viscoelastic materials with precise quantitative information.
The number of elements in the model is determined by the naturally occurring spectrum
of relaxation times, where the relaxation time is denoted by τ and determined by the
properties of the elements as follows:

τ =
ηi
Gi

, (7)

where ηi is the viscosity of the i-th dashpot and Gi is the modulus of the i-th spring.
With the generalized Weichert model, the relaxation modulus function of any linear

viscoelastic material can be expressed mathematically by fitting the experimental data
collected from the conducted relaxation test to the following equation (Prony series [33])
and adjusting the parameters:

Ψ(t) = G0 +
n

∑
i=1

Gi exp
(
− t

τi

)
(8)
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Figure 1. Rheological models describing the behaviour of linear viscoelastic materials: (a) Maxwell 
model, (b) Kelvin–Voigt model, and (c) generalized Weichert model: G is the spring stiffness and η 
is the dashpot viscosity. 
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Figure 1. Rheological models describing the behaviour of linear viscoelastic materials: (a) Maxwell
model, (b) Kelvin–Voigt model, and (c) generalized Weichert model: G is the spring stiffness and η is
the dashpot viscosity.

It is noted that the spectrum of relaxation times of linear viscoelastic materials can
be characterized by introducing as many exponential terms as needed to attain the ex-
pected accuracy of the curve fitting. Once the relaxation modulus function is available,
the corresponding creep compliance function can be easily determined as well utilizing
their mathematical relationship in the Laplace domain (Equation (6)). If the material is
characterized by one relaxation time as in this case, such a three-element model is known
as the Zener model or standard linear solid model.

2.2. Problem Formulation

Although the time derivatives appearing in the governing equations (i.e., Equations (3)
and (4)) add the third argument to the problem parameters and subsequently bring about
complications when addressing the viscoelastic contact problems, the field equations
still possess certain mathematical features. It makes the viscoelastic solution (i.e., the
displacement response of linear viscoelastic materials to an arbitrary distribution of contact
tractions) readily accessible instead of deriving it from scratch. A common practice is
to adapt the existing well-developed elastic solutions to make them applicable to linear
viscoelastic materials following the elastic–viscoelastic correspondence principle. Steps to
take for the transition from elastic solutions to the viscoelastic counterparts when dealing
with a typical half-space contact problem (a rigid sphere against a viscoelastic half-space as
shown in Figure 2a) are detailed as follows:

1. replace the constant elastic contact compliance (1/2G) with the time-dependent creep
compliance Φ(t);

2. subdivide the pressure history in the simulation time p(t) into infinitesimal intervals ( ∂p
∂t′ );

3. superpose the contributions of pressures in all subdivided time intervals by making
use of the hereditary integral (

∫ t
0 ()dt′).

Based on the corresponding solution for an elastic material (the Boussinesq solu-
tion [35]), the normal displacement of the viscoelastic surface caused by the normal traction
at the time t can be determined as follows:

ue
zz(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

(1 − ν)p(x′1,x′2)dx′1dx′2

2πG
√
(x1 − x′1)

2
+ (x2 − x′2)

2 ;

ue
zz(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞ Ge(x1 − x′1, x2 − x′2

)
p
(
x′1, x′2

)
dx′1dx′2,

(9)

uv
zz(x1, x2, t) =

∫ t
0

∫ ∞
∞

∫ ∞
∞

(1 − ν)Φ(t − t′)

π

√
(x1 − x′1)

2
+ (x2 − x′2)

2

∂p(x′1,x′2,t′)
∂t′ dx′1dx′2dt′;

uv
zz(x1, x2, t) =

∫ t
0

∫ ∞
∞

∫ ∞
∞ Gv

zz
(
x1 − x′1, x2 − x′2, t− t′

) ∂p(x′1,x′2,t′)
∂t′ dx′1dx′2dt′,

(10)
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where Equation (9) is the Boussinesq integral for elastic surfaces and Equation (10) is the
adapted viscoelastic solution based on the corresponding principle, in which the Green’s
function Gv

zz(x1, x2, t) characterizes the normal deformation at the point of coordinates
(x1, x2) and at the time point t induced by a unit concentrated and normal force and it is
determined as follows:

Gv
zz(x1, x2, t) =

(1− ν)Φ(t)

π
√

x2
1 + x2

2

(11)

Through the manipulation of elastic solutions, all the continuous equations accounting
for the effects of loading history on the surface displacements during the viscoelastic contact
period can be obtained.

A proper discretization is a prerequisite for the development of a valid viscoelastic
contact model. Apart from the spatial discretization where the area of interest between two
contacting bodies is meshed into equally spaced rectangular elements with a size of 2a× 2b
and the numbers N1 and N2 in the x and y directions, respectively, supplementary temporal
discretization is necessary to model the viscoelastic contact due to the aforementioned
effects of the loading history on the viscoelastic deformation. The total simulation time T is
thus discretized into Nt time points. The time interval is ∆t, which is uniform and assumed
to be sufficiently short so that the elemental pressure is assumed to be constant. Based

on the assumption, the partial derivative
∂p(x′1,x′2,t)dt′

∂t′ in Equation (10) can be substituted
by the finite pressure difference ‘p(i, j, k)− p(i, j, k− 1)′, where p(i, j, k) is the discretized
counterpart of p(x, y, t) with i = 1 . . . N1, j = 1 . . . N2, t = k∆t, and k = 1 . . . Nt.

As a result of the spatial and temporal discretizations, the continuous form of Equation (10)
is modified into the following piecewise definition:

uv
zz(i, j, k) =

Nt

∑
n=1

N1

∑
l=1

N2

∑
m=1

ICv
zz(i− l, j−m, k− n)(p(l, m, n)− p(l, m, n− 1)), (12)

where ICv
zz(i− l, j−m, k− n) is known as the viscoelastic influence coefficient character-

izing the normal displacement observed after k time steps in the node (i, j) of the spatial
mesh under the effect of a uniform pressure of 1/(4ab) Pa acting on the node (l, m) in the
n-th time step after the reference time, with n ≤ k.

After determining the closed-form discretized solutions of all influence coefficient
matrices relating the surface displacements and contact tractions in the x, y, and z directions,
nodal displacements of a linear viscoelastic surface induced by an arbitrary history of nodal
tractions can then be expressed as follows:

ux(i, j, k)
uy(i, j, k)
uz(i, j, k)

=
Nt
∑

n=1

N1
∑

l=1

N2
∑

m=1

ICv
xx(i− l, j−m, k− n) ICv

xy(i− l, j−m, k− n) ICv
xz(i− l, j−m, k− n)

ICv
yx(i− l, j−m, k− n) ICv

yy(i− l, j−m, k− n) ICv
yz(i− l, j−m, k− n)

ICv
zx(i− l, j−m, k− n) ICv

zy(i− l, j−m, k− n) ICv
zz(i− l, j−m, k− n)


·

qx(l, m, n)− qx(l, m, n− 1)
qy(l, m, n)− qy(l, m, n− 1)
p(l, m, n)− p(l, m, n− 1)


(13)

where DC-FFT is applied to accelerate the convolution operations. For the sake of simplicity,
Coulomb’s friction law is implemented here to identify the stick and slip regions within
the contacting area based on a constant and uniform coefficient of friction µ f . A quasi-
static process is assumed to avoid the problem of dissipative friction and its irreversibility
related to the load-path dependency when addressing the frictional contact problems. It is
important to note that the Poisson’s ratio of a viscoelastic material employed in practice is
usually time-dependent [36] but is assumed to be constant here for simplicity.
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The sum of the traction distribution at the contact interface should be strictly equal 
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where Δ (2𝑎 × 2𝑏) is the area of each element in the set mesh and 𝐼௖(𝑘) is the contact 
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Figure 2. (a) Geometry of the contacting bodies: W, Fx, Fy are the input normal load and the
tangential loads in x and y directions, respectively, E1 (E1 = ∞) and ν1 are the elastic modulus
and Poisson’s ratio of the rigid sphere, respectively, and Φ(t) and ν2 are the time-dependent creep
compliance and Poisson’s ratio of the viscoelastic half-space, and (b) Transient displacement condition
on the x− z plane: hi denotes the gap between surfaces before loading, h(t), sx(t), δ(t), u(t) are
the gap between deformed surfaces, the slip distance in the x direction, the rigid body displacement,
and the surface deformation after a certain time t, respectively, with subscript denoting the direction
of relevant vectors.

With the equations and assumptions described above, a sequence of discretized contact
problems with complementary conditions can be constructed to search for the solution
that accurately reproduces the history of the viscoelastic contact process. The boundary
conditions in discretized viscoelastic contact problems are in an analogous form to the
elastic ones summarized by Johnson [37], except that the time is now accounted for:

1. Load balance:

The sum of the traction distribution at the contact interface should be strictly equal
to the input load in the corresponding direction at any specific time point during the
discretized simulation period:

W(t) = ∆ ∑
(i,j)∈Ic(k)

p(i, j, k), Fx(t) = ∆ ∑
(i,j)∈Ic(k)

qx(i, j, k),

Fy(t) = ∆ ∑
(i,j)∈Ic(k)

qy(i, j, k), k = 1 . . . Nt,
(14)

where ∆(2a× 2b) is the area of each element in the set mesh and Ic(k) is the contact domain
at the k-th time point.

2. The deformation of viscoelastic surfaces must meet the following geometrical condi-
tions at any specific time:

In the normal direction, the following condition of surface separation should be met:

h(i, j, k) = hi(i, j) + uz(i, j, k)− δz(k), k = 1 . . . Nt, (i, j) ∈ Ip (15)

where Ip denotes the whole simulation domain, hi is the gap between undeformed sur-
face, and h, and δz are the gap between deformed surfaces and the normal rigid body
displacement at the specified time point k, respectively, as illustrated in Figure 2b.
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In the two tangential directions, the following displacement equation should be met:

sx(i, j, k) = ux(i, j, k)− δx(k), (i, j) ∈ Ic(k);
sy(i, j, k) = uy(i, j, k)− δy(k), (i, j) ∈ Ic(k),

(16)

where sx and sy are, respectively, the slip distances in the x and y directions at a specific
time point, whereas δx and δy denote the time-dependent rigid body displacements in the x
and y directions, respectively, as shown in Figure 2b.

3. Complementary conditions should be satisfied at any specific time over the contact-
ing surfaces:

In the normal direction, the product of the pressure and surface gap must always be
zero over the whole computational domain Ip expressed as:

p(i, j, k) > 0 & h(i, j, k) = 0, (i, j) ∈ Ic(k);
p(i, j, k) = 0 & h(i, j) > 0, (i, j) ∈ Ip − Ic(k),

(17)

where Ip − Ic(k) denotes the non-contacting domain at the time step k.
Equation (17) implies that the investigated surfaces are impenetrable and the surface

adhesion is not considered in the given contact analysis.
In the lateral directions, the shear traction magnitude must be lower than the local

friction and no slip should exist in the time-dependent stick zone according to Coulomb’s
friction law. As to the slip region, the norm of the shear tractions must be equal to the local
friction. In addition, the direction of the shear stress should be opposite to that of the slip
distance. Such contact conditions are expressed as follows:√

qx(i, j, k)2 + qy(i, j, k)2 < µ f p(i, j, k),
∣∣∣sx(i, j, k)2) + sy(i, j, k)2

∣∣∣ = 0, (i, j) ∈ Is(k);
qx(i, j, k)·sx(i, j, k) + qy(i, j, k)·sy(i, j, k) < 0, (i, j) ∈ Ic(k)− Is(k);√

qx(i, j, k)2 + qy(i, j, k)2 = µp(i, j, k),
∣∣∣sx(i, j, k)2) + sy(i, j, k)2

∣∣∣ 6= 0, (i, j) ∈ Ic(k)− Is(k).

(18)

2.3. Algorithm Description

In order to search the time-dependent contact tractions and surface deflections meeting
the conditions described above, CGM is adopted considering its guaranteed convergence
for quadratic optimization problems with inequality constraints. For each time step, the
corresponding surface gap g in the contacting area and slip distance s in the stick regions
are the system residuals to be minimized in established numerical optimization problems.
The normal and tangential contact problems are addressed in two separate solvers, in
which the contribution of contact tractions in all directions is considered when determining
the surface displacement.

When the loads or displacements are just applied at the first time point, there are no
effects on the loading history. Hence, the viscoelastic contact problem being addressed
temporarily becomes a time-independent coupled elastic one, for which the constant
material property is the instantaneous modulus Ψ(0). The iterative process to obtain a
coupled elastic solution is detailed in reference [32], after which the loading history is
accounted for to obtain the contact solutions of the following time steps. The overall
numerical approach to viscoelastic partial slip contact problems is shown in Figure 3. The
effects of loading history are included by considering the contribution of the past loading
history to the surface displacement. To consider the surface displacement in the normal
direction derived from normal pressures uzz at time step α, the additional displacement
component from the pressure history can be determined as follows:

uincre(i, j, α) =
α−1

∑
n=1

N1

∑
l=1

N2

∑
m=1

(ICv
zz(i− l, j−m, α + 1− n)·p(l, m, n)− ICv

zz(i− l, j−m, α− n)·p(l, m, n)) (19)



Materials 2022, 15, 5182 9 of 32

Materials 2022, 15, x FOR PEER REVIEW 9 of 33 
 

 

the rest of the time points, as well as those arising from contact tractions in other direc-
tions, can be determined in an identical fashion, which is suggested to be executed outside 
the iteration process of the contact solvers to reduce the computational time. 

After adjusting the geometrical conditions of deformation (Equations (15) and (16)) 
by converting the surface deformation 𝑢 into the following form, 

𝑢 = 𝑢௜௡௖௥௘ + 𝑢௧ (20)

𝑢௧ = 𝐼𝐶(: , : ,1) ∗ 𝑡(: , : , 𝛼) (21)

the unknown terms in the new equations are reduced to the contact tractions at the time 
point being considered 𝑡(: , : , 𝛼) and the resulting displacement components 𝑢௧. 

The viscoelastic stick–slip contact problem is thus transformed into a sequence of in-
stantaneous elastic counterparts, for which an algorithm similar to that given in the work 
of Wang et al. [32] is employed to search for the solutions until the end of the simulation 
time is reached. 

 
Figure 3. Flow chart of the algorithm for the viscoelastic partial slip contact problems. 

3. Model Validation 
Due to the limited literature concerning the coupled partial slip of viscoelastic mate-

rials, the validation work for the developed model is separated into two separate sections, 
in which reference solutions are given. First, the coupled stick–slip aspect of the model 
has been validated by simulating the partial slip contact between a rigid sphere and an 
elastic half-space, of which a detailed description is given in the work of Wang et al. [32]. 
Second, the viscoelastic aspect of the model is validated by simulating the contact of a 
rigid sphere indenting a viscoelastic material and is detailed as follows. 

To simulate the normal contact problem of a rigid sphere indenting an incompressi-
ble viscoelastic half-space, the time-dependent behaviour of the viscoelastic material is 
simplified and described by a Maxwell model in which the creep compliance and relaxa-
tion modulus are characterized as follows: 

Φ(𝑡) =
1

𝐺
+

𝑡

𝜂
 (22)

Ψ(𝑡) = 𝐺 ∙ exp ൬−
𝑡

𝜏
൰ (23)

The geometry and material properties of the contacting surfaces are given in Table 1. 
  

Figure 3. Flow chart of the algorithm for the viscoelastic partial slip contact problems.

According to Equation (19), the extra deformation for uzz at the second time point
should be ‘ICv

zz(:, :, 2) ∗ p(:, :, 1)− ICv
zz(:, :, 1) ∗ p(:, :, 1)′. The incremental deformations at

the rest of the time points, as well as those arising from contact tractions in other directions,
can be determined in an identical fashion, which is suggested to be executed outside the
iteration process of the contact solvers to reduce the computational time.

After adjusting the geometrical conditions of deformation (Equations (15) and (16)) by
converting the surface deformation u into the following form,

u = uincre + ut (20)

ut = IC(:, :, 1) ∗ t(:, :, α) (21)

the unknown terms in the new equations are reduced to the contact tractions at the time
point being considered t(:, :, α) and the resulting displacement components ut.

The viscoelastic stick–slip contact problem is thus transformed into a sequence of
instantaneous elastic counterparts, for which an algorithm similar to that given in the work
of Wang et al. [32] is employed to search for the solutions until the end of the simulation
time is reached.

3. Model Validation

Due to the limited literature concerning the coupled partial slip of viscoelastic materi-
als, the validation work for the developed model is separated into two separate sections, in
which reference solutions are given. First, the coupled stick–slip aspect of the model has
been validated by simulating the partial slip contact between a rigid sphere and an elastic
half-space, of which a detailed description is given in the work of Wang et al. [32]. Second,
the viscoelastic aspect of the model is validated by simulating the contact of a rigid sphere
indenting a viscoelastic material and is detailed as follows.

To simulate the normal contact problem of a rigid sphere indenting an incompressible
viscoelastic half-space, the time-dependent behaviour of the viscoelastic material is sim-
plified and described by a Maxwell model in which the creep compliance and relaxation
modulus are characterized as follows:

Φ(t) =
1
G

+
t
η

(22)

Ψ(t) = G· exp
(
− t

τ

)
(23)

The geometry and material properties of the contacting surfaces are given in Table 1.
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Table 1. Parameters used in the simulation of a rigid sphere indenting a viscoelastic half-space
(Maxwell model) under constant normal load.

Parameter Value Description (Unit)

R 3.5 Radius of the sphere (mm )
G
η
τ

81.92
81.92

1

Shear modulus of the spring in Maxwell model (GPa )
Viscosity of the dashpot in Maxwell model (GPa·s )

Relaxation time of the viscoelastic material (s)
ν 0.5 Poisson’s ratio of the viscoelastic material
a0
p0

117
3487

Hertzian contacting radius (µm )
Hertzian peak normal pressure (MPa )

A step load of 100 N is applied instantaneously at the beginning of the simulation
window (t = 0) and maintained throughout the whole contact period. The simulation
results derived from the model are nondimensionalized by the Hertzian solutions of
a normal sphere contact, where the instantaneous modulus Ψ(0) is the input material
property. The time-dependent contact tractions and nodal coordinates are normalized by
the peak normal pressure p0 and contact radius a0 (shown in Table 1), respectively. The
contact solutions given hereinafter are all normalized in the same method if not mentioned
otherwise. The potential contact area (512 µm× 512 µm) is discretized by a mesh system
with 256× 256 uniformly distributed elements and the whole viscoelastic contact period
(T = 2τ) is subdivided into 101 time points.

The instantaneous geometrical change of the two contacting bodies under the constant
load is shown in Figure 4, where the interaction region (i.e., contacting area) is observed
to keep increasing with time. This growing area tends not to diminish over time as
the Maxwell model has no so-called steady state and thus cannot fully characterize the
creep phenomenon. The normalized pressure distribution at different times during the
viscoelastic contact process is shown in Figure 5, where the peak pressure keeps decreasing
as the contacting area increases with time. Under constant normal load, the position of peak
pressure is found to change with time and a spike on the contacting edge is observed after
a relatively long time (t = 2.0τ). To validate the simulation results, the numerical solutions
(normal pressure distribution p(t)) are compared with Lee and Radok’s [3] analytical
solutions expressed as follows:

p(r, t) =
2

πR(1− ν)

∫ t

0
Ψ
(
t− t′

) d
dt′

(
Re
√

a2(t′)− r2
)

dt′ (24)

where the operator ‘Re ()’ denotes taking the real part of the complex quantity and the
time-dependent contact radius a(t) is determined as follows [3]:

a3(t) =
3(1− ν)

4
RWΦ(t) (25)

A good agreement between the analytical solutions (scatter plots) and simulation
results (solid lines) can be found in Figure 5.

To account for an arbitrary history of loading conditions, the contact of a rigid sphere
(R = 3.5 mm) indenting a real viscoelastic material exhibiting more than one relaxation
time under dynamic loading conditions was considered. The contact behaviour of a
thermoplastic polymer known as polymethyl methacrylate (PMMA), which satisfies the
assumption of linear viscoelastic material, is simulated under a triangle-shaped loading
condition expressed as follows:

W(t) = 10t·W(t)− 20(t− 10)·H(t− 10), (N) (26)

where H(t) denotes the Heaviside step function.
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Figure 5. Normalized pressure p for the viscoelastic sphere contact (Maxwell model).

Based on the results of a relevant standard relaxation test conducted by Kumar and
Narasimhan [38], a generalized Weichert model was established by Chen et al. [11] to
characterize the mechanical response of PMMA. The relaxation modulus is indicated by a
two-term Prony series (two relaxation times):

(t) = 1429.71 + 184.62·exp
(
− t

8.93

)
+ 191.06·exp

(
− t

117.96

)
, (MPa) (27)

The creep compliance function for PMMA is then determined based on the relation
between the relaxation modulus and creep compliance of linear viscoelastic materials in
the Laplace domain (Equation (6)):

Φ(t) = 0.699− 0.0838·exp
(
− t

133.869

)
− 0.06174·exp

(
− t

9.9404

)
,
(

1
GPa

)
(28)

A time-independent Poisson’s ratio (ν = 0.38) is assumed here referring to Chen et al.’s
work [11]. The area of interest (1280 µm × 1280 µm) is discretized by a mesh system
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with 256× 256 uniformly distributed elements, and the whole viscoelastic contact period
(T = 20 s) is subdivided into 41 time steps. For validation reasons, the coupling between
the normal pressures and shear tractions derived from the dissimilar material properties of
the PMMA half-space and the rigid plane is neglected.

The pressure distributions at different time points are presented in Figure 6a, which
are normalized by the Hertzian solution based on the instantaneous modulus Ψ(0) and
the maximum input load Wmax. The pressures at the loading period and unloading period
are found to be different even though the magnitudes of the indentation load are identical.
The pressure at the unloading period has a lower peak value but a wider covering range
indicating a more conforming contact. Such a difference shows the effects of the loading
history on the solutions to viscoelastic contact problems. Good agreement can be found
between our simulation results and those derived from Chen et al.’s model [11], as shown
in Figure 6a.
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Figure 6. Comparison of the contact solutions from the present model (solid lines) with the results
from Chen et al. [11] (scatter) under the triangular-shaped loading conditions: (a) Normalized
pressure p at different times and (b) Evolution of rigid body indentation δ with the varying normal
load W.

Another validation in terms of the evolution of the rigid body indentation with the
varying indentation load is given in Figure 6b, where the simulation results from our
model agree with the referred solution of Chen et al. [11]. The remaining indentation
corresponds to the unrecovered surface deformation arising from the viscosity of PMMA.
The out-of-phase response of the displacement to the input load is known as hysteresis,
which results from the strain energy lost or dissipated as heat between the loading and
unloading periods due to internal friction in the viscoelastic material. To describe it in
detail, it arises from the viscous component of the material properties. When a force is
applied to a viscoelastic material, there exists a certain resistance to this input force leading
to more energy (larger area under the loading curve) to be exerted than would have been
expected to extend a similar purely elastic material. Such a resistance still performs during
the unloading period leading to a lower amount of energy returned (smaller area under the
unloading curve). Owing to this specific capacity to dissipate energy, viscoelastic materials
are commonly used to produce protective products in practice.

4. Results and Discussion

The validated model is employed to simulate how the separation of stick and slip
regions within the contacting area evolves in a viscoelastic frictional contact problem. Based
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on a material parameter that characterizes the rheological property of materials, a new
unified explanation of the viscoelastic contact behaviour under different conditions is
provided here. These simulation results are somehow counterintuitive from the perspective
of the traditional theory of elastic solid contact.

Before the stick–slip simulation study, we want to raise an argument regarding an
intrinsic behaviour affecting the normal pressure distribution in viscoelastic contacts.

4.1. What Affects the Shape of Pressure Distribution?

In a few studies concerning viscoelastic contact analysis [3,39], the spikes appearing
on the edges in the normal pressure distribution, as shown in Figure 5, were argued to be
one of the features of viscoelastic materials. Such an opinion is not rigorously validated
since the Hertzian-type contact pressure was reported by Spinu and Cerlinca [40], whereas
the spikes on the edges were found by Bugnicourt [39]. Both studies used Zener models
to characterize the viscoelastic response of the simulated materials in their studies. It was
also proposed by Koumi et al. [21] that the configuration of the two contacting bodies
determines the shape of the pressure distribution. In other words, the shape of the contact
tractions depends on which one of the two contacting bodies is viscoelastic, whereas the
other could be considered rigid. According to Koumi et al. [21], when it comes to the contact
between a sphere and a half-space, if the sphere is rigid and the half-space is viscoelastic,
the normal pressure will contain spikes on the edges. Contrarily, the Hertzian-type contact
pressure is obtained. However, the authors of the current manuscript have tested both cases
using a Maxwell model with the properties given in Table 1. The spikes on the contacting
edges appear in the normal pressure profiles after a relatively long time (t ≥ 1.0τ) in
both cases, which contradicts the claims of Koumi et al. [21]. The solutions to the surface
displacement and normal pressure are identical to that presented in Figure 5 no matter
which one of the contacting bodies is viscoelastic. Compared with the solutions shown in
Section 3 using the Maxwell model, the only dissimilarity arising from an opposite contact
configuration is the geometry change in the two contacting surfaces at different time points,
as shown in Figure 7. In this case, identical magnitudes of deformation and indentation
are now experienced by the sphere and flat rigid plane, respectively. It is of note that in
Koumi et al.’s study [21], the normal displacement is specified, whereas the indentation
load is specified in the current study.
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Considering the limitation of Maxwell models to quantify the viscoelastic response of
materials, several simulation attempts using Zener models were conducted. The relaxation
modulus and creep compliance of a Zener model are usually defined in the following
general form in several numerical studies [18–23]:

Ψ(t) = µ0 + (µ ∞ − µ0)exp

(
− t

µ0
µ∞

τ

)
, (29)

Φ(t) = 1
µ∞

+ 1
µ1

(
1− exp

(
− t

τ

))
,

µ1 = 1
1

µ0
− 1

µ∞
, (30)

where µ∞ is the initial shear modulus, µ0 is the modulus after infinite time; the ratio
(µ∞/µ0) is known as the ratio of the retardation time (characteristic time for creep) to the
relaxation time and it was commonly specified to be 10 in different numerical simulations
of viscoelastic contact problems conducted by many researchers [18,21–23].

To investigate the physical meaning of the ratio (µ∞/µ0) and show its effects on the
contact solutions, some of the material properties including the instantaneous modulus µ∞,
the relaxation time τ, the Poisson’s ratio ν, the geometry of the contacting bodies, and
the indentation load were set to be identical to those in the study by Wallace [22]. In
addition, the ratio (µ∞/µ0) is specified to vary within a certain range, as shown in Table 2.
The potential contact area (5.5a0 × 5.5a0) is discretized by a mesh system with 256× 256
uniformly distributed elements, and the whole viscoelastic contact period (T = 3τ) is
subdivided into a number of time points depending on the ratio value.

Table 2. Parameters used in the contact simulation of a rigid sphere indenting a viscoelastic half-space
(Zener model) under constant normal load.

Parameter Value Description (Unit)

W 0.15 Input indentation load (N)
R 10 Radius of the sphere (mm )

µ∞ 3.86 Initial shear modulus of material (MPa )
µ∞
µ0

2,4,8,10 Ratio of retardation time to relaxation time (ratio of initial shear
modulus to modulus after infinite time)

τ 0.01 Relaxation time of the viscoelastic material (s)
ν 0.3 Poisson’s ratio of the viscoelastic material
a0 588.7 Hertzian contacting radius for nondimensionalization (µm )
p0 0.2067 Hertzian peak normal pressure for nondimensionalization (MPa )

The normalized results presented in Figure 8a–e show that the shape of normal
pressure in a viscoelastic indentation problem is significantly affected by the ratio (µ∞/µ0)
of a material. The spikes on the contacting edge are only observed for viscoelastic materials
with a relatively high ratio (Figure 8c for µ∞/µ0 = 8 and Figure 8e for µ∞/µ0 = 10), whereas
a Hertzian-type normal pressure distribution is observed for the materials with a lower
ratio (Figure 8a for µ∞/µ0 = 2 and Figure 8b for µ∞/µ0 = 4). It is of note that for the
simulation of viscoelastic materials with higher ratios of (µ∞/µ0), more time steps are
usually required to discretize the specified time domain to avoid the oscillating results
around the contacting edge during the early period of simulation, as labelled in Figure 8d.
The distinct shapes of the pressure distribution for viscoelastic materials characterized by
standard linear solids with different ratios (µ∞/µ0) were also reported by Yakovanko and
Goryacheva [41], but there exists no detailed interpretation of the outcome.
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The spikes on the contacting edges do not exist permanently. After extending the
simulation time from 3τ to 6τ for the contact simulation of the viscoelastic material with a
ratio µ∞/µ0 = 10, the spikes disappear and the pressure distribution becomes the Hertzian-
type at the end of the simulation time as shown in Figure 8f. In addition, the solutions are
found to be close to each other after a relatively long time (t ≥ 5.0τ), which implies that a
steady state is almost reached for the viscoelastic contact.

To explain the observed phenomena, the changes in surface geometry for the materials
with the lowest and highest ratios of µ∞/µ0 under the constant indentation load within
the same simulation time (Figure 9a,b, respectively) are compared. The viscoelastic surface
with the higher ratio of µ∞/µ0 experiences dramatically increasing deformation with time,
during which the contact becomes significantly more conformal. In other words, the
creep phenomenon is more intense for the surface with a higher ratio. To assume that a
viscoelastic body experiences such a weak creep that the change in surface deformation
per time is extremely insignificant, it could be approximated as an ordinary elastic solid.
One exhibiting a converse contact behaviour could then be treated as a fluid. Based on
the assumption, the ratio of the retardation time to relaxation time determines whether
a viscoelastic is more fluid-like or solid-like. For materials with lower ratios of µ∞/µ0,
the elasticity plays a dominant role leading to a Hertzian-type pressure distribution. In
this case, the viscosity of the materials has relatively trivial effects causing the increase
in the contacting area with a rapidly decreasing strain rate. Eventually, the steady state
of the viscoelastic contact is quickly reached. For materials with higher ratios of µ∞/µ0,
their responses to the indentation load are similar to that of a pack of liquid once squeezed.
Under this condition, the load is distributed to the contacting edges when the material
is squeezed after a period of time. However, due to a decreasing strain rate, a steady
state would be reached for any viscoelastic contact using a Zener model. The pressure
distribution eventually evolves into the Hertzian type arising from the elasticity of materials.
The time needed to reach this state is also determined by the ratio value so that a higher
ratio leads to a longer time.
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It is of note that for viscoelastic solids, the retardation time must always be greater
than the relaxation time, which means that the ratio µ∞/µ0 should always be more than 1.
A ratio that is less than 1 is normally valid for viscoelastic fluids that can be characterized
with an anti-Zener model [42].

Due to the linearly increasing creep compliance, the Maxwell model shows no de-
creasing strain rate as shown in Figure 10. According to Chen et al. [11], a Maxwell model
is usually employed to characterize the evident viscoelastic response exhibited by soft
thermoplastic polymers in the vicinity of their melting temperature. Even though the
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simulation time for the contact problem of the Maxwell model investigated in Section 3 is
extended, the normalized results (Figure 11) show that the spikes on the edges always exist
for the normal pressure distribution. This indicates that the load keeps being distributed
on the contact edges because of its extremely strong fluid-like properties.
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For viscoelastic materials characterized by the generalized Weichert models exhibiting
more than one relaxation time, there exist multiple ratios of µ∞/µ0. To find a general
rule in this case, the normal indentation problems of PMMA and a fictitious viscoelastic
material were simulated. The Poisson’s ratio of the fictitious material is the same as PMMA
(ν = 0.38) but the creep compliance is adjusted based on that of PMMA (Equation (28))
as follows:

Φ(t) = 0.699− 0.5595·exp
(
− t

133.869

)
− 0.02·exp

(
− t

9.9404

)
,
(

1
GPa

)
(31)

The two ratios (µ∞/µ0) of the materials characterized by a two-element generalized
Weichert model are evaluated approximately by transforming the creep compliance function
into the forms in two Zener models. To take the PMMA material as an example, its creep
compliance (Equation (28)) is converted into the following forms:

Φ(t)1 = 0.699− 0.0838·exp
(
− t

133.869

)
,
(

1
GPa

)
(32)
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Φ(t)2 = 0.699− 0.06174·exp
(
− t

9.9404

)
,
(

1
GPa

)
(33)

which leads to two relatively low ratios (µ∞/µ01 ≈ 1.136 and µ∞/µ02 ≈ 1.097). Using
the same method, the ratios of the fictitious viscoelastic material are determined as well
(µ∞/µ01 ≈ 5 and µ∞/µ02 ≈ 1.03).

The surface geometry, contact configuration, and spatial discretization used for the
indentation simulation are identical to that specified for the dynamic loading contact
problem of PMMA in Section 3. A step load of 10 N is specified at the beginning of the
simulation and held constant for 600 s, which is discretized into 61 and 121 time steps for
the contacts of PMMA and fictitious material, respectively.

Under these contact inputs, the PMMA is found to experience such relatively in-
significant creep deformations that the steady-state contact is quickly reached as shown in
Figure 12a. Since the two ratios of PMMA are extremely small, the PMMA surface should
perform more like a solid. On the contrary, spikes on the edges could be observed in the
normalized pressure profiles of the fictitious material (Figure 12b) although a Hertzian-type
pressure appears after a relatively long simulation time. A short-term conclusion regarding
the generalized Weichert model can be drawn so that as long as one of the ratios is high
enough that the material can be considered more fluid-like, spikes on the edges would be
observed for the normal pressure distribution at a limited period.
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4.2. Does the Viscoelasticity Affect the Stick and Slip Separation?
4.2.1. Stick–Slip under Constant Inputs

A normal load alone can result in the partial slip contact of two dissimilar materials
when the coupling between normal pressure and shear tractions is considered. The study
of viscoelastic partial slip contact can be performed without any tangential load. Based on
our understanding of the effects of material ratio (µ∞/µ0) on the contact solutions, Zener
models with two different ratio values (µ∞/µ01 = 3 and µ∞/µ02 = 10) are employed here
to simulate the partial slip contacts of different viscoelastic materials. Some of the contact
inputs including the surface geometry, contact configuration, spatial discretization, and
normal load are specified, as those given in Table 2, whereas the total simulation time
(T = 2τ) is discretized with 81 time steps. A constant coefficient of friction µ f is assumed
to be 0.30.

The normalized contact solutions for these two different viscoelastic materials are
given in Figure 13. Since a tangential load has not been applied yet, the normal pressure
distributions of the two surfaces still exhibit axial symmetry. For simplicity, only the
pressures on the front part of the contacting areas are presented in Figure 13a,b, where the
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peak pressure at the beginning is higher than the Hertzian pressure due to the coupling
effects. The normal pressure profile of the viscoelastic surface with the smaller ratio shows
no significant change related to the coupling effects. In comparison, the extra spikes in the
middle of the contacting region, as indicated in Figure 13b, are found for the viscoelastic
surface with a higher ratio due to the coupling. To explain such results in detail, the
solutions of the normal pressure and shear tractions are interdependent in a coupled
case. For the more solid-like viscoelastic surface (µ∞/µ0 = 3), a Hertzian-type pressure
distribution is expected in the uncoupled case arising from the dominant performance
of its elasticity. The resulting shear tractions are expected to be similar to those that
could be achieved from a purely elastic surface. Although its peak value decreases as
the contacting area increases with time, the shear traction results of the more solid-like
material (Figure 13c) agree with this hypothesis. For the more fluid-like viscoelastic surface
(µ∞/µ0 = 10), pressure spikes on the contacting edges are expected before the steady-state
time point under uncoupled conditions. As a result, additional irregular features appear
on its shear traction profile, as highlighted in Figure 13d, when the coupling effects are
included. These irregularities in turn affect the pressure distribution leading to those
extra spikes.
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Despite the distinct profiles of the contact tractions, the stick–slip separations of the
two viscoelastic surfaces show similar shapes as shown in Figure 14. In both cases, the
contacting area is separated into a central stick region (region surrounded by the blue
line) and a surrounding annulus (the region between the red line and blue line) regardless
of the time. The areas of both the stick (As) and contacting zones (Ac) are found to
increase with the ratios (µ∞/µ0) of the viscoelastic materials (Figure 15a). However, as
illustrated in Figure 15b, the ratios of the stick region to the contacting region (stick ratio
hereinafter) do not vary much between the two investigated viscoelastic materials. This
suggests that the stick ratio is insensitive to the viscoelasticity of materials under the current
loading conditions.
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contact phenomena in the 𝑥 direction, including creep and stress relaxation, are simu-
lated here. It is of note that a load-controlled algorithm in the tangential direction could 
fail to converge when the contact of a viscoelastic material with a relatively high ratio is 

Figure 15. Simulation solutions of different viscoelastic materials under normal load alone: (a) Vari-
ations in the ratios of the stick region (As/Ip, left y axis) and contacting region to the simulation
domain (Ac/Ip, right y axis) with time for different viscoelastic materials and (b) Variations in the
ratios of the stick region to the contacting region (short for stick ratio: As/Ac) with time for different
viscoelastic materials.
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To further investigate the stick–slip contact for viscoelastic materials under constant
inputs, a Zener model with an intermediate ratio value (µ∞/µ0 = 4) is employed. It is of
note that the solutions to viscoelastic contact problems depend on the way the contact is
imposed. To visualize the specific features of viscoelastic materials, two separate cases are
first studied here: constant load and constant displacement in the lateral direction. Most
of the simulation inputs remain the same as in the former case (no input in the lateral
direction), except that the input in the x direction is now changed to be a constant load
(Fx = 0.5µ f W) or a constant displacement (δx = 6.1987). In other words, two different
contact phenomena in the x direction, including creep and stress relaxation, are simulated
here. It is of note that a load-controlled algorithm in the tangential direction could fail
to converge when the contact of a viscoelastic material with a relatively high ratio is
considered. A flow chart showing the search method for contact solutions in the tangential
direction is given in the Appendix A. In the algorithm, the convergence speed of the
outer loop regarding the load balance relies heavily on how the updated shear tractions
adjust the tangential displacements (δx and δy) to make them close to the correct solutions.
When it comes to the contact of a more fluid-like viscoelastic material, the incremental
deformation derived from the previous tractions uincre determined from Equation (19)
could be large after a relatively long time. Therefore, the contribution of the deformation
derived from the shear traction at the current time step ut determined from Equation (21)
does not significantly affect the total deformation. As a result, the changes in the current
time-step shear tractions fail to search for the right tangential displacement, which results
in an endless loop regarding the load balance in the tangential direction. To obtain the
partial slip solution of a viscoelastic surface under constant loading conditions, based on an
extrapolation approach, a dynamic rigid body displacement in the x direction is specified in
the displacement-controlled algorithm to obtain results with a constant tangential loading.
The partial slip simulation test under this input condition is named the load-constant
(LC) test to facilitate the following description and the one under the input of constant
displacement in the x direction is named the displacement-constant (DC) test.

The variations in the tangential load with time in these two cases are shown in
Figure 16a. The load is kept constant for the LC case (creep), whereas the stress relaxation
phenomenon is simulated for the DC case. Due to the relaxed load in the DC case, its stick
ratio is lower than that in the LC case after a certain time but the difference tends to be
insignificant. Figure 16b shows the variations in the contacting area and stick areas with
time under the two different input systems. The growth rate of the stick region in the DC
case is higher under the effects of stress relaxation. Although a constant normal load is
applied in both tests, the growth rate of the contacting area in the LC case is higher. To
explain this, apart from the contribution of surface creep under normal loading, the higher
tangential load in the LC case leads to slight additional contacting areas under the coupling
effects of each time step.

The creep (LC) and stress relaxation (DC) encountered in the x direction result in
different separation patterns of stick and slip regions with time. As shown in Figure 17,
the shape of the stick regions in the LC case does not change with time (always a raindrop
shape), whereas that in the DC case varies (from a raindrop shape to a circular shape).
Furthermore, the position of the stick region changes with time in the DC case, which starts
from almost the rearrest zone of the contacting area and then shifts to the front. Such a
separation of stick and slip regions is expected according to the distribution of the contact
tractions. The normal pressures are shown in Figure 18. Compared to the solutions in the
LC case, it is evident that the DC case shows a higher peak pressure and its position is
closer to the front part of the contacting area. Also, the pressures on the rear section of the
contacting area are found to be lower in the DC case, whereas those on the front section are
higher. Figure 19a,b show the normalized shear tractions (qx and qy, respectively) for the
two cases, where the DC case tends to show higher qx at the rear zone of the contacting area
and lower qx at the front zone. The area in which there is relatively low normal pressure
or high shear traction is more prone to slip as it is easier for the shear tractions to reach
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the boundary of local friction following Coulomb’s law. As a result, there exist more slip
regions at the rear part of contacting area in the DC case.
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LC cases.
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Figure 19. Changes in shear traction distribution with time in the LC (solid line) and DC (scatter plot)
cases: (a) qx along the x axis and (b) qy along the y axis.

To study the effects of the material properties (µ∞/µ0) on the stick and slip separation
within the contacting area under constant displacement input in the tangential direction
(DC condition), Zener models with three different ratio values (µ∞/µ01 =3, µ∞/µ02 =5,
µ∞/µ03 =10) were employed. As expected, different growth rates of stick and contacting
areas are experienced by these materials, as shown in Figure 20a. A lower stick ratio is
observed in Figure 20b for the viscoelastic material with a higher ratio (µ∞/µ0). However,
the differences between the stick ratios of the three cases are not significant despite a more
notable stress relaxation phenomenon exhibited by the material with a higher ratio.
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case are found to be time-independent, which follows a certain separation pattern, as 
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Figure 20. Solutions to the stick–slip contact of different viscoelastic materials (Zener model) under
constant displacement in x direction: (a) Variations in the ratio of the stick region to the simulation
domain (y axis left) and the ratio of the contacting area to the simulation domain (y axis right) with
time and (b) Variations in the resulting tangential loads (y axis left) and stick ratios (y axis right) with
time for different viscoelastic materials (Zener model).

Now, to vary the contact input in the normal direction, the Zener model (µ∞/µ0 = 4)
is tested again but with constant displacement in both the normal and tangential directions
(δz = 34.358 and δx = 6.1987). In other words, the stress relaxation phenomenon is encoun-
tered in both the normal and tangential directions. To facilitate subsequent clarification, the
current test is named the relaxation case and the former test (DC case) with the constant
displacement in the tangential direction but the constant load in the normal direction is now
named the creep case. As shown in Figure 21a, the ratio of the tangential load to the static
friction remains constant with time for the relaxation case, whereas it drops for the former
relaxation case. This consequently leads to a slightly lower stick ratio for the relaxation
case, as indicated in Figure 21a. Unlike the results of the former creep case (Figure 17b),
the shape and size of the stick and slip regions for the current relaxation case are found to
be time-independent, which follows a certain separation pattern, as shown in Figure 21b.
Such results can be expected based on the contact tractions of the corresponding case. As
shown in Figure 22, the normal pressure and shear tractions in the relaxation case vary
insignificantly with time when compared to those in the former creep case.
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Figure 21. (a) Variations in the resulting tangential loads (y axis left) and stick ratios (y axis right)
with time in the relaxation (solid line) and creep (scatter) cases and (b) Time-independent separation
pattern of the stick (dark) and slip (grey) regions in the relaxation case.
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Combing the results of the above partial slip tests, a short-term conclusion can be
drawn. The stick ratio is insensitive to the time-varying property of viscoelastic materials as
long as the specified contact inputs (displacement or load) in the normal and tangential di-
rections are constant. However, the separation pattern of the stick and slip regions depends
on the contact phenomena experienced by the viscoelastic surface in the normal and tan-
gential directions. When different contact phenomena are encountered (different types of
contact inputs are specified) in the normal and tangential directions, the separation pattern
of the stick and slip regions varies with time. Otherwise, it tends to be time-independent.

4.2.2. Evolution of Stick–Slip with Increasing Displacement

To investigate the transition from partial slip to gross sliding for different viscoelastic
materials, a dynamic loading profile is specified in the lateral direction. The simulation
starts with the semi-coupled condition, where only the coupling between the pressure and
shear traction in the x direction is considered. The contact inputs employed here are a
constant displacement in the normal direction and a linearly increasing displacement in
the x direction. The surface geometry, contact configuration, coefficient of friction, spatial
discretization, and input normal displacement are the same as those used in the former
partial slip simulations in Section 4.2.1. By varying the ratio (µ∞/µ0) of the materials and
also the increasing rate of tangential displacement v in the x direction, the stick ratio with
time for different materials under the different increasing rates of tangential displacement
evolves, as shown in Figure 23a. Due to the discrepancy between the linear input of
tangential displacement and the nonlinear mechanical response of the viscoelastic materials,
oscillating results are experienced in the early simulation period, as labelled in Figure 23a.
The variations in the tangential loads resulting from the specified tangential displacements
are shown in Figure 23b. As expected, a higher increasing rate of tangential displacement
leads to a quicker transition from partial slip to gross sliding, in which state the tangential
load is equal to the static friction (µ f W). In addition, under the same increasing rate of
displacement, the more fluid-like material (µ∞/µ0 = 10) can always reach the gross sliding
state within a shorter time owing to its stronger flowability.
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work of classical contact mechanics. A brand-new view concerning the rheological behav-
iour of viscoelastic materials is provided here to explain such results. It is well-recognized 
that there is a threshold concerning the tangential load needed to be reached in order to 
induce sliding for any elastic solid. On the other hand, fluids will flow as long as there is 
a shear in any lateral direction since there exists no threshold to generate relative motion. 
In other words, gross sliding is attained immediately when a tangential load is applied to 
a fluid. A viscoelastic material, as its name implies, should exhibit a response incorporat-
ing the contact characteristics of both solids and fluids. From this perspective, our coupled 

Figure 23. Simulation results under semi-coupled conditions: (a) Evolution of the stick ratio with
time for different viscoelastic materials and (b) Evolution of the resulting tangential loads with time
for different viscoelastic materials (v is the increasing rate of tangential displacement).

To switch to the fully coupled condition, under the same increasing rate of displace-
ment, the tested more fluid-like material ( µ∞

µ0
= 10) can now reach gross sliding within

a shorter time compared to the case under semi-coupled conditions, as illustrated in
Figure 24a. This causes a lower tangential load required to reach gross sliding, as shown in
Figure 24a. Apart from the ordinary full-coupling effects, the transition from partial slip to
gross sliding now tends to be abrupt, as indicated in Figure 24a. The stick ratio jumps from
a relatively high value to zero. To obtain a smoother transition, trial tests with smaller time
intervals were conducted using the same contact inputs. However, the differences between
those partial slip solutions are insignificant when the time intervals used are considerably
smaller, as shown in Figure 24b. This suggests that the abrupt jump is inevitable when
the fully coupled condition is introduced. Mathematically, such an abrupt transition can
be caused by the unstable and time-varying properties of viscoelastic materials and the
modified condition of gross sliding when fully coupled conditions are introduced.
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Figure 24. (a) Comparison of partial slip solutions under fully coupled (circle) and semi-coupled
(square) conditions and (b) Comparison of partial slip solutions using different time intervals (∆)
under fully coupled conditions.

To validate if such a relation holds, the fluid-like material (µ∞/µ0) was further tested,
for which gross sliding was obtained at different times under fully coupled conditions
by varying the increasing rate of surface displacement. The results (Figure 25) show that



Materials 2022, 15, 5182 27 of 32

the variations in the stick ratio just before sliding (short for critical stick ratio hereinafter)
with the time when gross sliding is achieved is relevant to the evolution of the relaxation
modulus of the material within the time. As shown in Figure 25a, the critical stick ratio
first increases when a longer time is required for the contact to be in the sliding state.
Meanwhile, the relaxation modulus drops dramatically, as shown in Figure 25b. However,
the critical stick ratio starts to decrease when the changing rate of the relaxation modulus
becomes lower, as indicated in Figure 25. For the purple line (v = 1× 103 µm/s) where
gross sliding happens when the material property is steady, the transition from partial slip
to gross sliding tends to be less abrupt.
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Figure 25. (a) Fully coupled solution regarding the variations in the stick ratio with time under
different increasing rates of displacement and (b) Variations in relaxation modulus R(t) of the material
with time.

Such an abrupt transition is counterintuitive if analyzing the results within the
framework of classical contact mechanics. A brand-new view concerning the rheolog-
ical behaviour of viscoelastic materials is provided here to explain such results. It is
well-recognized that there is a threshold concerning the tangential load needed to be
reached in order to induce sliding for any elastic solid. On the other hand, fluids will
flow as long as there is a shear in any lateral direction since there exists no threshold to
generate relative motion. In other words, gross sliding is attained immediately when a
tangential load is applied to a fluid. A viscoelastic material, as its name implies, should
exhibit a response incorporating the contact characteristics of both solids and fluids. From
this perspective, our coupled model shows a reasonable outcome resulting from such
integrated contact behaviour. What can be observed from our results is that during the
early period of transition from partial slip to gross sliding, viscoelastic surfaces tend to
require the tangential displacement or the equivalent load to reach a threshold value. This
is identical to the elastic case. However, the final transition tends to be an abrupt process,
which is expected for a fluid, rather than a smooth one that is commonly encountered
when addressing an analogous elastic stick–slip problem under a monotonically increasing
tangential load or displacement.

The partial slip problems discussed above were all simulated when a fixed displace-
ment was specified in the normal direction. To build up the complication, the transition
from partial slip to gross sliding for the fluid-like material ( µ∞

µ0
= 10) was simulated again

but with a constant normal load. Compared to the current case where a creep phenomenon
is encountered in the normal direction, the results (Figure 26) show that it is always quicker
for the former stress relaxation case to reach gross sliding under an increasing rate of
tangential displacement. Since the load keeps decreasing with time when a stress relaxation
is experienced, the sliding condition is easier to be satisfied. Arising from such a difference,
two different evolution forms of stick and slip regions within different times are obtained
for the creep and relaxation cases, as shown in Figure 27.
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5. Concluding Remarks

The three main contact phenomena of viscoelastic materials including creep, stress
relaxation, and hysteresis are reproduced using the newly developed viscoelastic contact
model. The ratio of retardation time to relaxation time

(
µ∞
µ0

)
is employed to characterize

the rheological property of viscoelastic materials. Although the exact boundary value is not
known, materials with high ratios are observed to exhibit more fluid-like contact behaviours,
whereas those with low ratios behave more like a solid. No matter what rheological model
is employed to characterize the viscoelastic material, it is the ratio (µ∞/µ0) that determines
the shape of the contact tractions. Concerning the stick–slip contact analysis of different
viscoelastic materials, the following conclusions can be drawn:

• For the creep contact of a more fluid-like viscoelastic material, the spike on the edge
of the normal pressure distribution is observed before the steady state, which results
in irregular shapes of shear tractions due to the coupling between the pressure and
shear stress. The pressure spikes also influence the subsurface stress. The position of
the peak stress can be shifted to the edge of the contacting area depending on how
skewed the pressure profile is.
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• Different contact solutions including normal pressures and shear tractions can be
obtained depending on whether a constant load or displacement is specified in the
normal and tangential directions. The evolution of the stick ratio is insensitive to the
time-varying modulus and the rheological property of viscoelastic materials as long
as the contact input (load or displacement) remains constant.

• However, the separation patterns of the stick and slip regions within the contacting
area can be different even though the contact inputs are constant. This is determined
by the contact phenomena encountered by the viscoelastic surface. When the same
contact phenomenon (creep or stress relaxation) is experienced in both the normal
and tangential directions, the evolution of the stick region follows a certain pattern.
Otherwise, the way the stick and slip regions are separated would vary with time.

• Unlike that in an elastic solution, the transition from partial slip to gross sliding of
viscoelastic materials tends to be abrupt under fully coupled conditions. Under the
same contact inputs, a quicker transition can be achieved for a more fluid-like material.
Compared to the case where a stress relaxation phenomenon is encountered in the
normal direction, it requires a longer time for the viscoelastic surface to be in the
gross sliding state when a creep phenomenon is encountered. Our findings suggest
for the first time that a fully coupled contact condition leads to significantly different
results than a semi-coupled one and that future analysis of the stick–slip or sliding
of viscoelastic materials needs to be developed with consideration of fully coupled
normal and tangential loads.

Although valid partial slip solutions can be achieved from the developed viscoelastic
half-space model, films with finite thickness rather than a half-space, are the most common
applications of viscoelastic materials, as stated by Zhang et al. [43]. A frictional contact
model taking into account viscoelastic materials in the form of coatings or layers can provide
helpful insights when designing a layer–substrate system. In addition, the modelling of
frictional sliding or the rolling contact of viscoelastic surfaces remains a field that has not
been exploited. These are the subjects of our current ongoing work.
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Appendix A

The flow chart of the tangential contact solver for the elastic stick–slip problem is
shown in Figure A1.
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