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Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee
the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis
progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the
evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins
(HSPs), their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect,
we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue) and
the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y) during the spermiogenesis in both mammals and
nonmammalian vertebrates.

1. Introduction

Sexual reproduction is an evolutionarily conserved mecha-
nism that guarantees genetic variability in order to preserve
the biological biodiversity leading to differential survival of
organisms within a population. It requires the production of
highly specialized haploid cells, the gametes (spermatozoa in
males and eggs in females) through the concerted occurrence
of mitotic, meiotic, and differentiation events. In such a
context, the control of protein folding and sorting is a
fundamental checkpoint that guarantees the production of
high quality gametes and the demolition of aberrant gametes.
This subject matter appears more intriguing if analyzed from
an evolutive point of view. The need to assure high quality
spermatozoa production is surely shared not only by animal
models that use mechanisms of external fertilization, such

as fish and amphibian, but also by animals that use an
internal fertilization strategy in which sperm cells undergo
a complex set of transformations during the transit in male
and female genital tracts (acquisition of motility in male
reproductive tract and capacitation in female reproductive
tract) in order to gain the full fertilizing ability. In this review,
we will focus attention on male gametogenesis and point out
the importance of molecular chaperones belonging to the
superfamily of heat shock proteins (HSPs), their cochaperone
DNAJ proteins, and ubiquitination/deubiquitination system
in order to produce high quality spermatozoa. The evidences
reported here come from nonmammalian vertebrate and
mousemodels, strongly supporting the existence of such evo-
lutionarily highly conserved mechanisms to preserve gamete
quality.
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2. Involvement of HSPs, DNAJ Proteins, and
Ubiquitination/Deubiquitination System
in the Progression of Spermatogenesis
and in the Production of High Quality
Spermatozoa: An Overview

During spermatogenesis, the process that in males leads to
the production of functional spermatozoa, a pool of stem
cells named spermatogonia, has the ability to self-renew as
well as to be committed, thus producing primary sperma-
tocytes. These enter meiosis and produce in turn round
spermatids and spherically symmetric haploid cells. Inter-
estingly, a highly differentiation event, the spermiogenesis,
consists in impressive morphological changes that allow the
formation of spermatozoa. Proacrosomic vesicles formation,
recognition, docking and fusion, sperm head elongation
and transcriptional silencing due to chromatin remodeling,
and the transient appearance of the microtubular manchette
drive nuclear shaping [1], whereas giant mitochondrial and
axoneme organization drive the formation of a flagellum [2].
Thus, the main changes that transform round spermatids
into polarized spermatozoa, the cells that in orchestrated and
finely modulated events gain the ability to reach and fertilize
egg cell, require a deep regulation of cytoskeleton dynamics,
vesicle trafficking, and protein sorting.

The complexity of the spermatogenesis is surely due
to the coexistence of mitosis, meiosis, and cell differentia-
tion in a unique process. Besides endocrine route—mainly
orchestrated by the hypothalamic gonadotropin releasing
hormone (GnRH), pituitary gonadotropins, and gonadal
steroids [3]—there is an intragonadal network of regula-
tors that allows intercellular-, intracellular-, and cellular-
environmental communication [4–6]. Furthermore, a very
hot topic concerns the involvement of HSP/DNAJ proteins
[7] and ubiquitin/proteasome pathway [8] in the control of
protein folding and sorting during the spermatogenesis.

The members of 70 kDa HSP family (HSP70) are molec-
ular chaperones able to regulate the folding, transport, and
assembly of proteins into complexes [9], not only under stress
conditions such as heat, but also under normal physiological
conditions. They selectively bind the unfolded hydrophobic
regions of substrate proteins and, by means of cycles of ATP
binding, hydrolysis, and exchange, drive the correct protein
folding [10]. The HSP70 activity requires the recruitment of
molecular cochaperones belonging to the conserved family of
HSP40/DNAJ proteins [11, 12]. All of them have just a highly
conserved “J domain” by which they interact with HSP70,
stimulating its ATPase activity (Type III DNAJ). Many DNAJ
proteins have an additional Gly/Phe-rich region (Type II
DNAJ) followed in the same cases by cysteine repeats (Type
I DNAJ) [12]. HSP40/DNAJ proteins represent the largest
HSP subfamily, at least in human where up to 41 different
members have been identified [13]. Besides HSP70, also the
family of 110, 60, and 90 kDa HSP (HSP110, 60, and 90, resp.)
and the small HSP (sHSP) function as molecular chaperones
being involved in processes such as the prevention of protein
aggregation or the modulation of protein stability and con-
formation [14]. HSPs, HSP40/DNAJ proteins included, are

conserved in both prokaryotes and eukaryotes [12, 14] and
their impairment causes the accumulation of misfolded pro-
teins that aggregate and cause cell damage or diseases such as
neurodegenerative disorders and infertility in human [15–17].
The control of protein folding and sorting well correlates to
the ubiquitination system, a conserved mechanism involved
in the control of a set of proteolytical and nonproteolytical
cell functions [18]. The ubiquitination system consists of
the following components: (1) ubiquitin, a small heat stable
protein of about 8.5 kDa [19] extensively found in a wide
range of eukaryotic cells, but not in prokaryotic cells [20];
(2) ubiquitin activating enzyme E1; (3) ubiquitin conjugating
enzyme E2; and (4) ubiquitin ligase E3. Ubiquitin covalently
attaches to lysine residues of target protein but also has the
ability to form polyubiquitin chains that are subsequently
transferred to target protein. In this respect, the monoubiq-
uitination is the addition of a single ubiquitin residue; the
multiubiquitination is the addition of several single ubiquitin
residues; lastly, the polyubiquitination is the addition of
a polyubiquitin chain at specific lysine residues in target
proteins [18]. Monoubiquitination, multiubiquitination, and
polyubiquitination activate differential pathways leading to
endocytosis, endosomal sorting, protein trafficking, histone
regulation,DNArepair, nuclear export, cell cycle progression,
cell proliferation/apoptosis, and proteolysis [18] (Figure 1). In
case of protein misfolding, the polyubiquitination at lysine
48 is a tag for the proteasome pathway, one of the main
processes of cellular protein degradation [8]. In this respect,
the ability of deubiquitinating enzymes (DUBs) to edit the
ubiquitination state of protein or to cleave polyubiquitin
chains from substrates is a key step in the correct definition
of tags for subcellular localization and intracellular trafficking
of target protein [21].

In recent years, the relationship between these pathways
and the spermatogenesis has been extensively studied [8,
22, 23] and the recent development of a “pharmacoperone”
(pharmacological chaperone) based therapy [24] points out
that these molecules may represent important pharmaceuti-
cal targets for the treatment of several human diseases, with
infertility being included [24].

HSPs are widely expressed in the testes of several species
and are deeply involved in the modulation of spermatoge-
nesis and sperm functions [25]. In invertebrates, Hsp60C
and Hsp60B are fundamental for spermatogenesis progres-
sion [26] and for spermatid individualization process in
Drosophila melanogaster [27], whereas Hsp70 regulates sper-
matogenesis in the red claw crayfish Cherax quadricarinatus
[28]. Hsp70 is involved in cellular remodeling processes
and in the modulation of apoptosis rate in teleosts [29], a
process also modulated by Hsp90 in newt spermatogonia
[30]. Recently, fourteen members of HSP70 family have been
identified in the genome of swamp eel, Monopterus albus,
a freshwater natural sex-reversing fish, and the expression
of one of them, Hspa8b2, was high, slight, and absent in
testis, ovotestis, and ovary, respectively [31]. Two members
of HSP70 family are specifically expressed in spermatogenic
cells; in particular, Hsp70-2 (currently known as HspA2)
gene is expressed during the meiosis phase [32], while
Hsc70t (currently known as HspA1l) is expressed during the
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Figure 1: (a) The addition of ubiquitin at specific lysine residues on target protein requires the sequential activity of ubiquitin activating
enzymeE1, ubiquitin conjugating enzymeE2, andubiquitin ligase E3. (b)Different ubiquitin pathways: the addition of a chain of four ubiquitin
molecules via lysine 48 in target protein is a tag for degradation into the proteasome; the addition of polyubiquitin chain via lysine 63 and
multiubiquitin and monoubiquitin addition in target proteins activate cellular events other than proteasome dependent degradation (part of
this figure was modified from [18]).

postmeiotic phase [33]. Targeted mutation in Hsp70-2 gene
causes male infertility with massive apoptosis of pachytene
spermatocytes and loss of spermatozoa [7]. Hsp70-2 is also
associated with the synaptonemal complex; in fact, the lack
of Hsp70-2 causes the missing separation (desynapses) of
paired chromosome [34]. Germ cell apoptosis accomplished
to Hsp70-2 downregulation has also been reported in cases
of testicular damage due to oxidative stress [35] and an
unexpected role for Hsp70-2 in the control of spermatid
DNA packaging proteins, the transition proteins 1 and 2,
recently emerged [36]. Hsp70-2 is present in the acrosomal
surface of human sperm and is impaired in idiopathic
failure of sperm-egg recognition [37] as well as in infertile
men with idiopathic oligoteratozoospermia [17]. In human,
Hsp60 is expressed in both spermatogonia and ejaculated
spermatozoa [38], whereas comparative immunolocalization
of Hsp60, 70, and 90 has been provided in boar, stallion,

dog, and cat spermatozoa providing evidence of species-
specific activities related to fertilizing ability [39]. In rabbit,
the distribution pattern of Hsp70 and Hsp90 was similar,
both being mainly located in the spermatids of stage VII-VIII
and in the cytoplasm of spermatogonia, whereas Hsp70-2
has been detected in the cytoplasm of pachytene spermato-
cytes and spermatids [40]. Lastly, Hsp90 is critical for the
activation of the testis-specific serine/threonine kinases [41],
for androgen receptor stability and functionality [42], and
for meiotic progression of spermatocytes beyond pachytene
stage [43]. The dynamic expression of HSPs during the
spermatogenesis is upstream regulated by the heat shock
transcription factors (HSF) [44], whose impairment has been
linked to severe male reproductive defects [45, 46], includ-
ing the pathogenesis of idiopathic azoospermia in human
[47], a condition of severe male infertility due to unknown
causes.
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Table 1

Family Name Expression/localization and/or function Species References

DNAJ/HSP40

DnaJA1/DnaJA2 Spermiogenesis/androgen signaling Mus musculus [90]

DnaJB1 Spermatocytes, round and elongating spermatids,
sperm tail, and acrosome

Mus musculus
Rattus norvegicus [91]

Msj-1 (DnaJB3) Postmeiotic cells and spermatozoa, follows the contour
of developing acrosome Mus musculus [63, 66]

Mfsj-1 Spermatids Macaca fuscata [92]

rDJL Acrosome region of spermatozoa, participates in
vesicular trafficking Rattus norvegicus [93]

Tsarg-1/-3∗/-6 Inhibits spermatogenetic cell apoptosis Mus musculus
Rattus norvegicus
Homo sapiens

[94]
[95]

[96, 97]
DnaJB13 Axoneme formation Mus musculus [98]

USPs/UBPs

Usp2 Sperm motility and fertilization Mus musculus [99]
Ubpy/Usp8 Acrosome biogenesis Mus musculus [67, 85, 87]
Usp9Y Male germ cell development Homo sapiens [100, 101]
Usp14 Spermatid differentiation Mus musculus [102]
Usp25 Testis Mus musculus [103]

Usp26
Suggested role in sperm motility
Blood-testis barrier and sperm head; regulator of
germ-cell movement along the seminiferous epithelium

Homo sapiens
Mus musculus

[104]
[105]

Usp42 Pachytene spermatocytes, round spermatids, and
condensing spermatids Mus musculus [106]

Usp44 Leydig cells and seminiferous epithelium Mus musculus [107]

UCHs

Uch-L1

Spermatogonia, Sertoli cells, caput epididymis, and vas
deferens
Mitotic proliferation, proapoptotic role during the
progression of spermatogenesis and the transit in the
epididymis

Mus musculus [48, 108–110]

Uch-L3
Meiotic pachytene spermatocytes and postmeiotic
spermatids; cauda epididymis
Sperm quality control during epididymal maturation

Mus musculus [48, 109, 110]

Uch-L4 All tissues, with testis included Mus musculus [111]
Uch-L5 Spermatocytes and spermatids Mus musculus [112]

CYLD
Control of spermatogenetic cell apoptosis and
spermatogenesis progression via RIP1/NF-kappaB
signalling axis

Mus musculus [113]

∗Indicates “also known as DnaJB13”.

In testis, Hsp40/DNAJ proteins are involved in sev-
eral processes, such as germ cells progression, apoptotic
rate, androgen signaling, sperm tail formation, and acqui-
sition of sperm function for fertilization as summarized in
Table 1.

Apoptosis commonly occurs during spermatogenesis and
is important to control the number of germ cells and to
eliminate defective germ cells; the balance between germ
cells division and germ cell loss is highly related to the
ubiquitin-proteasome system [48]. Ubiquitination occurs
from spermatocytes to spermatids and is finalized to high
quality sperm production [8]. Accordingly, well-known dra-
matic changes occurring in spermatids are under the control
of ubiquitination. One of them is the drastic reduction
of cytoplasmic volume with half of mitochondria that are
rejected in form of residual body. Thus, the colocalization

of ubiquitin with mitochondria in spermatids and the ubiq-
uitination of prohibitin—a mitochondrial inner membrane
protein—seem to allow such a reduction [23]. Additionally,
histone ubiquitination is an important instrument by which
spermatids replace histones by the transition proteins and
subsequently by protamines [49], and centrosome ubiquiti-
nation may support centrosome removal or reduction after
it has fulfilled its role in generating sperm axoneme [23].
Moreover, some ubiquitination associated enzymes—such as
E3 ubiquitin ligase—play an irreplaceable role in the forma-
tion of acrosome [8, 50–53]. In particular, the inactivation
of TMF/ARA160, encoding a Golgi-associated protein that
exhibits E3 ubiquitin ligase activity, results in the homing
of Golgi-derived proacrosomal vesicles to the perinuclear
surface; as a consequence, spermatozoa and epididymal
sperm cells lack acrosome and present misshapen heads, tails
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coiling around the sperm heads, and lack of motility [50].
Similarly, the inactivation of the E3 ubiquitin ligase Cullin 4A
(Cul4) causes male infertility as a consequence of decreased
spermatozoa number, reduced sperm motility, and defective
acrosome formation [51]. Interestingly, ubiquitination seems
to be an important mechanism of sperm control also in
the epididymis, where spermatozoa acquire the motility. In
fact, ubiquitin is present in human seminal plasma [54], and
defective spermatozoa in both humans and animals become
ubiquitinated during epididymal passage to be then degraded
by the proteasome [55].

Where there is ubiquitination, deubiquitination also
occurs in a reversiblemanner. Two classes of deubiquitinating
enzymes surely exert their activity at testicular level: (1) the
ubiquitin-specific processing proteases (USP); (2) the ubiq-
uitin C-terminal hydrolase (UCH). Besides the involvement
in gonocyte recruitment and cell cycle progression [56], a
growing body of evidences shows the involvement of DUBs
especially during the progression into meiotic phase, the
spermiogenesis, and the transit in the epididymis in order
to direct the formation of high quality sperm and trigger
apoptotic mechanisms that recognize and eliminate defective
spermatozoa [23] (see Table 1 for details).

In such a context, the discovery of evolutionarily con-
served molecular pathways under the control of HSP/DNAJ
proteins and ubiquitin-proteasome/DUBs is intriguing and
testifies that they play fundamental actions. Thus, in the
next paragraph, we will discuss the conserved role played
by the DNAJ protein, Msj-1 (mouse sperm cell-specific
DNAJ first homologue, currently known as DnaJB3), and the
DUB enzyme Ubpy (ubiquitin-specific processing protease-
y), currently known as Usp8, during the spermiogenesis in
both mammals and nonmammalian vertebrates.

3. Msj-1/Ubpy System and
Acrosome Biogenesis

At the end of spermatogenesis, spermatids are subjected to
structuralmodifications such as acrosome and tail formation.
Such events are well known from a morphological point
of view, but underlying signals and molecular mechanisms
leading to them need to be better characterized. In par-
ticular, acrosome formation is a key event that has to be
checked in order to produce sperm cells of good quality
[57]. The acrosome is an acidic secretory vacuole critical
for fertilization whose origin as direct Golgi-derived or
lysosomal/endosomal secretory vesicle is still a matter of
debate [58–60]. Biomarkers of both Golgian and plasma
membrane/early endosome vesicles have been differentially
identified during acrosome biogenesis [60–62], providing
evidence that bothmembrane pathwaysmay contribute to the
formation of this testis-specific organelle. However, antero-
grade and retrograde trafficking pathways of proacrosomic
vesicles are controlled step by step to ensure the right timing
for fusion [59]. Such a coordinated process surely needs the
participation of testis-specific modulators.

In this scenario, the DNAJ protein Msj-1 plays an impor-
tant role [63, 64]. The msj-1 gene was first isolated by

a mouse spermatogenic cDNA library [65]. Interestingly, its
transcript is specifically expressed in germ cells at haploid
stages, as the protein appears in spermatids, especially in the
periacrosomal and centriolar region in tight association with
the testis-specific Hsp70-2 and the deubiquitinating enzyme
Ubpy [63, 66, 67]. A deeper analysis at ultrastructural level
reveals Msj-1 close to cellular membranous-vesicular system
[68]. In particular, at the earlier phase of acrosome formation,
the Golgi phase, a scattered Msj-1 immunolabelling marks
the cytoplasmic area close to proacrosomic granules and
Golgi apparatus. Then, as acrosome formation proceeds to
the cap and acrosome phase, in the anterior part of the
spermatids, Msj-1 labelling follows the contour of the devel-
oping acrosomic vesicles [66, 68]. Such studies of localization
have prompted to speculate a possible role of Msj-1 in the
regulation of acrosome formation. In order to confirm this
hypothesis, wobbler mouse has been used as an experi-
mental model [64]. This is a natural mutant characterized
by motoneuron degeneration and defective spermiogenesis
with sperm cells lacking a real acrosome and presenting
an imperfect head position [69]. Both defects are due to a
missense mutation (L967Q) affecting the gene that codifies
Vps54, a vesicular sorting protein, component of Golgi
associated retrograde protein (GARP) complex [70] that
tethers vesicles from endosome to trans-Golgi network [71].
In particular, endoplasmic reticulumdilatation and abnormal
protein accumulation in degenerating motoneurons [72] as
well as missing of fusion of the proacrosomic vesicles during
spermiogenesis [69] have been described in this mutant.
Interestingly, both Msj-1 mRNA and protein have scantly
been discovered in wobbler mouse testis, starting from
20 d.p.p., when haploid spermatogenic stages appear [64].
Currently, the downregulation of Msj-1 expression observed
in wobbler mouse seems to be combined to an alteration of
testicular metabolism. In fact, the expression of ER𝛼 is also
reduced as well as the intratesticular androgen content [64];
furthermore, mass spectrometric analysis reveals an altered
concentration of protein associated with metabolite trans-
port, fatty acidmetabolism, cellular interactions,microtubule
assembly, stress response, cell redox homeostasis, and detox-
ification [73]. Interestingly, both neurons and spermatozoa
possess specialized vesicular organelles such as the neuronal
signaling endosome and sperm acrosome, respectively, and
both are polarized cells. Thus, msj-1 mRNA has also been
detected in the central nervous system, at ventral horn
motoneuron levels [74], the other major site of cellular defect
in the wobbler mice. In the cervical spinal motoneuron
district, msj-1 expression is significantly downregulated [74],
as already observed in testis [64], thus suggesting that Msj-1
plays a central role in the defects regarding vesicle trafficking
linked to the wobbler mutation.

Interestingly, Msj-1 has also been discovered in a lower
vertebrate, the anuran amphibian, Rana esculenta, a seasonal
breeder whose testis is progressively populated by germ
cells at the same stage that develop in germinal cysts [75].
An expression analysis conducted during the annual sexual
cycle revealed the presence of Msj-1 protein in isolated
spermatozoa and in testis with a pattern closely associated
with the endofmeiosis and the onset of spermatidmaturation



6 BioMed Research International

[64, 76], exactly as observed in mice [63, 67]. Accordingly, an
experiment of quiescence induction that causes the depletion
of postmeiotic stages, decreases Msj-1 expression, completely
confirming the presence of this protein in haploid germ
cells [64]. What is sure is that the use of animal mod-
els phylogenetically distant is an important approach for
detecting highly conserved molecules. This is the case of
Msj-1 that may have a fundamental role during spermio-
genesis, especially during acrosomogenesis, even if other
functions related to protein folding and misfolding might be
postulated.

Beyond Msj-1 expression in frog and mouse, nowadays
blast search reveals the presence of DnaJB3 gene homologue
in human (ID: 414061), Norway rat (ID: 680216), crab-
eating macaque (ID: 102124732), golden hamster (ID:
101841216), domestic ferret (ID: 101674438), European
shrew (ID: 101557802), Southern white rhinoceros
(ID: 101399203), Pacific walrus (ID: 101380753), Florida
manatee (ID: 101353790), Western gorilla (ID: 101148022),
Bolivian squirrel monkey (ID: 101053994), olive baboon
(ID: 101009916), Northern white-cheeked gibbon (ID:
100594426), African savanna elephant (ID: 100669783),
Rhesus monkey (ID: 100426730), and white-tufted-ear
marmoset (ID: 100406349). Furthermore, in human genome
database, two msj-1 like genes have been described but
only one gives rise to detectable mRNA [68, 77] and an
Msj-1 like protein has been detected in human spermatozoa
[68], suggesting a functional role, probably the same
played in mouse and frog, in proper sperm functions.
Interestingly, from a structural point of view, in both
mouse and human, msj-1 is an intronless gene located
on chromosomes 1 and 2, respectively [68], in regions of
demonstrated homology [78] containing the cluster of UDP
glucuronosyl-transferase (UGT) 1A genes. The orientation
of Msj-1 gene is opposite to UGT family members and the
gene is located into an intronic region of UGT1A genes. In
mouse, antisense transcript for msj-1 has been detected [79],
thus not excluding the possibilities that nonfunctional
gene discovered in human may exert a regulatory
function.

A molecular partner of Msj-1 is the DUB enzyme Ubpy
[67] that is highly expressed in brain and testis [80]. Ubpy is
deeply involved in endosomal sorting, in vesicle trafficking
events at the early to late endosome transition, and in the
control of the number and size of endocytic vesicles [81–
84] and for such a reason it has been considered a marker
of acrosome biogenesis from the endocytic pathway. The
gene is evolutionarily conserved being detected in primates
(with human being included), oxen, rodents, monotreme
mammals, birds, and amphibians and sharing a significant
homology with DUB enzymes identified in echinoderms,
insects, and fungi [85]. Since an Msj-1 activity has been
identified in amphibians [76], to verify how much conserved
the Ubpy/Msj-1 system in vertebrates is, Ubpy synthesis has
been checked in R. esculenta during the annual sexual cycle
[86]. Its profile of expression, especially during November–
May—a period in which massive spermiogenesis events
occur—overlaps Msj-1 presence, previously described [76].

In addition, in November and July, Ubpy is located in
round and elongating spermatids and spermatozoa, the
same cellular types strongly immunopositive for Msj-1
[76], indicating the development of conserved functional
roles.

Since Ubpy inactivation is lethal for the offspring [84],
once again the use of mutant wobbler mouse provided
insight to assess its role during the spermatogenesis. Ubpy
expression has been analyzed in both normal and wobbler
mice during the first wave of spermatogenesis together with
the expression of Hsp70-2 and Hsp70t [87]. Ubpy mRNA
and protein were first detected at 10 d.p.p. (appearance of
preleptotene/leptotene spermatocytes) in line with previous
reports concerning Ubpy localization in meiotic germ cells,
spermatids, and spermatozoa [67]. Interestingly, in adult
wobbler testis, whereMsj-1 expression is downregulated [64],
Ubpy and Hsp70t mRNA are upregulated [87]. In addition,
a differential sorting of Ubpy protein has been observed
in spermatids of wobbler mice as compared with wild-type
animals. In fact, while in wild-type testis Ubpy is mostly
detected in soluble fraction, in wobbler testis it is primarily
detected inmembranous/insoluble protein fraction [87]. Fur-
thermore, while in wild-type mouse Ubpy marks the surface
of acrosomic vesicles, in wobbler mice—in which several
acrosomic vesicles do not fuse in functional acrosome—only
a detergent pretreatment allows to detect a diffuse and not
polarized signal in the cytoplasmic/perinuclear area of round
spermatids. From amorphofunctional point of view, while in
wild-type testis several acrosomic vesicles expressing Vsp54
protein follow the route of Ubpy labeled vesicles [85], in
wobbler mouse expressing a mutated Vsp54 protein, these
vesicles are unable to coalesce into larger vesicles and both
Vsp54 and Ubpy coated vesicles remain as scattered small
vesicles into the cytoplasm [88]. Interestingly, Ubpy possesses
a microtubule interacting and transport domain (MIT) [89]
and in vivo it interacts with both spermatid endosomal sort-
ing complex required for transport-0 (ESCRT-0) and micro-
tubule structures [85]. In this respect, the current hypothesis
postulates that in sperm cell Ubpy participates in acrosome
biogenesis, acting as a linker between endosome pathway
and microtubule cytoskeleton. In fact, in the early phase of
acrosome biogenesis, via ESCRT-0 complex interaction, it
recruits small vesicle protein to early endosome and directs
the transport of ubiquitinated protein cargo in endosomal
sorting through its MIT domain. Then, in participation
with additional signals, such as Vsp54, Ubpy/ESCRT-0 tag
may direct the vesicular cargo toward the proacrosomic
vesicle, and, in the next step, when located on the acro-
some surface, Ubpy could mediate the process of nuclear
shaping interacting with the microtubule of the manchette
complex.

The recruitment of additional partners in these routes
has to be postulated, of course. However, these data surely
highlight that Ubpy and Msj-1 work in concert to regulate
basic activity during the spermatogenesis. Interestingly, such
a speculation has been confirmed during evolution, thus
suggesting a fundamental and conserved role played by this
system.
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