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Background
The raw genomic sequences generated by next generation sequencing (NGS) are an 
important source of data for studying and understanding organisms and biological 
mechanisms. However, without a crucial step of extracting biological knowledge from 
the raw data, a process called ‘genome annotation’, the sequences are difficult to exploit 
and may even be useless. A critical step in the annotation process involves the location 
of genes (i.e. ‘structural annotation’), in particular the protein-coding genes and the 
characterization of their intron/exon structures. A large number of automatic annota-
tion pipelines have been developed to identify protein-coding genes, such as Braker2 [1], 
Maker [2] or PASA [3], as well as dedicated resources, such as Ensembl [4] or NCBI 
[5]. Automatic annotation methods are generally based on a combination of empiri-
cal evidence, e.g. mRNA sequencing (RNA-seq) data or known gene structures from 
closely related organisms, and ab initio gene prediction programs, such as Augustus [6], 
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Genscan [7], Snap [8] or GlimmerHMM [9]. Despite these developments, the annotation 
of gene structure remains a major challenge, especially for eukaryotic organisms [10–13] 
due to their complex exon–intron mosaics [14] (Fig. 1).

Eukaryotic gene prediction involves determining the internal architecture of each 
gene, including the start and stop codons, and the boundaries between each exon and 
intron, called splice sites (SS). The SS are specifically recognized by the spliceosome, a 
ribonucleoprotein complex [15], and play an important role in the diversity of the pro-
teome [16, 17]. There are two types of SS, the 5’ site (also called donor site) and the 3’ site 
(or acceptor site), located respectively at the exon–intron and intron–exon junctions. SS 
are generally characterized by the presence of the dinucleotide GT at the 5’ site and AG 
at the 3’ site, called canonical sites [18]. The dinucleotides are embedded in longer, con-
sensus motifs: aGGTAAGT (Donor) and (Y)6N(C/t)AG(g/a)t (Acceptor) [19]. Although 
the canonical SS are highly conserved [20] and represent more than 98.3% of SS in ani-
mals, 98.7% in fungi and 97.9% in plants [21], there are some exceptions, such as the 
presence of the dinucleotides AT-AC or GC-AG [22, 23], described as non-canonical 
sites. Thus, the challenges in accurately predicting all SS in a genome are twofold. First, 
the huge number of GT and AG dinucleotides that are not located at SS can generate a 
high rate of false positives. Second, the presence of non-canonical SS can lead to false 
negative predictions if they are not taken into account [24].

A number of methods have been developed to identify SS by exploiting recent high-
throughput RNA-seq data, for instance MapSplice [25], TopHat [26] or SplitSeek [27]. 
However, this approach depends on the availability of high quality data and a minimal 
depth of sequencing to be able to detect all SS, in particular those in low-expressed iso-
forms [28]. As a consequence, alternative approaches are needed to identify SS based 
solely on the genome sequence. Most of them exploit machine learning (ML) algorithms 
and use several features to describe SS, covering the consensus motifs or other nucleo-
tides in proximity to the SS [29]. The most widely used ML algorithms include Support 
Vector Machines [30–32], Markov models [33, 34], Random Forest [35, 36] and Bayes-
ian networks [37]. However, these methods are limited by the lack of knowledge about 
the input sequence (patterns, secondary structures, etc.), complex biological processes 
[38], a weak genomic context (the region around the SS) and the construction and selec-
tion of pertinent feature sets [29], which is often time-consuming. More recently, pro-
grams using deep learning (DL) algorithms have been introduced, such as DSSP [39], 

Fig. 1 Typical architecture of a eukaryotic protein‑coding gene. Green (enhancer) and red (silencer) boxes 
represent the regulatory elements. The mosaic of exons (labelled yellow boxes) and introns (labelled 
grey boxes) is usually preceded by a promotor (orange box). The brown diagonal stripes represent the 
untranslated regions (UTR). The boundaries between exons and introns are called donor splice sites and 
between introns and exons are acceptor splice sites
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SpliceRover [40], SpliceFinder [41], or SpliceAI [42]. The DL approaches are based on 
convolutional neural networks (CNN) and do not require the manual definition of a fea-
ture set, because they automatically extract the most pertinent characteristics to classify 
elements (here, splice sites) in different classes determined by the initial problem [43]. 
Another advantage of these algorithms is that they are able to find correlations between 
features in a larger region (i.e. in the genomic sequence). In the context of SS detection, 
this characteristic is important, as several elements are involved, such as the branch-
point site (BPS), intronic splicing enhancers (ISE), intronic splicing silencers (ISS), 
exonic splicing enhancers (ESE) and exonic splicing silencers (ESS). Moreover, CNN use 
fewer parameters than classical multi-layer perceptrons, reducing the risk of overfitting 
[44], and they also share these parameters to extract local features.

DL methods rely on the availability of high quality data that is pertinent to the prob-
lem being solved, in order to train accurate models. For this reason, most of the current 
SS predictors have been trained on data restricted to humans or other model organisms. 
To our knowledge, there are no SS prediction tools trained on data from a large range of 
less well studied organisms, such as insects (except fruit fly), fungi or protists.

In this context, we have developed Spliceator, a new tool for ab  initio prediction of 
eukaryotic multi-species splice sites. Spliceator is based on the CNN technology and 
more importantly, is trained on an original high quality dataset [45] containing genomic 
sequences from organisms ranging from human to protists. The training dataset has 
been rigorously established and validated to reduce the number of errors in the input 
data and avoid introducing bias in the learning process. This dataset allows us to limit 
the ‘garbage-in, garbage-out’ effect [46], meaning that poor quality data lead to less reli-
able results. Based on several benchmark experiments, we show that Spliceator achieves 
overall high accuracy compared to other state-of-the-art programs, including the neu-
ral network-based NNSplice [47], MaxEntScan [48] that models SS using the maximum 
entropy distribution, and two CNN-based methods: DSSP [39] and SpliceFinder [41]. 
More importantly, Spliceator performance is robust and remains consistently high for 
sequences from diverse organisms ranging from human to protists.

Results
Design of training and test datasets for multi‑species SS prediction

Since we employ a supervised learning approach, the careful construction of the posi-
tive and negative datasets used for training the CNN models is essential. We designed 
eight strategies to build different datasets, where each strategy highlights a parameter 
that can influence the model performance, such as the input sequence length, the data 
quality, the type of negative sequences (only false positives (FP) or exon, intron and FP 
sequences) and the dataset composition, i.e. the effect of balanced or unbalanced data-
sets with different ratios between the number of positive and negative sequences. Each 
dataset was then split into separate training and test sets in order to build prediction 
models for donor and acceptor SS using CNN.

The first dataset, called All Sequences (AS), includes sequences from the 1361 ‘Con-
firmed’ (error-free) gene sequences available in the G3PO+ dataset (see “Methods” sec-
tion), as well as the 1380 ‘Unconfirmed’ sequences that contain potential gene prediction 
errors. The AS dataset is designed to represent real-world problems, in the sense that 
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the data is extracted directly from public databases. For the second dataset, called Gold 
Standard (GS), we exploited only the ‘Confirmed’ sequences implying that this set is 
error-free. The resulting AS and GS positive subsets include donor and acceptor SS from 
human, as well as from a diverse set of 147 eukaryotic organisms, ranging from primates 
to protists. In order to construct a robust negative subset of non-SS sequences, we again 
exploited both ‘Confirmed’ and ‘Unconfirmed’ sequences for the AS dataset and only 
‘Confirmed’ sequences for the GS dataset. To do this, we randomly selected sequences 
from the exon/intron regions of the G3PO+ genomic sequences, as well as sequences 
containing GT/AG dinucleotides that are not SS.

In order to verify that there is no over-representation of sequences from specific 
organisms or clades, we calculated the mean pairwise percent identity for the input 
sequences with a length of 600 nucleotides (nt) (Table 1) and showed that the majority 
(> 90%) of the sequences in each positive subset (AS and GS) for both donor and accep-
tor SS share between 20 and 30% identity. We also calculated the mean pairwise percent 
identity for sequences with a length of 20 nt, i.e. specifically the short region around SS. 
Again, the pairwise percent identity is similar for AS and GS positive datasets, however 
the majority of these sequences share between 20 and 60%, showing that the context 
close to the SS is more conserved. Interestingly, the donor sequences of length 20 nt 
are more conserved than acceptor sequences, e.g. in the GS dataset, 37.17% of donor 
sequences share 40–50% mean identity compared to 34.09% of acceptor sequences.

Impact of genomic context

To evaluate the impact of the genomic context around the SS on the prediction perfor-
mance of our CNN method, we constructed subsets of sequences for the AS and GS 
datasets having different lengths, ranging from 20 to 600 nt. The sequence segments 
upstream and downstream of the SS dinucleotide contain information allowing the dis-
crimination of SS and non-SS, such as the BPS, polypyrimidine tract (PPT) or regulatory 
cis-elements including exon/intron splicing enhancers or silencers (ESE/ISE or ESS/ISS) 

Table 1 Distribution of sequences according to the mean percent identity

Pairwise sequence percent identity of positive subsets (AS: All Sequences and GS: Gold Standard) for sequences with a 
length of 600 nt and 20 nt for donor and acceptor SS (values in bold correspond to the highest percentage of identity)

Pairwise 
sequence 
identity

Sequence length: 600 nt Sequence length: 20 nt

Donor Acceptor Donor Acceptor

AS GS AS GS AS GS AS GS

0–10% 0.0% 0.0% 0.0% 0.0% 0.04% 0.03% 0.04% 0.03%

10–20% 0.35% 0.27% 0.33% 0.25% 1.0% 0.71% 1.65% 1.32%

20–30% 92.77% 94.88% 92.45% 94.7% 10.27% 8.93% 13.92% 12.44%

30–40% 6.83% 4.78% 7.18% 4.99% 32.62% 31.57% 34.05% 33.20%

40–50% 0.03% 0.04% 0.03% 0.04% 36.24% 37.17% 32.89% 34.09%
50–60% 0.01% 0.01% 0.01% 0.01% 16.28% 17.47% 14.22% 15.34%

60–70% 0.0% 0.0% 0.0% 0.0% 3.2% 3.65% 2.9% 3.2%

70–80% 0.0% 0.0% 0.0% 0.0% 0.3% 0.39% 0.29% 0.33%

80–90% 0.0% 0.0% 0.0% 0.0% 0.03% 0.04% 0.03% 0.03%

90–100% 0.0% 0.0% 0.0% 0.0% 0.02% 0.03% 0.02% 0.02%
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[49]. Determining a pertinent sequence length is important because too short genomic 
regions would prevent the model from using important discriminatory sites, while too 
large genomic regions may introduce noise-inducing features and loss of accuracy [50]. 
We then built CNN prediction models for donor and acceptor SS, using these different 
sequence lengths. Figure 2 (and Additional file 2: Table S1 and S2) summarizes the pre-
diction accuracies obtained by the models for each SS on the test sets.

We observe similar trends for the prediction of donor and acceptor SS with the AS 
and GS datasets. The average prediction accuracy increases for sequence lengths ranging 
from 20 to 200 nt and then generally levels off, indicating that the model cannot find rel-
evant genomic context features beyond this length. However, there are some differences 
between the datasets with different compositions (described in detail below). For exam-
ple, for the AS_10 and GS_10 datasets (ratio 1:10 of positive to negative examples), the 
prediction accuracies are more homogeneous and higher than the other datasets. Inter-
estingly, the sequence length has less effect for the AS_1 and GS_1 datasets, compared 
to AS_0 and GS_0 respectively. AS_1 (respectively GS_1) has the same balanced ratio of 
positive to negative examples as AS_0 (respectively GS_0), but the negative examples are 
more heterogeneous, consisting of exon, intron and FP sequences.

Based on this initial analysis, in the following experiments, we used a sequence length 
of 200 nt for the prediction of donor and acceptor sites with the AS and GS dataset, to 
consider a genomic context that is neither too small nor too large.

Impact of data quality

As described above, the GS dataset contains only true SS from the ‘Confirmed’ gene 
sequences, while the AS dataset includes some noise (i.e. false SS) from ‘Unconfirmed’ 
sequences. To estimate the impact of this noise on model prediction, we compared 
the average accuracy of the AS models with the corresponding GS models for each SS 
(donor and acceptor) and for different dataset compositions, as shown in Fig. 3 (Addi-
tional file 1: Table S1).

Fig. 2 Prediction accuracy according to input sequence length for each dataset (AS: All Sequences and GS: 
Gold Standard) for A donor and B acceptor SS
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As expected, the GS models achieved the best accuracy with an average of 94.11%, 
95.34%, 95.11% and 97.68% respectively for the GS_0, GS_1, GS_2 and GS_10 donor 
datasets and 92.73%, 94.19%, 94.59%, 97.45% respectively for the acceptor datasets. In 
comparison, the AS models obtained an average accuracy of 93.09% (-1.02%), 93.95% 
(-1.39%), 93.88% (-1.23%) and 97.33% (-0.35%) respectively for the AS_0, AS_1, AS_2 
and AS_10 donor datasets, and 91.99% (-0.74%), 92.62% (-1.57%), 93.70% (-0.49%) and 
97.17% (-0.28%) for the acceptor datasets. The results of unpaired t-tests (Additional 
file 1: Table S2) show that all differences between AS and GS datasets are statistically 
significant. Interestingly, the difference between AS_1 and GS_1 is the largest for both 
donor and acceptor models. Based on these results, we selected only the GS models 
for the following experiments.

Impact of negative dataset composition

While the definition of reliable positive examples is clearly essential, the construc-
tion of the negative dataset will also have an impact on the ability of CNN methods to 
distinguish between positive and negative examples. The prediction of SS is an intrin-
sically unbalanced problem, since in a protein coding gene the SS represent only a 
small proportion of the total nucleotide length. Therefore, to investigate the impact of 
the negative subset on prediction performance, we constructed a number of datasets 
with different types of negative sequences and different ratios of positive and nega-
tive examples. We designed two balanced datasets, both with a ratio 1:1 of positive 
to negative examples, but with either homogeneous (GS_0) or heterogeneous (GS_1) 
negative examples, as well as two unbalanced datasets with ratios of 1:2 (GS_2) and 
1:10 (GS_10) of positive to negative examples. The unbalanced datasets both have 
heterogeneous negative examples. We then computed different metrics to evaluate 
the performance of each model on the test set, as shown in Fig. 4.

Fig. 3 Average prediction accuracy for donor and acceptor SS, using the AS and GS datasets (AS/
GS_0 = positive/negative ratio of 1:1 with only FP sequences in negative subset; AS/GS_1 = positive/negative 
ratio of 1:1 with exon, intron and FP sequences; AS/GS_2 = positive/negative ratio of 1:2 with only FP 
sequences in negative subset; AS/GS_10 = positive/negative ratio of 1:10 with only FP sequences in negative 
subset). Standard deviations are indicated by black bars
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The overall best performance for the test set is obtained using the GS_1 dataset, with a 
balanced number of positive and negative sequences and heterogeneous negative exam-
ples (exon, intron and FP sequences). Although the average accuracy is lower than for 
the unbalanced GS_10 dataset (positive/negative ratio of 1:10), the other metrics includ-
ing the average F1 score and precision are higher for the GS_1 balanced dataset.

To confirm these results, the GS models were also evaluated on a set of 5 independ-
ent benchmarks (human, fish, fly, worm, plant) and using different metrics. The results 
are shown in Additional file 1: Figure S1A and B. The GS_1 dataset again obtains better 
overall performance metrics for both donor and acceptor SS, notably for fly, worm and 
plant species. Based on these results, we chose to consider only the GS_1 models in the 
following experiments.

Performance of optimized CNN model

Based on our initial analyses, we determined the optimal training set for the CNN mod-
els to predict donor and acceptor SS, namely the GS_1 dataset: a high quality balanced 
dataset with an equal number of positive and negative sequences, heterogeneous nega-
tive examples containing exon, intron and FP sequences and an input sequence length of 
200 nt. For this optimized model, we further characterized the prediction performance 
of Spliceator averaged over a total of 10 experiments due to the random selection of neg-
ative sequences. The results are shown in Fig. 5 (Additional file 1: Table S3).

The average accuracy is 95.34% for the optimized donor model and 94.19% for the 
acceptor model. The precision of the models is similar, ranging from 92.50% (donor) 
to 91.73% (acceptor). We observed high sensitivity for both models, with 98.31% 
(donor) and 97.20% (acceptor), although the specificity is slightly lower, with 92.11% 
(donor) and 91.14% (acceptor). Finally, the F1 scores are similar for both donor and 
acceptor with 95.32% for donor and 94.39% for acceptor SS. Thus, the average per-
formance for the donor model is slightly higher than for the acceptor model, which 

Fig. 4 Average values of the 5 performance metrics (accuracy, precision, sensitivity, specificity and F1 score) 
for each dataset composition and for each type of SS (donor or acceptor). GS_0 = positive/negative ratio of 
1:1 with only FP sequences in negative subset, GS_1 = positive/negative ratio of 1:1 with exon, intron and FP 
sequences in negative subset, GS_2 = positive/negative ratio of 1:2 and GS_10 = positive/negative ratio of 
1:10
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might be explained by the fact that the donor SS consensus motif is more conserved 
than the acceptor SS motif (Table 1). The acceptor SS also contains a low complexity 
PPT sequence, which may complicate predictions.

Model interpretability

In this section, we focus on the nucleotide regions that influenced the models during 
the learning step. Using the Grad-CAM method (see “Methods” section), we meas-
ured the impact of each nucleotide position in the input sequences, thus allowing us 
to highlight the most important regions of these sequences that are determining fac-
tors in the learning step of the model. We calculated 10,000 heatmaps per class and 
the average heatmap for each SS model (donor and acceptor) and each class (non-SS, 

Fig. 5 Performance of optimized model (GS_1 dataset, positive/negative ratio of 1:1 with heterogeneous 
negative examples and input sequence length = 200 nt) averaged over 10 experiments

Fig. 6 Average heatmap of the two classes, non‑Splice Site and Splice Site, for donor and acceptor SS, with 
colors ranging from yellow (very important nucleotide position) to dark blue (not important position). The 
dinucleotide characterizing the SS is located at positions 101–102 for the donor and acceptor SS
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SS) is shown in Fig. 6. Therefore, this representation shows only the most important 
features that the models use.

The heatmaps show that in order to classify sequences as non-SS, both models are 
based on elements of the whole sequence (score > 0.8) with the exception of the 5’ and 
3’ extremities (score < 0.4, probably due to the CNN processing), although we observe a 
higher score (> 0.9) close to the positions 1–2. The heatmaps for sequences containing 
donor or acceptor SS are more specific than for the non-SS sequences. For the donor 
sequences, the region around the SS (~ 10 nt upstream and downstream) seems to be 
more influential, with a predominance for the upstream exonic side. The positions 1 and 
2, representing the GT dinucleotide, have the highest scores as expected. For the accep-
tor sequences, the central region around the AG dinucleotide is also the most important, 
although it is less well delineated than for donor SS. We observe an upstream intronic 
region of about 10 nt that seems to slightly impact learning (score > 0.6), which probably 
corresponds to the PPT. A second upstream region from position -50 is also influential, 
possibly covering the BPS known to be generally located around 40 nt upstream of the 
acceptor site [51], although some BPS may be more distant up to a distance of 400 nt [52, 
53]. Interestingly, the downstream exonic region also seems to play a role in the training 
process for the acceptor SS (score > 0.5).

Comparison with existing SS prediction methods

In order to compare the performance of the Spliceator models with other state-of-
the-art methods, namely NNSplice, MaxEntScan, DSSP and SpliceFinder, we used six 
independent benchmarks from a wide range of organisms (see “Methods” section). The 
performance metrics are shown in Table 2.

For the donor SS prediction, Spliceator obtains the best average accuracy of 92.82%, 
with an average increase of + 25.9, + 2.6, + 2.04 and + 1.15% compared to NNSplice, 
SpliceFinder, DSSP and MaxEntScan respectively. For the acceptor SS prediction, 
Spliceator obtains the second best average accuracy, with 89.02% (− 1.26%) compared to 
SpliceFinder with 90.28%, although Spliceator is more accurate on the Worm and Plant 
benchmarks. To further investigate the reasons for the different performances, we con-
sidered four other metrics, including the precision, sensitivity, specificity and F1 score. A 
high precision indicates that the program predicts few FP. Spliceator obtains the second 
best average precision of 89.88% for the donor SS and 86.23% for the acceptor SS, behind 
DSSP (96.17% for donor and 92.28% for acceptor SS). SpliceFinder, which has generally 
good accuracy, obtains lower precision (74.92% for the SS donor and 69.52% for the SS 
acceptor). Sensitivity and specificity are two inseparable metrics. They describe the pro-
portion of well predicted elements and their quality, i.e. if elements have been correctly 
predicted.. The F1 score combines the precision and the sensitivity metrics and provides 
a more global view of the number of correctly predicted elements. Spliceator obtains the 
best average F1 score for both donor and acceptor SS, with 93.08% (+ 1.15%) and 89.4% 
(+ 3.83%) compared to the second best program for donor SS, MaxEntScan with an F1 
score of 91.93% or acceptor SS, DSSP with a F1 score of 85.57%. Figure 7 shows the accu-
racy and F1 score for each program on the individual benchmarks containing SS from 
different organisms. While most of the programs tested achieve high scores on the ver-
tebrate sequences (human and fish), reflecting their training sets focused on human SS, 
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Spliceator performance is generally better on the more distant organisms (worm, plant 
and PVP).

Finally, for each model, we observe that the predictions of the donor SS are slightly 
better than those of the acceptor SS. This difference is probably due to the divergence of 
the acceptor SS motif, but also to the genomic context around it which seems to be more 
complex.

Discussion
Thanks to high-throughput technologies, as well as the development of comput-
ing power, huge amounts of data can now be exploited by DL algorithms and produce 
remarkable results [54–57]. In particular, CNN are increasingly used in the field of bio-
informatics [58–60], for example to detect specific patterns in a genomic sequence [61] 
where the reduced number of parameters allows for better generalization compared to 
other ML methods. Moreover, maxpooling techniques allows the algorithm to focus on 
the local features that it considers most important.

In this context, we have developed a SS prediction program called Spliceator, based 
on a three-layer convolutional CNN. Despite the recent use of RNA-seq to accurately 
identify SS, it is currently impossible to obtain experimental data for the full panel of 
transcripts for all tissues and all developmental stages. Thus, ab initio SS prediction pro-
grams that rely only on the genomic sequence remain essential. Clearly, it would be ideal 
to couple ab  initio prediction programs such as Spliceator with RNA-seq based pro-
grams in genome annotation tools or workflows.

Fig. 7 Accuracy and F1 score for each program and for each independent benchmark representing diverse 
organisms
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The accuracy of ab initio algorithms is dependent on the quality of the data used dur-
ing the training step. Indeed, although neural networks are getting deeper and more 
complex [62, 63], the fact remains that data is the cornerstone of artificial intelligence. 
Consequently, the majority of SS prediction programs use sequence data from humans 
(such as GRCh38 or HS3D [64]) or other model organisms [36, 39, 65], where high qual-
ity, expert-refined data is available. For non-model organisms, it is more difficult to find 
accurate training data and very few CNN methods have been designed specifically to 
predict SS in non-model organisms. Since SS and other regulatory motifs may be con-
served across similar species [20], some work has been done to try to transfer models 
trained on model organisms to related organisms, for example between different verte-
brate genomes [66]. Others have built cross-species models for specific clades, such as 
animals or plants using Helixer [67], but unfortunately the source code for this program 
is not yet stable (according to the authors). The aim of our work was to extend the idea of 
cross-species models to conceive universal SS prediction models (one for each SS), that 
are applicable to a wider range of organisms.

For the training of the Spliceator models, we focused on the construction of a multi-
species dataset that is as representative as possible of the eukaryotic domain (from pri-
mates to protists). This dataset is based on an extension (G3PO+) of the gene prediction 
benchmark G3PO. Since high-quality, genome-wide annotations are not available for the 
147 species in this dataset, we developed a protocol based on expert-guided comparative 
sequence analysis in order to identify reliable SS in a subset of genes. Since the G3PO+ 
gene sequences are evolutionarily related, we eliminated redundant sequences, which 
could cause potential bias of sequence over-representation and thus a risk of overfitting. 
We also made an effort to respect the proportions of non-canonical SS (2.2% donor and 
1.3% acceptor) found in real-world data [21].

To investigate the impact of the quality of the initial training data on the CNN models, 
we extracted data from public databases such as Ensembl [4] and UniProt [68], where 
it has been estimated that many proteins (with the exception of Swiss-Prot, which rep-
resents 0.3% of UniProt) have errors [69]. We then built a dataset called ‘All Sequences’ 
(AS), that includes some badly predicted gene sequences [45] and thus introduces noise 
in the form of wrong or missing SS. We compared the CNN model trained on the AS 
dataset with a second model trained on a ‘Gold Standard’ (GS) dataset, which was 
cleaned by removing all error-prone sequences. Since our results showed that the qual-
ity of the data had a significant impact on the accuracy of the models, we conclude that 
quality control and data cleaning steps are essential in order to obtain better results.

We also tested the impact of other parameters, such as the length of the input 
sequences. It is important to carefully select the size of the genomic sequence in order 
to take into account different important elements such as regulatory elements (ESE, ESS, 
ISE or ISS [70]), the BPS [71] and the PPT [22] that can be kept and help the algorithm 
to generalize. All these elements constitute intrinsic signals that are indispensable for 
the spliceosome to accurately recognize the SS. In order to include enough cis elements 
without introducing too much noise, we chose an input sequence length of 200 nt for 
both donor and acceptor models. Unfortunately, many other external signals impacting 
SS recognition by the spliceosome cannot be detected by current methods such as the 
secondary structure of RNA [72], or the transcription speed of polymerase II [73].
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Finally, we investigated the impact of the negative examples and the use of balanced 
or unbalanced datasets, in terms of the ratio of positive to negative examples. SS predic-
tion is an inherently unbalanced problem, because the number of nucleotides involved 
in a SS is much smaller than the number of non-SS nucleotides. The results confirmed 
the hypothesis that an unbalanced dataset was more prone to overfitting because one 
of the classes is overrepresented [66]. Moreover, the heterogeneous negative examples 
provided better performance. All these tests allowed us to optimize our method and 
improve prediction performance.

In order to estimate the performance of Spliceator on independent genome data, we 
used six different benchmarks from diverse organisms and compared Spliceator with 
a number of state-of-the art programs, including two other CNN-based methods. As 
expected, the more recent CNN-based methods generally achieved higher performance 
metrics than the older prediction methods that used either neural networks or maximum 
entropy distributions approaches. We calculated a number of different performance 
metrics, since the most suitable metric to measure ‘good’ performance will depend on 
the specific user application. For example, accuracy is useful when the true positives and 
true negatives are more important, while the F1 score is used when the false positives 
and false negatives are crucial. Spliceator achieved the highest accuracy (92.82%) for the 
donor SS, and the second best accuracy (89%) for the acceptor SS. In terms of F1 score, 
Spliceator outperformed the current state-of-the art programs for both donor (93.08%) 
and acceptor (89.40%) SS. Interestingly, Spliceator performed very well on the human 
benchmark even though it was trained with only 45 human genes. However, a major 
strength of Spliceator is that it maintains good performance over a wide range of organ-
isms, from human to protists. Our results thus showed that a universal SS prediction 
program is feasible, and hopefully performance can be further increased in the future by 
including more divergent species data in the model.

Conclusions
Here, we present a new approach to train Spliceator, a universal splice site prediction 
program based on a high-quality dataset from diverse eukaryotic organisms (from pri-
mates to protists). We highlighted the inherent link between data quality and the perfor-
mance of prediction programs based on machine learning algorithms. We also showed 
that including high quality multi-species data can result in accuracy equivalent to other 
state-of-the-art SS prediction programs. In the future, it would be interesting to include 
more data from other species, but also to test other types of network architecture in 
order to extract new high-level features. Moreover, as some of the extracted features are 
highly conserved, it would be interesting to use our model to perform transfer learning 
for gene annotation of other organisms.

Methods
Data collection

Initial datasets were constructed for each type of SS, in order to establish two separate 
models: one to predict donor SS and one to predict acceptor SS. The models developed 
in this study are based on supervised learning allowing the classification of entries in 
two classes (0: nucleotide not involved in SS, and 1: nucleotide involved in SS). Thus, 
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each dataset is constructed from a positive subset containing SS sequences and a nega-
tive subset containing non-SS sequences.

To build the positive and negative subsets, gene sequences from the multi-species 
benchmark G3PO [45] were used. G3PO is based on 147 phylogenetically disperse 
organisms and contains 1793 sequences including 20 human Bardet-Biedl Syndrome 
(BBS) genes (Additional file  1: Table  S4) and their orthologous sequences (ranging 
from primates to protists) extracted from the OrthoInspector database v3.0 [74]. Fol-
lowing the same methodology implemented in G3PO, we extended the original data-
set by adding 948 sequences from 25 human genes responsible for myopathies and their 
orthologs from 47 metazoans (Additional file 1: Figure S2). The 948 protein sequences in 
the extended dataset (called G3PO+) were analyzed according to the G3PO protocol in 
order to classify them into two categories: those without gene prediction errors (called 
‘Confirmed’) and those that contain at least one error (called ‘Unconfirmed’). Errors 
include insertions, deletions and mismatches in the N-terminal, C-terminal or internal 
regions. This protocol allows to verify the quality of the data and ensures that the SS 
present in the ‘Confirmed’ sequences are biologically true, i.e. they are recognized by the 
spliceosome. Table 3 summarizes the composition of the G3PO+ dataset.

Construction of a series of training and test sets

Based on the gene sequences in the G3PO+ benchmark, we constructed a series of data-
sets used to train the Spliceator models and estimate the effect of various parameters on 
their prediction performance. Figure  8 shows an overview of the dataset construction 
process. The positive and negative subsets are described in the following sections.

Positive subsets

The 2741 G3PO+ sequences are classified into 2 categories, either ’Confirmed’ 
(1361 sequences) because they were annotated ’error-free’, or ’Unconfirmed’ (1380 
sequences) because they contained at least one gene prediction error. For each 
G3PO+ sequence, genomic sequences and exon maps were retrieved from the 
Ensembl database [4] release 87, and the SS were extracted, flanked by a ± 300 nt 
environment. A verification was made to ensure that no sequences containing unde-
termined nucleotides (noted ’N’) were selected. The GS datasets contain only SS 
from the 1361 ’Confirmed’ sequences. Thus, the same positive subset for each GS 
dataset (GS_0, GS_1, GS_2 and GS_10) contains 10,973 donor and 11,179 accep-
tor SS sequences, where each sequence is of length 600 nt with the GT (donor) or 
AG (acceptor) dinucleotide in the central position (301 and 302). In contrast, the 

Table 3 Composition of the original G3PO and extended G3PO+ datasets

To build the G3PO+ dataset, we retrieved orthologous sequences for 45 human genes and performed multiple sequence 
alignments. Each sequence was then checked to identify those that contained no errors, called ‘Confirmed’, and those that 
contained at least one error, called ’Unconfirmed’

G3PO Extension G3PO+

Confirmed 889 472 1361

Unconfirmed 904 476 1380

Total 1793 948 2741
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AS datasets contain SS from all 2741 G3PO+ sequences, including both ‘Confirmed’ 
and ‘Unconfirmed’ sequences. Thus, the AS datasets are representative of the data 
present in the public databases, as no pre-processing has been performed on the 
data, and therefore they include a certain number of errors. To eliminate any bias 
from the size of the datasets, an equivalent number of SS sequences were used 
(12,000 donor and 12,000 acceptor) to form the same positive subset for each AS 
dataset (AS_0, AS_1, AS_2 and AS_10).

In order to test the impact of the genomic context, each dataset is provided in six dif-
ferent versions, according to the defined length of the input sequences. Sequence lengths 
selected for this study are 20, 80, 140, 200, 400 and 600 nt, where the SS is always in the 
central position. To reduce redundancy, for each sequence length, duplicate sequences 
are removed. As the length of the sequences decreases, the number of duplicates 
increases, reducing the size of the data sets (especially for 20 nt sequences). Figure  9 
(Additional file  1: Table  S5) summarizes the composition of the AS and GS positive 
subsets according to sequence length. Each SS is described according to its type, either 
canonical (i.e. GT for donor site and AG for acceptor site) or non-canonical. The num-
ber of non-canonical donor and acceptor SS present in each AS and GS dataset for each 
sequence length is also shown in Fig. 9 (Additional file 1: Table S5). In addition, Fig. 10 
shows the sequence logos of the canonical and non-canonical donor and acceptor SS 
motifs from the AS and GS dataset sequences. The sequence logos were made with the 
program WebLogo v3.7.4 [75].

Negative subsets

Two negative subsets were first constructed. The first one is composed only of FP 
sequences, i.e. randomly selected regions in the G3PO+ sequences in both ’Confirmed’ 
and ‘Unconfirmed’ sequences (for AS dataset) or only ‘Confirmed’ sequences (for GS 
dataset), with a GT or AG dinucleotide (depending on the type of SS), in the central 

Fig. 8 Overview of the construction of the training and test sets. A DNA sequences and exon maps are 
recovered for each G3PO+ gene. B The AS (All Sequences) positive subset includes the SS of all G3PO+ 
‘Confirmed’ and ‘Unconfirmed’ sequences. The GS (Gold Standard) positive subset includes only the SS of 
the ‘Confirmed’ sequences. Ten negative AS subsets and ten negative GS subsets are then constructed by 
random sampling of the exon, intron and FP regions of the corresponding genomic sequences. C Four AS 
and four GS datasets are then constructed with different ratios of positive and negative SS (described in 
Table 4). D Finally, the training and test sets are formed by shuffling the positive and negative sequences (10 
times for each AS and GS dataset)
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position (e.g. 301–302 for length = 600 nt) that do not correspond to a SS identified in 
the positive subsets. The second type of negative subset is composed of 3 categories of 
sequences extracted from the G3PO+ dataset:

Fig. 9 Number of canonical (bar) and non‑canonical (n‑c) (line) sequences for each positive subset (AS and 
GS) and for each sequence length

Fig. 10 Sequence logos for canonical and non‑canonical SS for each SS type (donor or acceptor) and each 
positive subset (AS and GS)
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• Exon sequences: randomly selected exon regions,
• Intron sequences: randomly selected intron regions,
• False positive SS: randomly selected GT or AG dinucleotides.

Negative subsets were also constructed with different numbers of sequences 
depending on the size of the positive subset: (i) with a ratio 1:1 we have the same 
number of positive and negative sequences, (ii) with a ratio 1:2 we have twice as many 
negative sequences as positive sequences and (iii) with a ratio 1:10 we have ten times 
more negative sequences than positive sequences. As for the positive subsets, identi-
cal redundant sequences and sequences containing undetermined ‘N’ characters were 
removed. Finally, as the selection of the negative sequences is random, 10 random 
selections were made, in order to obtain 10 different negative subsets and to eliminate 
potential random bias due to a specific data sampling.

Data composition strategies

By combining the same positive subset with different negative subsets, a number of 
datasets were constructed in order to measure the impact of different parameters, 
including the type of negative examples used (heterogeneous = exons, introns and FP 
or homogeneous = only FP), the use of balanced or unbalanced datasets defined by 
the ratio of positive to negative examples, and data quality (AS vs. GS). In total, eight 
datasets were established, summarized in Table 4.

Sequence identity

A sequence similarity search was performed on the whole sequences with a length of 
600 nt and 20 nt from the AS and GS positive subsets. Each sequence was compared 
to all the others and the pairwise percent identity was defined by:

Table 4 Composition of the 8 datasets

Composition of the 8 datasets used to study the impact of (i) the type of negative examples (only FP sequences vs. 
heterogeneous data with exons, introns and FP sequences), (ii) the ratio of positive to negative examples (1:1, 1:2 and 
1:10), (iii) data quality (‘Confirmed’ and ‘Unconfirmed’ sequences in the AS datasets vs. only Confirmed sequences in the GS 
datasets

FP, False Positive; GS, Gold Standard; AS, All Sequences

Dataset Quality of sequences No. of positive sequences No. of 
negative 
sequences

Type of negative 
sequences

Ratio

Donor Acceptor

AS_0 Unconfirmed and 
confirmed

12,000 12,000 12,000 FP only 1:1

AS_1 12,000 4000 exons, 4000 
introns and 4000 FP

AS_2 24,000 FP only 1:2

AS_10 120,000 FP only 1:10

GS_0 Confirmed 10,973 11,179 11,000 FP only 1:1

GS_1 11,000 3650 exons, 3650 
introns and 3700 FP

GS_2 22,000 FP only 1:2

GS_10 110,000 FP only 1:10
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Preparation of datasets for CNN

Training and test sets

For each dataset described above, a random selection was performed to form a train-
ing set containing 80% of the sequences and a test set containing 20% of the sequences. 
Since there are 10 different negative datasets, there are 10 different training and test 
sets. Figure 11 (Additional file 1: Table S6 A and B) summarizes the average number of 

%Identity =

(

Number of identical nucleotide

Length of sequence

)

∗ 100

Fig. 11 Average number of positive and negative sequences in training and test sets, for all AS and GS 
datasets, according to SS type. Standard deviations are indicated by black bars
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negative and positive sequences in all training and test sets for each dataset (AS and GS) 
and for donor and acceptor SS.

Data encoding

For efficient exploitation of the genomic sequences in the training and test sets, a one-
hot encoding step was performed. Each nucleotide of an input sequence was converted 
into a binary vector of size 4. Adenine is encoded by the vector (1,0,0,0), Cytosine by 
(0,1,0,0), Guanine by (0,0,1,0) and finally Thymine is encoded by (0,0,0,1). In the case 
where an external sequence contains indeterminate ‘N’ nucleotides, e.g. when users test 
their own sequences, the vector (0,0,0,0) is used. Thus, each output sequence is a first 
order tensor (vector) of size W, where W is the length of the input sequence, with 4 chan-
nels representing the one-encoding. Finally, the shape of the input is: S × H × W × C, 
where S is the number of input sequences, H is the height of the 1D vector (so H = 1), W 
is the width of the vector corresponding to the length of the input sequences and C is the 
number of channels from one-hot encoding. Figure 12 summarizes the data encoding.

Finally, the shape of the input is S × H × W × C (S = number of input sequences, 
H = height of the vector (here equal to 1 because the vector is 1 dimensional), W is the 
length of each input sequence and C is the number of channels).

Convolutional Neural Network

Models were constructed and trained for each type of SS (donor or acceptor) indepen-
dently. The models result from supervised learning, where genomic sequences (input) 
are coupled with class labels 0: non-SS and 1: SS. The CNN then applies filters on each 
input sequence and tries to modify the weights of these filters to improve the predictions 
thanks to the back-propagation algorithm. The filters allow to extract pertinent features/
patterns within the input data. The output of the CNN is a vector of size 2, correspond-
ing to the non-SS (0)/SS classes (1). The implementation of the CNN, as well as the train-
ing of the models, was done in Python v3.7, with Tensorflow v2.4.1 [76], the API Keras 
v2.3.1 and the Scikit-learn library v0.23.2 [77].

Architecture

We constructed a CNN architecture for donor or acceptor prediction, composed of 
a series of three convolutional layers over a single spatial dimension. The layers are 

Fig. 12 Data pre‑processing. Input sequences are converted in one‑hot encoding. The result is a 1D vector 
of size W, where W is the length of the input sequences, with 4 channels
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composed of 16, 32 and 64 filters of sizes 7, 6 and 6 respectively, with a stride of 1. 
Between each convolution layer, a maxpooling layer of size 2 × 1 with a stride of 2 is 
added. Maxpooling allows to under-sample the data by reducing their size, while pre-
serving the features that seem important. A dropout layer [78] is also added between 
each convolution layer to inactivate 20% of neurons. Then, a data flattening step 
(flatten layer) is performed in order to generate a vector exploitable by the fully con-
nected layer containing 100 neurons. The last layer is the final output layer, contain-
ing two neurons that return the results of the classification. The neurons of each layer 
are activated by a Rectified Linear Unit (ReLU) activation function, except for the last 
layer where the activation function is Softmax in order to establish probabilities for 
each neuron and thus to predict a class according to the highest probability. Figure 13 
summarizes the CNN architecture.

Training process

During the training process, the training set is divided into two parts, to generate an 
evaluation set (containing 15% of the sequences) that allows to control the learning of 
the network and avoid overfitting. The cross-entropy function is used as a loss func-
tion and the Adamax optimization algorithm [79] is applied with a learning-rate of 
 1e−5. Finally, the training is performed during 400 epochs with a batch-size of 32.

Fig. 13 Representation of the CNN architecture. The architecture is composed of 2 convolutional layers, 
each followed by a dropout step and maxpooling layer. Then, a flatten layer is added to flatten the input. The 
output layer consists of 2 neurons activated by the Softmax function
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Evaluation

Metrics

SS are considered as true positives (TP) if they are correctly predicted and false posi-
tives (FP) otherwise. Nucleotides that do not correspond to a SS are considered as True 
Negatives (TN) if they are not predicted to be SS and False Negatives (FN) otherwise. To 
evaluate the performance of the CNN models, five metrics were used:

Accuracy is the ratio of the number of correct predictions to the total number of 
predictions:

Precision is the ratio of the number of correctly predicted SS to the total number of 
predicted SS:

Sensitivity (also known as recall) is the ratio of the number of correctly predicted SS to 
the total number of SS:

Specificity is the ratio of the number of correctly predicted non-SS sequences to the 
total number of non-SS sequences:

F1 Score is the harmonic mean of the precision and sensitivity and shows a balance 
between these two metrics:

Independent benchmarks of SS from model and non‑model organisms

To estimate the reliability and robustness of the CNN models, they were evaluated on 
5 large-scale benchmarks, including sequences from: Human, D. rerio (Fish), D. mela-
nogaster (Fly), C. elegans (Worm) and A. thaliana (Plant), that were downloaded from 
https:// public. bmi. inf. ethz. ch/ user/ behr/ splic ing/ [31]. A selection of 10,000 SS and 
10,000 non-SS sequences was performed for each benchmark, including a number of 
non-canonical SS (human: 307; fish: 85; fly:120; worm: 67 and plant: 122).

To evaluate the performance of the models on non-model organisms, we con-
structed one other independent benchmark called ‘PVP’ (Protist and ViridiPlantae), 
containing sequences from protists and viridiplantae. The sequence selection pro-
cess is similar to that used in G3PO. The reference sequences are the cytoplasmic 
tryptophanyl-tRNA synthetase of Paramecium tetraurelia (A0D783_PARTE) and the 
tryptophan-tRNA ligase of Arabidopsis thaliana (SYWM_ARATH). All orthologs 

Accuracy =
(TP + TN )

(TP + TN + FP + FN )

Precision =
TP

(TP + FP)

Sensitivity =
TP

(TP + FN )

Specificity =
TN

(TN + FP)

F1 score = 2 ∗
Precision ∗ Sensitivity

Precision+ Sensitivity

https://public.bmi.inf.ethz.ch/user/behr/splicing/
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were extracted from the OrthoInspector database version 3 [74], multiple sequence 
alignments were obtained with PipeAlign version 2 [80], and manually analyzed to 
identify 62 ‘Confirmed’ sequences (33 plants and 29 protists). Finally, the benchmark 
contains 692 (with 21 non-canonical) donor SS and 714 (with 18 non-canonical) 
acceptor SS, and the same number of non-SS sequences to balance the dataset.

The benchmarks were used to compare Spliceator with other existing SS predic-
tion methods, including NNSplice, MaxEntScan, DSSP and SpliceFinder. Note that 
SpliceRover was not included in these large-scale benchmark tests, since the method 
is only available as a web server. Moreover, for a fair evaluation, only tools using the 
raw DNA sequences as features were included. Hence, SpliceAI was also not selected 
because the input file must be in Variant Call Format (.vcf ) and not a raw sequence. 
In addition, SpliceAI models were trained with GENCODE data coupled with experi-
mental data.

Explicability

The visualization heatmaps of the nucleotides most used by the models were gener-
ated using the Grad-CAM (Gradient Class Activation Map) technique [81]. The maps 
were generated from the training sets: the higher the score, the warmer the color (yel-
low) and the lower the score, the colder the color (deep blue). In order to highlight 
the most representative patterns identified during the training process, the heatmaps 
were averaged from 10,000 samples for each class of each SS.
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