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Abstract: This paper aims to study the evolution of CO2 concentrations and emissions on a conven-
tional farm with weaned piglets between 6.9 and 17.0 kg live weight based on setpoint temperature,
outdoor temperature, and ventilation flow. The experimental trial was conducted during one tran-
sition cycle. Generally, the ventilation flow increased with the reduction in setpoint temperature
throughout the cycle, which caused a reduction in CO2 concentration and an increase in emissions.
The mean CO2 concentration was 3.12 g m–3. Emissions of CO2 had a mean value of 2.21 mg s−1 per
animal, which is equivalent to 0.195 mg s−1 kg−1. A potential function was used to describe the
interaction between 10 min values of ventilation flow and CO2 concentrations, whereas a linear
function was used to describe the interaction between 10 min values of ventilation flow and CO2

emissions, with r values of 0.82 and 0.85, respectively. Using such equations allowed for simple
and direct quantification of emissions. Furthermore, two prediction models for CO2 emissions were
developed using two neural networks (for 10 min and 60 min predictions), which reached r values of
0.63 and 0.56. These results are limited mainly by the size of the training period, as well as by the
differences between the behavior of the series in the training stage and the testing stage.

Keywords: CO2 concentration; CO2 emission; neural network; weaned piglets; post weaning cycle

1. Introduction

Animal production is a fundamental activity for meeting the increasing global demand
for food. However, this activity is a key contributor to global GHG emissions [1,2] and to
the global problem of climate change [3]. Pig production accounts for a significant portion
of these emissions [4], with a contribution of between 9 and 13% [2,3]. Considering the
GHG produced by pigs and manure at pig house level, the gas that contributes the most to
the greenhouse effect is CO2, with approximately 81% of emissions [5]. However, direct
CO2 emissions, arising from the animals and manure, are generally excluded from GHG
evaluation, because they are supposed to be compensated by CO2 consumption through
photosynthesis, performed by the plants used as feed. For this reason, CO2 production is
rarely addressed in the literature [5].

CO2 emissions from farms depend on two factors, CO2 production and ventilation
rate. Here, the main source of CO2 is animal metabolism, followed by manure [6], although
other sources may exist, such as heaters using propane or natural gas [7]. More specifically,
the carbon dioxide produced by animals depends on animal weight and daily gain, while
CO2 emissions are also strongly affected by variations in animal activity [8–12]. Carbon
dioxide emissions have also been reported to be affected by other factors, such as diet
composition [13,14] and conversion efficiency, droppings management, or environmental
conditions [15], following a sinusoidal pattern of daily emission [8,9]. Nevertheless, there
are some discrepancies between the results that have been reported so far, probably due to
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variations in animal species, feeding level, farm practices, control strategy, manure man-
agement systems, animal density, geography, climate, season, and other factors [7,10]. In
relation to pig production, variations have been found between physiological stages [5,16],
which could be attributed to the conditions of the building, ventilation system, manage-
ment, diet, or even gas measurement method. Thus, while different authors [17,18] have
reported fairly similar CO2 emissions during the fattening period, larger variations have
been found during the other physiological stages [19–21], especially during weaning [5].
In fact, CO2 production per unit of total heat production is much lower for weaning pigs
than for growing finishing pigs [12]. In addition, large variations have been found in
GHG emissions per unit of product across EU countries, mainly because of the differences
observed in the production systems [5], feed type, and efficiency of nutrient use [22].

Farm buildings for piglets in transition, where weaned piglets are housed from wean-
ing up to fattening, as well as delivery rooms, are the facilities with the highest levels of
CO2 concentration. This is because ventilation rates are kept reduced at this stage owing to
the fact that animals require high temperatures and are very sensitive to air currents [23].
Consequently, although CO2 emissions are affected considerably more by ventilation rate
than by indoor air concentration [24], these farms present high levels of CO2 emissions
into the atmosphere due to the relationship between concentration and emission through
the ventilation rate [24,25]. Moreover, the ventilation system and the control strategy can
significantly affect the airflow inside livestock rooms, which can further affect the emission
of gaseous contaminants from animal buildings [6].

Intelligent livestock farming, with a continuous improvement in the production effi-
ciency of management systems, can contribute to decreasing GHG emissions [26,27]. In
recent years, technological progress has contributed to obtaining positive results in the
reduction of GHG emissions from pig production [28], although other studies have shown
that these efforts may not be enough to achieve a sustainable level [29,30]. Therefore, there
is a need to find housing systems that minimize ammonia and GHG emissions, and im-
prove animal welfare [31]. In this respect, most existing studies focus on GHG emissions for
ruminants, partly because of their high emission per unit of production. In contrast, fewer
studies focus on monogastric animals, like pigs [32,33]. New research is thus necessary in
order to obtain accurate emission factors [4,10,15], mainly under farm conditions [34], that
cover the full production seasons [14].

A number of studies have been performed to evaluate emissions from farms with
weaned piglets, both in field conditions [14] and in experimental rooms, during part of
the transition period [3,13]. Two of those studies focused on determining the influence
of different diets on GHG emissions and found that including dried distillers grains with
solubles in the diet of piglets did not cause significant differences in CO2 emissions [3]. In
addition, using five different isoenergetic diets (control, low protein, inclusion of sugar
beet pulp, addition of benzoic acid, and a combination of previous diets) only caused
a 15% decrease in CO2 emissions for the combined diet [13]. Different floor systems (straw-
based deep litter, sawdust-based deep litter, and fully slatted floors) were also analyzed,
but no significant differences in CO2 emissions were found between systems [3]. There is
a lack of studies aimed at quantifying CO2 emissions on farms raising weaned piglets based
on continuous measurements performed under field conditions. In contrast to the above
studies, in this paper, we analyze the data for a complete production cycle, from weaning
to fattening, from a conventional farm. Continuous measurements of environmental
parameters and ventilation flow have been used, which results in quality data for a largely
unexplored production stage.

In addition to quantifying emissions, generating models that are capable of predicting
the emission of gases from farms is necessary to achieve emission control through intelligent
livestock farming. One of the emerging technologies for modelling and predicting farm
emissions is artificial intelligence (AI), which has already been used for developing many
applications and papers in the field of smart farming. The most common AI models used
for the modelling, prediction, and management of variables related to livestock farming are
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artificial neural networks (ANN), convolutional neural networks, deep learning, adaptive
neural fuzzy inference system (ANFIS), machine learning, and pattern recognition [35].
Specifically, ANFIS models have been used for modelling ammonia emissions in pig
farms [36], and ANN and ANFIS (artificial neural network and adaptive neuro-fuzzy
inference systems, respectively) have been used for modelling and predicting energy
output and greenhouse gas emissions from calf fattening farms [37].

This paper aims to quantify and study the evolution of CO2 concentration and emis-
sions on a pig farm with weaned piglets from 6.9 to 17 kg LW during a complete transition
cycle under field conditions. Our aim is to find the relationship between CO2 concentration
and emissions, and some control parameters of the air conditioning system, such as set-
point temperature, outdoor temperature, or ventilation flow, during one transition cycle.
In addition, we present a neural network-based model for the prediction of 10 min and
60 min CO2 emissions that can be incorporated into the environmental control system.

2. Materials and Methods

Research was conducted in a conventional farm for the production of piglets located in
NW Spain. Measurements were performed in a transition room, where piglets entered with
an average weight of 6.9 kg at day 28 after birth and exited with 17.0 kg LW at day 65 after
birth, covering a complete transition cycle, from 27 February to 4 April. An intermediate
room was chosen in order to avoid the boundary effect of lateral positions in the building.
The inner dimensions of the room, with polypropylene slats on the floor, were 11.82 m long
by 5.86 m wide, and between 2.25 and 2.50 m high. The mean depth of the pit was 0.45 m.
At the end of each cycle, the room was completely cleaned and manure was completely
removed from the pit. The room had six pens on both sides of a central corridor and
housed a maximum of 300 weaned piglets, with 50 piglets per pen, with 0.20 m2 per piglet
(Figure 1).

Sensors 2022, 22, x FOR PEER REVIEW 3 of 14 
 

 

veloping many applications and papers in the field of smart farming. The most common 
AI models used for the modelling, prediction, and management of variables related to 
livestock farming are artificial neural networks (ANN), convolutional neural networks, 
deep learning, adaptive neural fuzzy inference system (ANFIS), machine learning, and 
pattern recognition [35]. Specifically, ANFIS models have been used for modelling am-
monia emissions in pig farms [36], and ANN and ANFIS (artificial neural network and 
adaptive neuro-fuzzy inference systems, respectively) have been used for modelling and 
predicting energy output and greenhouse gas emissions from calf fattening farms [37]. 

This paper aims to quantify and study the evolution of CO2 concentration and 
emissions on a pig farm with weaned piglets from 6.9 to 17 kg LW during a complete 
transition cycle under field conditions. Our aim is to find the relationship between CO2 
concentration and emissions, and some control parameters of the air conditioning sys-
tem, such as setpoint temperature, outdoor temperature, or ventilation flow, during one 
transition cycle. In addition, we present a neural network-based model for the prediction 
of 10 min and 60 min CO2 emissions that can be incorporated into the environmental 
control system. 

2. Materials and Methods 
Research was conducted in a conventional farm for the production of piglets located 

in NW Spain. Measurements were performed in a transition room, where piglets entered 
with an average weight of 6.9 kg at day 28 after birth and exited with 17.0 kg LW at day 
65 after birth, covering a complete transition cycle, from 27 February to 4 April. An in-
termediate room was chosen in order to avoid the boundary effect of lateral positions in 
the building. The inner dimensions of the room, with polypropylene slats on the floor, 
were 11.82 m long by 5.86 m wide, and between 2.25 and 2.50 m high. The mean depth of 
the pit was 0.45 m. At the end of each cycle, the room was completely cleaned and ma-
nure was completely removed from the pit. The room had six pens on both sides of a 
central corridor and housed a maximum of 300 weaned piglets, with 50 piglets per pen, 
with 0.20 m2 per piglet (Figure 1). 

 
Figure 1. Overview of the room and location of the sensors: extractor fan (A), internal corridor (B), 
drinker (C), feed distributor (D), air inlet (E), slat (F), feeder (G), indoor sensor structure (H), and 
heating plate (I). The sensors for the speed of the air extracted through the ventilation system (Vm) 
and CO2 concentration at the ventilation air outlet (COUTLET) were located at (A) and the sensor for 
CO2 concentration in the exterior corridor of air inlet (CINLET) was located at (E). 

Figure 1. Overview of the room and location of the sensors: extractor fan (A), internal corridor (B),
drinker (C), feed distributor (D), air inlet (E), slat (F), feeder (G), indoor sensor structure (H), and
heating plate (I). The sensors for the speed of the air extracted through the ventilation system (Vm)
and CO2 concentration at the ventilation air outlet (COUTLET) were located at (A) and the sensor for
CO2 concentration in the exterior corridor of air inlet (CINLET) was located at (E).

The air conditioning system comprised ventilation and warm water underfloor heating
facilities. Environmental control was performed in the building through a temperature
probe, without altering the usual conditions of the farm. The setpoint temperatures (TS)
defined for environmental control were between 26 and 23 ◦C with a bandwidth of±1.5 ◦C,
and decreased gradually with the increase in the age and weight of the animals (Table 1).
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Clean air entered the room through two windows with air deflectors on the wall opposite to
the fan (Figure 1E). The animals were provided feed ad libitum through a screw conveyor
system with a feeder shared by two pens. Water was supplied through two drinking cups
in each pen.

Table 1. Setpoint temperature (TS), day of the cycle on which TS was set, piglet age, mean weight of
piglets, and number of data.

TS
(◦C)

Setting of TS
(Day of the Cycle)

Piglet Age
(Days)

Mean Weight of Piglets
(kg) Number of Data

26 1 28 7.46 994
25 8 36 8.90 1152
24 16 44 12.12 1872
23 29 57 15.58 1297

CYCLE 11.39 5315

The number of animals was registered daily. Animals were weighed at the beginning
of the cycle, on day 28 after birth, on day 38 when the feed type was changed, and at
the end of the cycle on day 65 after birth. In order to obtain the value for emissions
per kg throughout the cycle, a linear interpolation was performed between the weighed
values. Table 1 shows the mean weight of the piglets for each setpoint temperature.

Table 2 shows the environmental variables measured and the sensors used to measure
them. Variables were measured every second, and the averages for every 10 min interval
were stored in a HOBO® data logger (Bourne, MA, USA).

Table 2. Variables measured and sensors used in the experimental trial.

Variable Name Sensor Measurement Range Accuracy

CO2 concentration at
the ventilation

air outlet
COUTLET Transmitter

(Delta Ohm HD37BTV.1, Delta Ohm,
Caselle di Selvazzano, Italy)

0–5000 ppm 50 ppm ± 4%
CO2 concentration in
the exterior corridor

of air inlet
CINLET

Outdoor temperature
on the farm plot TOUT

S-THB-M002 sensor installed in an EIC
Control U-30 weather station (Onset
Computer Corp., Bourne, MA, USA)

−40–75 ◦C ±0.2 ◦C from
0 ◦C to 50 ◦C

Indoor temperature TIN

Speed of the air
extracted through the

ventilation system
Vm

Active air speed transmitter (Delta Ohm
HD2903TTC310, Delta Ohm, Caselle di

Selvazzano, Italy)
0.20–20 m s−1 ±0.4 m s−1 + 3%

of measurement

Based on the speed of the air extracted, the flow extracted through the fan (Q) was
calculated using the following expression:

Q = 1.143 Vm·S (1)

where:

Q = flow extracted through the fan (m3 s−1);
Vm = mean speed (m s−1);
1.143 = relation between Vm at every measured point and speed measured at the location
of the sensor, in m s−1;
S = duct section (0.303 m2).

The emission of CO2 per animal, ECO2, was calculated according to the following expression:

ECO2 = (COUTLET − CINLET) Q/n (2)
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where:

ECO2 = emission of CO2 per animal (mg s−1);
COUTLET = concentration of CO2 at the ventilation air outlet (mg m−3), measured at a height
of 2.30 m;
CINLET = concentration of CO2 in the exterior corridor of air inlet (mg m−3), obtained
as a mean of the measurements performed at four positions at an average temperature
of 17.75 ◦C;
n = number of animals in the room.

2.1. Prediction of CO2 Emissions

Neural networks were trained to predict CO2 emissions at 10 min and 60 min in-
tervals. An artificial neural network (ANN) is a method used for modelling non-linear
relationships between input and output variables [38]. An ANN does not require previous
knowledge about how to handle the system, which turns it into a very efficient and versa-
tile technique in complex processes. Since the 2000s, ANNs have been the most recurring
artificial intelligence models in the field of research on animal farming, mainly for detecting
illnesses, estimating growth performance, or monitoring and controlling environmental
conditions [35]. Since then, different training algorithms have been used, such as back
propagation, radial basis function, or feed forward [37,39]. In this paper, a multilayer
perceptron neural network was used. A resilient backpropagation method with weight
backtracking, available in the “neuralnet” pack of R [40], was used to train the ANN. This
algorithm is a first-rate optimization method similar to the backpropagation algorithm, but
is generally faster, without the requirement of specifying free parameter values [41].

The number of neurons in the input and output layers is determined by the input and
output variables of the model. In this case, three inputs were used, namely the values of
Q, TIN, and CCO2 measured during the previous 10 min or 60 min periods, to obtain the
output, ECO2. On the contrary, there is no specific procedure to determine the number of
neurons, M, of the hidden layer. This value is defined through a procedure of trial and error.
After having checked the performance of different neural network structures, and having
evaluated the average degree of fit of up to 40 training iterations with each structure, we
chose a network with an input layer of three neurons and one output layer of one neuron,
with two hidden layers, and a total of 3-4-4-1 neurons per layer. This structure was the
most efficient at predicting emissions for both the 10 min and 60 min periods. Moreover,
the initial weights of the network were allocated randomly. A logistic activation function
was used because of the common use of these functions in the field of agriculture [37].
The stopping criterion was set to 0.01, with a maximum number of steps for the training
of 1 × 105.

2.2. Evaluation of the Performance of the Model

In order to evaluate the performance of the model, three statistical measures were
used: root mean square error (RMSE), Pearson correlation coefficient (r), and mean absolute
relative error (MARE). RMSE was used to measure the difference between the predictions
of the model and the observed values. The values of RMSE are expressed in units, while
MARE indicates the size of the error in relative terms. The Pearson correlation coefficient
indicates the strength and direction of a linear relationship between the predicted and
observed values.

RMSE =

√
∑n

i=1(y− y′)2

n
(3)

MARE =
1
n

n

∑
i=1

∣∣∣∣y′ − y
y

∣∣∣∣ (4)

r = ∑n
i=1(y− y)(y′ − y′ )√

∑n
i=1(y− y)2

√
∑n

i=1(y′ − y′ )2
(5)
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where y is the observed value; y′ is the predicted value; y and y′ are the average values of
y and y′, respectively; and n is the number of values.

3. Results and Discussion

The mean CO2 concentration at the air outlet of the building where piglets between
6.9 kg and 17.0 kg were housed was 1852± 711 ppm, which is equivalent to 3.12 ± 1.20 g m–3

(Table 3). These values were near the lowest mean value of 1981–3253 ppm found in
different trials for pigs between 5.5 and 118 kg, with highly extreme temperatures and very
restricted ventilation over a prolonged period in the cycle [14], and slightly higher than the
mean of 2.89 g m–3 found for pigs between 13 and 32 kg in environmental chambers [13].
All of these CO2 concentrations were far below the 5.30 mg m−3 obtained for animals
between 17 and 20 kg [20].

Table 3. Main statistics for CO2 concentration in the building for different setpoint temperatures.

TS Maximum Minimum Mean SDE

(◦C) (g m3)

26 9.50 1.05 4.59 1.22
25 8.07 1.69 3.34 0.89
24 7.19 1.31 2.97 0.74
23 5.69 1.02 2.02 0.56

CYCLE 9.50 1.02 3.12 1.20

The mean CO2 emission was 2.21 ± 1.09 mg s−1 pig−1 (Table 4), which is below the
emissions reported by other authors in buildings with fully slatted floors [3] for pigs in
the same growth stage, with very similar weights of 7 and 23 kg and emission values of
3.51 and 3.95 mg s−1 pig−1. By transforming the unit based on animal weight, the emission
obtained was 0.195 ± 0.074 mg s−1 kg−1. This value was only above the 0.139 mg s−1 kg−1

found for pigs of 7 to 35 kg [19], and well below the values reported in other studies
that analyzed different diets, with mean values of 0.293 mg s−1 kg−1 for piglets between
13 and 32 kg [13], and values of 0.423 mg s−1 kg−1 and 0.549 mg s−1 kg−1 for pigs between
5.5 and 118 kg [14]. Even though both studies focused on pigs with weights within the
range analyzed in our study, the study in [13] started at much heavier weights than the
weights studied in our paper and ended much later, while the study in [14] started at
a slightly lower weight, but included the finishing stage, so that the animals ended up
being much older. The weaned piglet stage is the one with the largest variations in CO2
emissions, whereas other stages produce more homogenous emissions [5]. Despite this, the
studies devoted to the effect of different diets on weaned piglets have not found significant
differences on CO2 emissions [13,14]. Likewise, using a fully slatted floor as opposed to
straw-based deep litter or sawdust-based deep litter did not cause significant differences in
CO2 emissions [3].

Table 4. Main statistics for CO2 emissions from the building per animal and per weight for different
setpoint temperatures.

TS
(◦C) Emission Maximum Minimum Mean SDE

26
per animal (mg s−1) 4.262 0.103 1.842 0.600

per weight (mg s−1 kg−1) 0.602 0.015 0.249 0.088

25
per animal (mg s−1) 3.554 0.774 1.548 0.341

per weight (mg s−1 kg−1) 0.443 0.086 0.175 0.041

24
per animal (mg s−1) 3.926 0.699 1.875 0.578

per weight (mg s−1 kg−1) 0.321 0.066 0.155 0.047
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Table 4. Cont.

TS
(◦C) Emission Maximum Minimum Mean SDE

23
per animal (mg s−1) 12.343 0.565 3.566 1.242

per weight (mg s−1 kg−1) 0.751 0.033 0.229 0.078

CYCLE
per animal (mg s−1) 12.343 0.103 2.210 1.093

per weight (mg s−1 kg−1) 0.751 0.015 0.195 0.074

3.1. Variation of CO2 Concentration and Emissions with Setpoint Temperature

The CO2 concentration in the building reached its peak with the highest setpoint tem-
perature, 26 ◦C, set at the start of the cycle, and decreased as animals grew and the setpoint
temperature was reduced (Table 3, Figure 2A). The mean CO2 concentrations for every
setpoint temperature were lower than the measurements reported by [42], although concen-
trations were always in the range reported by a number of authors for pig farms [43–45]. In
summary, the CO2 concentration declined as the animals grew. In contrast, another study
reported increasing concentrations [13], which may be caused by the different ages of the
animals (28 days vs. 37 days). As a result of age difference, higher temperatures and lower
ventilation rates were required in our study to ensure animal welfare conditions. Actually,
a trend of increasing concentrations was observed in the final stage of the cycle analyzed in
our study (Figure 2A).
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Figure 2. Evolution during the cycle of (A) CO2 concentration, – CCO2 (g m−3), and (B) CO2 emissions
per animal, – ECO2 (mg s−1), with setpoint temperature, – TS (◦C).

CO2 emissions decreased at the beginning of the cycle because of the limitation of
ventilation flows and the weight of piglets (Table 4 and Figure 2B). Emissions during the
first five days (TS = 26 ◦C) were higher than on the following days (change to TS = 25 ◦C)
because the piglets showed more activity as a consequence of post-weaning stress. From
that moment, emissions increased with the age of the animals, which was particularly
noticeable at the end of the cycle (from day 28), as stated by [2]. The regular increase in
CO2 emissions over the cycle suggests the influence of animal weight [3], which results
from an increase in the metabolic rate and in CO2 production due to breathing [14].

3.2. Variation of CO2 Concentrations and Emission with Outdoor Temperature

The daily behavior of the CO2 concentration was inverse to the evolution of the
outdoor temperature (Figure 3A), with the highest concentrations occurring at night. This
resulted in a negative correlation, with a value of r = −0.695 for the cycle, which was above
the value obtained by Ni et al. [46] for two manure-belt layer hen houses.
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Figure 3. Evolution throughout the cycle of outdoor temperature, – TOUT (◦C) and setpoint temperature
– TS (◦C) with (A) CO2 concentration, – CCO2 (g m−3), and (B) CO2 emissions per animal, – ECO2 (mg s−1).

As shown in Figure 3B, during the first three days of the cycle, with TS = 26 ◦C, the
outdoor temperature and CO2 emissions followed a similar pattern because of the effects
of outdoor temperature on the ventilation system. On the following days, CO2 emissions
decreased steadily until day 25, when outdoor temperature started to increase. During
this interval, both variables showed a weak, inverse correlation (r = −0.475), which was
in agreement with the correlation found by Ni et al. [46] for laying hens. This means that
minimum emissions occurred at maximum outdoor temperatures. From that day until
the end of the cycle, emissions followed a daily oscillation that was parallel to that of
outdoor temperatures.

3.3. Variation of CO2 Concentrations and Emissions with Ventilation Flow

The ventilation flow was highly reduced during the first days of the cycle, until day
25, with a mean of 0.17 m3 s−1 and a maximum of 0.50 m3 s−1 (Figure 4). After that,
a transition stage began for three days with a mean of 0.33 m3 s−1 and a maximum of
0.82 m3 s−1. From day 28, ventilation flow was significantly increased, with a mean of
0.74 m3 s−1 and a peak of 2.02 m3 s−1. Consequently, CO2 concentrations varied depending
on the ventilation flow, such that, as the flow increased, concentration decreased both
throughout the cycle [13] and on a daily basis [6]. Maximum CO2 concentrations (Figure 4A)
of 9.50 g m−3 were measured during the first 25 days, when the highest mean value of
3.63 g m−3 was reached. This means that, as stated by [23] and contrary to what is usually
anticipated, maximum CO2 concentrations occurred when the animals were younger.
Furthermore, as the ventilation flow increased, the CO2 concentration decreased near the
fan, and, therefore, in the building [24,25,47]. Thus, higher ventilation rates involved lower
CO2 concentrations inside the facilities, albeit with higher emission rates [6].
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The relationship between CO2 concentration (CCO2 in g m−3) and the flow of air
extracted through the fan (Q in m3 s−1) during the cycle (Figure 5A) is given by the
following equation:

CCO2 = 1.5316 Q−0.442 (6)

The correlation coefficient between the CO2 concentration and ventilation flow is r = 0.82.
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Figure 5. Correlation between (A) CO2 concentration, CCO2 (g m−3), – potential approximation, and
(B) CO2 emission per animal, ECO2 (mg s−1), – linear relationship, and ventilation flow, Q (m3 s−1)
◦measured values throughout the cycle.

CO2 emissions (Figure 4B) increased with the age of the piglets, in agreement with
Stin et al. [16]. Mean CO2 emissions of 2.21 mg s−1 per animal were found for piglets with
a mean weight of 11.39 kg during the cycle, although there was a sharp increase from day
28, with a peak of 12.34 mg s−1. Throughout the cycle, increasing the ventilation flow
caused a rise in emissions, as observed for the fattening pigs [6,7]. As a consequence, CO2
emissions (ECO2 in mg s−1) and the flow of air extracted through the fan (Q in m3 s−1)
showed a linear relationship (Figure 5B), which is given by the following equation:

ECO2 = 2.8624 Q + 1.2919 (7)

The correlation coefficient between CO2 emissions and ventilation flow is r = 0.85.

3.4. Neural Networks for the Prediction of CO2 Emissions

Table 5 shows the mean performance of the 10 min and 60 min prediction models after
40 iterations.

Table 5. Statistics for the evaluation of the performance of the models: root mean square error (RMSE),
correlation coefficient (r), and mean absolute relative error (MARE).

Prediction Period RMSE MARE r

60 min 1.21 0.23 0.63
10 min 1.27 0.25 0.56

Expectedly, the 10 min prediction was more accurate than the hourly prediction,
although statistical differences were minimal. In particular, r values of 0.63 and 0.56 were
obtained with the 10 min and 60 min prediction models, respectively, whereas the RMSE
values were 1.21 and 1.27 mg s−1, respectively. The prediction error of the models with
regard to measured data in absolute terms (RMSE) was associated with very similar relative
values (MARE), namely 0.23 for the 60 min prediction and 0.25 for the 10 min prediction.
Figure 6 shows these differences. Furthermore, the hourly prediction model showed greater
difficulty in predicting the peaks of CO2 emission.
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Figure 6. Measured (−) and predicted values of CO2 emission per animal, for a 10 min period
(−) and a 60 min period (−), during the trial stage.

The prediction results were limited mainly by the size of the training period and the
differences between the behavior of the series in the training stage and the testing stage.
As shown in Figure 6, the period for the data chosen as the training data corresponded to
a stage of certain stability in emission values, while the emissions showed greater daily
oscillations during the testing stage. These differences in the series limited the performance
of the model and could account for its poor performance compared to the model proposed
in [48], which returned an r value near 0.99 using a multilayer perceptron neural network.
However, other authors [37] obtained an r2 of 0.733 and a MARE of 0.025 using an ANN
prediction model of GHG emissions in a farm for calves. Xie et al., 2017 [36], used an
ANFIS model to predict ammonia emissions in a fattening room for pigs and found an r2

of 0.635 and 0.648, with a MARE of 0.312 and 0.237, in contrast to the values of 0.23 and
0.25 reported above. In the discussed cases, the available dataset was larger than the
one used in this study. Self-learning in neural networks with a larger dataset would lead
to a better performance of the models, particularly because two of the input variables
(ventilation flow and CO2 concentration) were key parameters in the emissions.

3.5. Innovative Potential of the Results

This paper focuses on CO2 concentrations and emissions in pig farms during weaning,
the production stage with the largest variations in values obtained for emissions [5]. Such
variations may be related to the complexity of the farm climate control system, which has
to meet the strict environmental requirements of piglets. Furthermore, these requirements
change considerably throughout the cycle. For this reason, conventional farms usually
have air conditioning systems that include heating and forced ventilation. These were
the conditions for this research, performed in a conventional farm, during the complete
transition cycle, from the weaning of piglets to their transfer to fattening. New values were
provided for this stage, which requires deeper study in terms of the quantification of GHG
concentrations and emissions [15,34].

CO2 is the gas that contributes the most to the global emissions of greenhouse gases in
pig production, accounting for approximately 81% [5]. Therefore, estimating CO2 emissions
provides highly relevant information for global estimations. CO2 concentrations can be
measured affordably, reliably, and with little maintenance using infrared sensors, which
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can be implemented on farms. Yet, the large number of rooms in transition farms would
substantially increase the costs [49]. Moreover, for the estimation of emissions, the flow of
the ventilation system must be determined. Ventilation flow may be obtained using the
values provided by the controller, which can be easily measured, along with the fan curves
or through previous calibrations using an anemometer.

This study evidenced the relationship between CO2 concentrations and emissions
with the different operating parameters of the climate control system, namely setpoint
temperature or ventilation flow, and with outdoor temperature, which directly influences
climate control. By using these parameters, the CO2 concentrations and emissions can be
estimated for any farm at any given moment, because 10 min values are used. In addition,
we proposed Equations (6) and (7), which allow for a simple and direct estimation of the
CO2 concentrations and emissions with high correlation indexes. Furthermore, because
CO2 concentrations and emissions are linked to farm control parameters, emissions can
also be regulated by operating the climate control system.

Finally, generating neural network-based models for 10 min and 60 min CO2 emis-
sions allows for the prediction of the evolution of the study variables based on the input
variables, namely flow extracted through the fan, temperature inside the building, and
CO2 concentration, which provides a deeper understanding of the problem and the pos-
sibility to regulate emissions. In fact, good results have been obtained in studies focused
on the optimization of environmental conditions in buildings based on machine learning
systems [50]. These predictive systems can be incorporated into climate control systems
to automatically optimize concentrations, consequently improving animal welfare, and
emissions, consequently improving the environment.

In addition, an optimizer could be designed to simultaneously achieve a suitable
distribution of temperatures and pollutant concentrations, yet using another model to
predict indoor concentrations.

4. Conclusions

The following conclusions can be drawn from the analysis of variations in CO2 con-
centration and emissions in a conventional farm building with a fully slatted floor and
mechanical ventilation for weaned piglets from 6.9 to 17.0 kg LW, and the relationship
of such variations with setpoint temperature, outdoor temperature, and ventilation flow
during a complete production cycle:

1. Generally, the ventilation flow increased with the reduction in setpoint temperature as
the animals grew, which caused a reduction in CO2 concentration in the building. The
mean value of the CO2 concentration was 3.12 g m–3. Maximum concentrations were
obtained during the first days of the cycle, when ventilation was restricted due to the
demanding thermal requirements of the piglets and their susceptibility to air currents.

2. CO2 emissions increased throughout the cycle. The emission pattern matched the
pattern of outdoor temperatures when the ventilation flow was low and setpoint
temperatures were high, at the start of the cycle. On the contrary, with higher venti-
lation flows and lower setpoint temperatures, the daily evolution of CO2 emissions
was inverse to the evolution of the outdoor temperature. Emissions of CO2 showed
a mean of 2.21 mg s−1 per animal, which was equivalent to 0.195 mg s−1 kg−1, with
a total emission per animal of 7.05 kg at the end of the cycle.

3. Mathematical expressions for 10 min values of CO2 concentrations and emissions
were obtained based on ventilation flow, a variable controlled by the climate control
system, with r values of 0.82 and 0.85, respectively, which allowed for simple and
direct quantification.

4. Using two neural networks, the 10 min and 60 min prediction models for CO2 emis-
sions reached r values of 0.63 and 0.56. These results were mainly limited by the size
of the training period, as well as by the differences between the behavior of the series
in the training stage and the testing stage.
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5. Both the equations and the ANN models for farm emissions allowed for the prediction
of the values of emissions from the variables involved in environmental control.
Therefore, the proposed equations and models could be integrated into climate control
systems, thus allowing for emission regulation.
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