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Abstract

Background: Autism spectrum disorder (ASD) is a group of complex neurodevel-
opment disorders with a strong genetic basis. Large scale sequencing studies have
identified over one hundred ASD risk genes. Nevertheless, the vast majority of ASD risk
genes remain to be discovered, as it is estimated that more than 1000 genes are likely
to be involved in ASD risk. Prioritization of risk genes is an effective strategy to increase
the power of identifying novel risk genes in genetics studies of ASD. As ASD risk genes
are likely to exhibit distinct properties from multiple angles, we reason that integrating
multiple levels of genomic data is a powerful approach to pinpoint genuine ASD risk
genes.

Results: We present BNScore, a Bayesian model selection framework to probabilisti-
cally prioritize ASD risk genes through explicitly integrating evidence from sequenc-
ing-identified ASD genes, biological annotations, and gene functional network. We
demonstrate the validity of our approach and its improved performance over existing
methods by examining the resulting top candidate ASD risk genes against sets of high-
confidence benchmark genes and large-scale ASD genome-wide association studies.
We assess the tissue-, cell type- and development stage-specific expression properties
of top prioritized genes, and find strong expression specificity in brain tissues, striatal
medium spiny neurons, and fetal developmental stages.

Conclusions: In summary, we show that by integrating sequencing findings, func-
tional annotation profiles, and gene-gene functional network, our proposed BNScore
provides competitive performance compared to current state-of-the-art methods in
prioritizing ASD genes. Our method offers a general and flexible strategy to risk gene
prioritization that can potentially be applied to other complex traits as well.

Keywords: Gene prioritization, Bayesian model selection, ASD risk genes

Background

Genetics plays an important role in the etiology of Autism spectrum disorder (ASD).
Dozens of ASD risk genes have been identified from whole exome sequencing (WES)
studies (e.g., de novo and inherited mutations) [1-3], but the vast majority of ASD risk

genes remains unknown, as it has been estimated that more than 1000 genes are involved
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in risk of ASD [4]. It is challenging to identify ASD risk genes due to its broad spectrum
of genetic architectures with multiple biological processes involved [5]. WES or whole
genome-sequencing (WGS) studies of parent-offspring trios has been successful in iden-
tifying ASD risk genes via de novo mutations. However, the power of such approaches is
inevitably low given the rarity of de novo mutations. Computational approaches provide
cost-effective alternatives to effectively nominate ASD risk genes [6].

Various computational methods have been developed for ASD risk gene identification,
most of which employ diverse biological evidence to prioritize risk genes [4, 7, 8]. Con-
ceptually, a candidate gene is often scored higher if the gene is similar or closer to known
ASD risk genes (referred to as “seed genes” hereafter) based on the biological evidence.
In practice, those approaches start by bringing together a “gold-standard” seed gene set,
then train a statistical model using seed genes along with their relevant biological evi-
dence, and finally rank all genes based on the predicted scores from the trained model.
Two key ingredients to facilitate successful modeling are (1) a robust seed gene set com-
prising true ASD risk genes and (2) relevant biological evidence that are representative
of these genes.

The biological evidence for prioritization mainly pertains to genetic sequence proper-
ties, functional annotation, and network information [9, 10]. A few recent studies are
based on one or two types of the aforementioned evidence. He et al. [4] prioritized genes
through genetic sequence properties alone (e.g., multiple occurrences of mutations in
unrelated patients) and didn’t consider other evidence that are important to ASD risk.
Functional annotation based methods [11, 12] rank genes according to the similarity
between candidate and seed genes’ annotation profiles. They tend to bias towards well-
annotated genes and are less effective for genome-wide prediction [13]. Network-based
approaches [7, 8, 14, 15] rely on network proximity between candidate and seed genes,
thus are less biased to well-annotated genes. Instead, the results may bias towards highly
connected genes. Recently, an increasing proportion of network-based approaches are
framing the prioritization problem as a classification problem (i.e., classify genes into
ASD risk genes versus non-risk genes) to be solved by machine-learning algorithms [7,
8]. Apart from traditional machine learning approaches, deep learning has also been
rapidly gaining popularity. Graph neural network (GNN) can directly analyze data struc-
tured as graphs, such as biological networks. Zhang et al. [15] recent applied a GNN
classifier to prioritize ASD genes using the human molecular interaction network input
for training and reported to outperform other commonly used machine learning algo-
rithms. Apart from efforts based on network only, Lin et al. [16] integrated network
evidence with other biological evidence using machine learning classifiers for risk gene
prioritization. These machine-learning based methods have discovered novel ASD
genes, but their inherent “black box” nature limits the interpretability of the final results.

Herein, we present BNScore, a novel Bayesian model selection approach for ASD risk
gene prioritization through explicitly integrating three major types of biological evi-
dence: (1) seed genes derived from ASD sequencing studies; (2) multiple lines of gene-
level functional annotations; and (3) distance to known ASD risk genes in a biological
network. The framework is flexible in that it can readily include additional features rel-
evant to ASD to further increase prediction accuracy. In addition, the Bayesian set-up
renders a clear interpretation of the prediction scores (i.e., Bayesian posterior odds of
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being a risk gene versus not) for each gene across the genome. We demonstrate the
validity of our approach and its improved performance over existing methods by exam-
ining the resulting top candidate ASD risk genes against sets of high-confidence bench-
mark genes and large scale ASD genome-wide association studies (GWAS). We study
the brain spatiotemporal gene expression specificity of identified top candidate genes to
implicate tissues, cell types, and development stages in the etiology of ASD.

Methods

We frame the task of finding risk genes as a Bayesian model selection problem. For each
gene, we select between models Mo, not a ASD risk gene and Mj, a risk gene. Let 6;
denote the parameters associated with model M; (j = 1,0) and let D = (D1, Dy, ..., Dp)T
denote the p-dimensional functional annotation data for each gene. We formulate the
posterior odds of a gene being a risk gene as

P(M|D) _ P(My)P(D|M)
P(Mo|D) — P(Mo)P(D|Mo)
_ P(My) [ p(D|61, M1)p(6:1|M1)d6y
~ P(My) [ p(D|8o, Mo)p(801Mo)dby’

g%é; and ggﬁlﬁé; are the prior odds and Bayes factor of being a risk gene, respec-

tively. For each gene, we specify g%g; based on its average distance to seed genes in a

where

gene-gene functional network denoted by N, based on the rationale that disease-associ-
ated genes are assumed to be closer to each other than random pairs in the network [5,

8, 11]. We assume that the annotations in D are independent of each other under both

gggm{g by taking the product of the
PDIMy) _ 1P Py M)

P(D|Mo) [=1 P(D;|Mo)’
In our framework, seed genes and “background” genes are essential to derive Bayes

My and M; and compute gene-level Bayes factor

Bayes factors from individual annotations, i.e.,

factors and prior odds. We use 65 genes identified from a large exome sequencing study
as seed genes [3]. We randomly select 500 genes across the genome (excluding the 65
seed genes) and regard them as background genes. We acknowledge that these back-
ground genes are not strictly non-ASD genes. However, there is no gold standard for
non-ASD risk genes and it is reasonable to assume that the vast majority of genes across
the genome are true non-ASD genes. There may be a few true positive genes ended up
in our background gene set, in which situation the resulting inference could be slightly
conservative. Nevertheless, we believe that this strategy is more robust than using an
unreliable “gold-standard” background gene set. We choose 500 background genes by
trial and error to balance between two considerations: a smaller set may be insufficiently
representative of the genome background and a larger set can be too heterogeneous to
be useful [17].

Prior odds of a gene being an ASD risk gene

We assume that the prior probability of a gene being a risk gene is determined by two
factors: (1) the overall fraction of risk genes in the genome and (2) the average distance
of this gene to seed genes in a gene-gene functional network. The rationale is that the
closer the two genes are in the network, the higher chance that they have similar func-
tions. We generate the prior odds from



Ji et al. BMC Bioinformatics (2022) 23:146 Page 4 of 17

P(My) 1000
P(Mo) ~ 18000 — 1000

P(Ny),

where 18’0(1)8% is the assumed constant ratio of risk versus non-risk genes in the
genome, as it’s estimated that around 1000 genes in 18000 genes are ASD risk genes
[4]. P(N;) is the average distance between the current gene and all seed genes, which is
calculated based on Gene Ontology (GO) [18, 19]. Specifically, we first build a network
connecting all pairs of genes based on the number and strength of GO terms shared by
each gene pair. In this network, the distance between any gene pair is proportional to the
log likelihood ratio of the two genes sharing the same GO annotations versus not [14].

We then construct a transition matrix from the network and apply the random walk
with restart algorithm [20] to derive the reaching probabilities between any pair of
genes.

Finally, we calculate P(N;) as the average reaching probabilities of the current gene to
all seed genes (see Additional file 1: Section A of Supplementary Notes for details).

Bayes factor of a gene being an ASD risk gene

To reflect each gene’s strength of ASD association from a collection of functional anno-
tations, we first identify ASD related biological processes and then summarize the
ensemble evidence in a Bayes factor. We consider two forms of functional annotations:
(1) binary annotation: presence/absence in biological processes previously implicated in
ASD (e.g., genes involved in the developmental processes, which have been reported to
be important in the pathogenesis of ASD [21]); and (2) continuous annotation: gene-
level metrics (e.g., probability of being loss-of-function (LoF) intolerant (pLI) score [22]).
We model binary and continuous annotations using Beta-Bernoulli and Normal-Inverse
Gamma distributions, respectively [23]. We specify the prior distributions p(61|M;) and
p(0o|Mo) via parametric Empirical Bayes approaches using seed and background genes
(see Additional file 1: Section B of Supplementary Notes for details).

ASD related functional annotations

We initially collect 61 ASD related binary and continuous annotations from literature
and then remove redundant or irrelevant annotations using seed and background genes.
Specifically, we use Fisher’s exact test to identify binary annotations enriched for seed
genes, and we use t-test to identify continuous annotations with significant differences
between seed and background genes. The selected annotations consist of (1) biological
processes implicated in ASD, e.g., genes encoding chromatin modifiers, (2) important
regulatory targets, e.g., targets of FMRP, which is a polyribosome-associated RNA bind-
ing protein that plays important roles in synaptic function and neuronal plasticity, and
(3) generic gene-level metrics, e.g., the pLI score; see Additional file 1: Table S1 for a
complete list of annotations.

Computing Bayes factor based on a binary annotation

We assume that a binary annotation D; follows a Bernoulli distribution Bernoulli(¢y),
where ¢ represents the fraction of disease-associated genes with this annotation
under model M; (j = 0,1). We assume the prior distribution of 6); to be Beta(ay;, ),
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where a; and B; are hyperparameters. Suppose we have # seed genes, k of which pos-
sess this binary annotation, i.e., 2221 Djy = k. It can be shown that the marginal dis-
tribution of Dy under model M; is
pDilay, By) = [ pDYOyPOylary, fdoy = “5 KD, where B(.-) is the beta
function. We obtain moment estimators of hyperparameters «j; and j; under M; using
the seed and background genes (see Additional file 1: Section B.1 of Supplementary
Notes for details). Then, for each candidate gene (i.e., any gene not in the seed and

background gene sets), we determine which model gives a better fit using the Bayes
pDyIMy) _ pDylag,fi)
p(DilMo) = p(Dylatio,fro)’

factor

Computing Bayes factor based on a continuous annotation

We assume that a continuous annotation D; follows a normal distribution N (u, 0j7),
where w1 and 6 are the mean and variance, respectively, under model M; (j =0, 1).
We assume a Normal-Inverse Gamma prior for wy and 6y, i.e., |05 ~ N (g, %);
0 ~ 1G(vy/2, vljol?/Z). Let 55 = (woy, k> vy, ol}z)T denote the hyperparameters. The
marginal distribution of Dy under model M; is
pDyny) = [ pDyl iy, 05)p (1l ieos» O Klj)P(91j|Ulj»Ullz')dﬂljdelj, which can be shown to
be a non-standardized t distribution £, (1o, 0112.(1 + i) /kyj) [24]. We obtain moment
estimators of hyperparameters 7;; under ; using the seed and background genes (see
Additional file 1: Section B.2 of Supplementary Notes for details). Then, for each can-

didate gene, we determine which model gives a better fit using the Bayes factor

pDiMy) _ pDilin)
p(DiIMo) — p(Dylngg)’

Comparing with existing methods for ASD gene prioritization

We compare our method with three state-of-the-art methods developed by
Krishnan et al. [8] (referred to as “2016Krishnan”), Duda et al. [7] (referred to as
“2018Duda”), Lin et al. [16] (referred to as “2020Lin”), and Zhang et al. [15] (referred
to as “2020Zhang”). These methods used machine learning algorithms with different
types of evidence: 2016Krishnan utilized a brain-specific functional network reflect-
ing brain-specific expression and biological processes; 2018Duda utilized publicly
available tissue-specific microarray, protein interaction, and phenotype annota-
tion data sets; 2020Lin utilized spatiotemporal gene expression patterns in human
brain, gene-level constraint metrics, and other gene variation features; 2020Zhang
utilized a human molecular interaction network based on literature of physical pro-
tein interactions experimentally documented. These methods used different seed and
background gene sets for training but they all include the 65 seed genes described
previously. We use their gene prioritization scores directly rather than retraining the
models. For fair comparison, we depleted the training genes and only evaluate the
testing genes for each method using the external benchmarks. Specifically, we obtain
the 2016Krishnan, 2018Duda, 2020Lin, and 2020Zhang scores from Supplementary
Table 3 of Krishnan et al. [8], Supplemental Table 1 of Duda et al. [7], and Supplemen-
tal Table 3 of Lin et al. [16], Github repository [25] by Zhang et al. [15].



Ji et al. BMC Bioinformatics (2022) 23:146 Page 6 of 17

Measure of gene expression specificity

We use the specificity index (SI and pSI) defined by Dougherty et al. [26] to measure
expression specificity of candidate genes under various biological conditions (i.e., tissue,
cell type, brain region, and developmental stage). Suppose there are m potential condi-
tions. We want to calculate the SI for gene g under the first condition compared to the
other m — 1 conditions. Let E1, denote the expression of gene g under the first condi-
tion. We compute a fold-change value for gene g to measure its relative expression under
the first condition to the kth condition and obtain the rank of this fold change value
Ry /i g relative to other genes. Then, we define SI for gene g as the average rank of Ry /i,
under all conditions, ie., Slg1 = j_, Ry/k,g/(m — 1). Raw SI scores are not directly
comparable across conditions due to the differences in number of genes expressed under
each condition, so pSI, a permutation based p value for each SI is computed by randomly
shuffling expression values and computing SI to determine the probability of observing a
SI value less than or equal to a predefined threshold of 0.05 in the permutated distribu-
tion. The pSI value is used to assess gene expression specification under certain condi-
tions. The code used to calculate ST and pSI was obtained from Dougherty lab website
[27].

Results

Benchmarking using sequencing-identified novel ASD genes

We obtained 102 ASD genes identified in a recently published large exome sequencing
study [28] (referred to as the “2020 study”). Among these 102 ASD genes, 65 had been
previously identified in Sanders et al. [3] (referred to as the “2015 study”). These two
studies enable us to conduct a “time-lapse” data experiment [29]. That is, we prioritized
ASD risk genes based on the 65 seed genes identified in the 2015 study, and then evalu-
ated the top candidate genes against those identified in the 2020 study but not in the
2015 study (referred to as the “ASD2020” gene set).

We employed two strategies to evaluate our model performance: 1) we performed
gene set enrichment analysis to assess whether the top candidate genes are significantly
enriched in the ASD2020 gene set; 2) we calculated area under the curve (AUC) of
receiver-operating characteristic (ROC) curves (ROC-AUC) and precision-recall curves
(PR-AUC). The first strategy evaluates a binary classification of risk versus non-risk
genes and ignores the relative ranking of genes; the second strategy takes the ranking of
genes into account and should render a more robust and comprehensive evaluation.

The ROC and PR curves in Fig. 1 show that our approach, BNScore achieves the
best prediction accuracy in the ASD2020 gene set. In particular, BNScore achieves an
ROC-AUC value of 0.91, higher than the other methods (with ROC-AUC values of
0.78 — 0.88). The improvement over the second best method, 2020Lin, is statistically
significant (one-sided Delong’s test p value = 0.026). Similarly, BNScore achieves a PR-
AUC value of 0.68, a sizable improvement over the other methods (with PR-AUC values
of 0.49—0.59).

We tested the enrichment of the top candidate genes in the ASD2020 gene set, using
the rest genes in the genome as background. Figure 2 shows that the top candidate genes
predicted by BNScore are substantially more enriched in the ASD2020 gene set than the
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14.1 (p value = 2.65 x 10™%), and 18.23 (p value = 8.60 x 10~%) for 2018Dula, 2020Lin,
2016Krishnan, and 2020Zhang respectively. The enrichment OR is 19.8 for the top 1000
genes predicted by BNScore, while the ORs are less than 15 for the other three methods.
We note that genes with ranking greater than 1000 show much lower enrichment for
ASD2020 genes. This is the case for all methods, indicating that most ASD risk genes
are likely concentrated in the top 1000 prioritized genes, consistent with the estimate of
1000 ASD risk genes by He et al. [4]. Therefore, we focused on the top 1000 genes as the

primary candidate gene sets for the rest of the study.

Benchmarking using SFARI gene lists

We generated benchmark gene sets from the SFARI database [30], which contains genes
linked to ASD from a variety of evidence sources and curated into several categories
by experts. For each method, we excluded seed genes overlapped with the benchmark
SFARI gene sets before evaluation. We formed three tiers of gold-standard gene sets
according to the SFARI classification criteria: genes classified as “high confidence” by
SFARI were designated as tier 1 evidence (T1); genes classified as “strong candidate”
were designated as tier 2 evidence (T2); and genes of “suggestive evidence” were desig-
nated as tier 3 evidence (T3). We employed similar strategies as in Sect. to compare the
performance of our proposed method with existing ones.

The ROC and PR curves in Fig. 3 show that our proposed BNScore achieved the
best accuracy in T1 SFARI gene set. We also tested the top 1000 candidate genes pre-
dicted by all methods for enrichment in the SFARI gene lists. Figure 4 shows that the
top candidate genes predicted by BNScore are more enriched for T1 genes than the top
candidate genes predicted by the other methods. The enrichment OR is 26.9 (p-value
=1.37 x 107%) for BNScore, compared to 22.9 (p value = 1.50 x 10~%, 13.9 (p
value = 1.28 x 1072°), 9.6 (p value = 3.82 x 1071%), and 11.7 (p value = 1.01 x 10729)
for 2020Lin, 2018Duda, 2020Zhang, and 2016Krishnan, respectively.

The AUC:s for the ROC and PR curves for all methods are lower in the T2 and T3 gene
sets compared to their counterparts in the T1 set (Additional file 1: Fig. S1), and the
enrichment ORs are much smaller in the T2 and T3 sets compared to those in the T1
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set (Additional file 1: Fig. S2). Furthermore, we did not observe significant enrichment in
any SFARI gene set for genes ranked greater than 2000 by any method. This suggests that
the T2 and T3 gene sets may contain a larger proportion of non-ASD genes than the T1
set. Consequently, the relative performance of the methods in T2 and T3 sets may not be
as trustworthy as that in the T1 set.

Benchmarking using ASD GWAS

We used partitioned linkage disequilibrium score regression (LDSC) [31, 32] to assess
common SNP heritability enrichment near or within the top candidate genes using sum-
mary statistics from the most recent ASD GWAS [33]. Partitioned LDSC is a method
to estimate the proportion of genome-wide SNP-heritability attributable to a SNP set,
referred to as an “annotation” [32], while taking into account all other annotations. We
annotated SNPs that are within 10 kb to the transcription start sites of the top candi-
date genes [34], and then used partitioned LDSC to evaluate whether these SNPs have
enriched ASD heritability. Template files and code to construct annotations were
adapted from the LDSC Github repository [35]. We restricted the analysis to Hapmap3
SNPs according to the recommendations from the LDSC authors. Figure 5 shows that
the top candidate genes predicted by BNScore, 2016Krishnan, and 2020Lin are signifi-
cantly enriched for ASD heritability. For the top 1000 genes, the enrichment OR is 7.3
(p value = 0.0068) for BNScore, higher than that of 2020Lin (OR = 6.1, p value = 0.036)
and 2016Krishnan (OR = 6.9, p value = 0.025). We did not include the top candidate
genes predicted by 2018Duda or 2020Zhang in Fig. 5 because they were not signifi-
cantly enriched for ASD heritability (e.g., p value = 0.53, p value = 0.58 for 2018Duda,
2020Zhang top 1000 genes, respectively).

Examining expression specificity of top candidate genes

We explored the tissue, cell type, and brain developmental stage specificity of the prior-
itized ASD risk genes to further dissect the ASD etiology. To this end, we calculated the
gene expression specificity with respect to tissues, cell types, and brain developmental
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stages based on transcriptome data using the specificity index (pSI) developed by
Dougherty et al. [26]. We tested our top 1000 candidate ASD risk genes for enrichment
in each tissue’s, cell type’s, or brain developmental stage’s specific gene list using Fisher’s
exact test. We used the Benjamini-Hochberg (BH) procedure to control the false discov-
ery rate [36].

To evaluate tissue specificity, we used the Genotype-Tissue Expression (GTEx) dataset
[37]. For tissues with multiple replicates, we averaged reads per kilobase of transcript
per million mapped reads values before use. For each tissue, we defined a list of specifi-
cally expressed genes by selecting genes with pSI < 0.05 (the smaller the more specific).
As shown in Fig. 6, we found the brain tissues to be the only category of tissues signifi-
cantly enriched for the top candidate genes (BH corrected p — value = 1.42 x 10719),

To study cell type specificity, we used the mice datasets published by Xu et al. [38].
For each cell type, we defined a list of specifically expressed genes by selecting genes
with pSI < 0.05. Figure 7 shows the over-representation of candidate genes in striatal
medium spiny neurons and retina specific genes. Defects in the striatum have previously
been found to specifically contribute to the motor, social, and communication impair-
ments seen in ASD patients [39, 40], while retina has been used as an accessible window
to understand brain wiring and functions as it uses and produces most neurotransmit-
ters found in the brain [41].

To study spatiotemporal expression patterns in human brain, we used the Brainspan
dataset [42], which was condensed into six major regional divisions across ten devel-
opmental stages. For each brain region and developmental stage, we defined a list of
specifically expressed genes by selecting genes with pSI < 0.05. Figure 8 shows strong
enrichment signals for our candidate ASD risk genes in early and mid-fetal stage genes
across all brain regions. We observed only a few enrichment signals in the later develop-
ment stages, e.g., in cerebellum during mid-late childhood and in cortex during young
adulthood. These findings are consistent with the reported heterogeneity of ASD, as
abruptions from many brain regions across many developmental stages may all contrib-
ute to the onset of ASD [8, 43].
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p-values. Brain tissue is the only category of tissues significantly enriched for the top candidate genes (BH
corrected p value = 142 x 10719

Discussion

We present BNScore, a Bayesian model selection based framework to facilitate genome-
wide ASD gene discovery. The Bayesian modeling frameword has advantages in inter-
pretability of final results compared to hypothesis-testing approaches and machine
learning algorithms. Our approach is flexible in integrating multiple types of biological
evidence. Currently, it integrates sequencing study results, diverse functional annota-
tions, and network information to obtain genome-wide prediction of ASD risk genes. It
is straightforward to incorporate new lines of evidence as they become available in the
future.

Our prediction is validated by three benchmark datasets not used in the training pro-
cess: (1) a recently published exome sequencing study [28], (2) genes from the SFARI
database, and (3) a recently published ASD GWAS study [33]. Our approach outper-
forms the existing methods in most situations, pinpointing 1000 top candidate genes
with high confidence. We observe that our top candidate genes are specifically expressed
in brain tissues, in striatal medium spiny neurons and retina, and in early developmental
stages across brain regions, offering hypotheses for further validation of the implicated
tissue, cell types, and developmental stages.

The performance gain for BNScore relative to the other approaches may be attrib-
uted to the integration of a variety types of biological evidence, including sequencing
study results, diverse functional annotations, and network information to prioritize
ASD risk genes. The data integration allows us to take advantage of the complementary
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information contained in them to improve the prediction of ASD risk genes. Also, genes
with multiple sources of evidence pointing to them might be more likely to be true risk
genes [44]. In fact, the enrichment ORs of the top 1000 genes ranked using network dis-
tance only, Bayes factor based on binary annotations only, Bayes factor based on contin-
uous annotations only are 3.34 (p value = 1.9 x 1072), 13.09 (p value = 3.26 x 10717),
17.28 (p value = 6.16 x 10722), respectively, which are all smaller than the OR of the
final BNScore model (OR = 19.83, p value = 1.82 x 10~2%) for ASD2020 genes.

There are other types of evidence that may be useful for ASD risk gene prioritization.
For example, epigenomics data that have been implicated in ASD risk genes may pro-
vide additional important evidence [45] , and phenome networks may provide more evi-
dence for gene-gene connections [46]. Our current analysis is limited to protein-coding
genes. Recent studies have also shown that long non-coding RNAs (IncRNA), which are
important regulators of gene expression, could also be prioritized for ASD risk through
transferring knowledge from protein-coding genes [47]. Given the flexibility of our
framework, these aspects could be readily explored in future studies and might contrib-
ute to further improvement in prediction accuracy.

We assumed parametric models in the Bayes factor calculations because of their
ease of implementation and computational efficiency. These models work well in
our empirical datasets. In the future, one may encounter other types of annotations
that cannot be appropriately represented by these simple models. In this situation,

one may consider more sophisticated semiparametric or nonparametric models. In
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Fig. 8 Brain region and developmental stage expression specificity of top candidate ASD genes. The results
are reported in bulleye plots with the size of the bullseye scaled to the number of enriched genes and color
coded by Fisher’s exact test p-values. Strong enrichment signals for top candidate genes are observed across
all brain regions in early and mid-fetal stage, and in cerebellum and cortex during the later development
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general, the advantage of Bayesian modeling lies in its ability to incorporate prior
probabilities for the data generating mechanism, isolate the effect of each feature, and
identify parameters that are interpretable and of special interest (e.g. 6; for binary
annotation in our approach). As a contrast, machine learning models usually does not
attempt to isolate the effect of any single variable and usually does not model the data
generating process but instead attempt to learn from the dataset through intracta-
ble processes. With that being said, we acknowledge that there are scenarios where
machine learning methods can be preferable, e.g., in the presence of complicated
nonlinear interactions, when the dataset is huge, or when overall prediction is the
only goal and there is no need to succinctly describe the impact of any one variable.
The performance of our proposed BNScore, as well as any other method for ASD
gene prioritization, ultimately depends on the seed ASD genes, which may not be
representative of the full spectrum of ASD risk genes. In other words, our approach
is more powerful to identify new ASD candidate genes similar to “known” disease
genes. Therefore, we interpret our results with caution: we can implicate candidate
genes but we are not confident to exclude genes that are not similar to seed genes,
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since such genes may lead to diseases through entirely unexpected mechanisms yet
represented in the seed genes.

Like other gene prioritization approaches, our approach is based on the available
incomplete annotation data sources, which themselves incorporate false positive/nega-
tive annotations and bias studies of human genome. The prioritized genes offer relevant
hypotheses to researchers to further investigate.

Conclusion

Overall, owing to the benefits from integrating sequencing findings, functional annota-
tion profiles, and gene-gene functional network, our approach provides competitive per-
formance compared to current state-of-the-art methods when validated in benchmark
datasets. The Bayesian setup provides easily interpretable results. With the expansion
of both genomic data and epigenomic data in the future, the identification of risk genes
could be further improved by expanding our framework to include more annotations.
Although designed for ASD, we note that this approach can be extended to other com-
plex traits. It is our hope that this framework can offer prioritized risk genes to research-
ers to facilitate the identification of disease risk genes.
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