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Abstract 

Oral mesenchymal stem cells (MSCs) and their secretomes are considered important factors in the field of medi-
cal tissue engineering and cell free biotherapy due to their ease of access, differentiation potential, and successful 
therapeutic outcomes. Extracellular vesicles (EVs) and the conditioned medium (CM) from MSCs are gaining more 
attraction as an alternative to cell-based therapies due to the less ethical issues involved, and their easier acquisition, 
preservation, long term storage, sterilization, and packaging. Bone and periodontal regenerative ability of EVs and CM 
have been the focus of some recent studies. In this review, we looked through currently available literature regarding 
MSCs’ EVs or conditioned medium and their general characteristics, function, and regenerative potentials. We will also 
review the novel applications in regenerating bone and periodontal defects.
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Introduction
Periodontitis is still considered as a globally prevalent 
disease [1]. The chronic presence of pathological factors 
may proceed to destruct the supporting periodontium of 
the teeth and lead to tooth loss. Early diagnosis of peri-
odontitis prevents further structural damages to the peri-
odontium, and it can be treated by removal of pathologic 
factors using scaling and root planning [2]. In the case of 
lost periodontal tissues, regeneration of the periodon-
tium is considered as a challenging treatment. Numer-
ous procedures and products have been developed and 
applied to regenerate lost periodontal tissue [3–7]. Such 
regenerative treatments are difficult and only effective 
in specific conditions with limited tissue reconstruction 
results, as the periodontium is a complex structure which 
possess various cell types [8].

Bone, as a connective tissue, preserves and supports 
organs and tissues within the body. It is also one of the 
important structures of the periodontal tissues surround-
ing teeth. Bone remodeling is a lifelong process to pre-
serve bone structure and function. Some conditions like 
aging, trauma, obesity, congenital abnormalities, surgical 
removal of a mass within the bone, and cancer metasta-
ses to the bone, may interfere with the normal balance of 
bone remodeling and increase the demand for an efficient 
therapy to regenerate the bone tissue [9–12]. Autogenous 
and allogenous bone grafts are currently considered as a 
gold standard in bone regenerative therapies. However, 
numerous complications including, morbidity at graft 
harvesting site, limited harvesting sources, graft versus 
host disease (GVHD), need for secondary surgery, infec-
tion, and non-union formation are associated with these 
treatments [13–17]. Therefore, a new, safe, and efficient 
therapy is highly demanded to overcome the existing 
limitations. Bone remodeling involves various cells, such 
as bone cells (osteoblasts, osteoclasts, mechanosensitive 
osteocytes, and bone marrow stem cells), immune cells 
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(T cells, dendritic cells, and monocytes), and articular 
cartilage cells [18]. Intercellular communication between 
cells is essential for bone remodeling [19]. This has 
directed recent studies towards investigating more suit-
able and efficient bone regenerative therapies especially 
when dealing with challenging defects that are beyond 
the spontaneously healing size.

Regenerative medicine is considered as a subdivision of 
translational medical science that focuses on identifying 
various approaches to efficiently replace or reestablish 
the normal structure and function of damaged tissues 
[20]. Stem cells have been considered as effective tools in 
regenerative medicine, with the potential to differentiate 
into various cell types, and having a wide range of appli-
cations including in tooth regeneration, wound healing, 
and treatment of various diseases [21, 22].

Oral tissues have been considered a suitable source 
of mesenchymal stem cells (MSCs), and the first den-
tal derived stem cells were isolated from a dental pulp 
in 2000 [23]. Dental stem cells are regarded as an easily 
accessible and suitable source of stem cells with a well-
known regenerative capacity. Dental derived stem cells 
include multiple types such as dental pulp mesenchymal 
stem cells (DP-MSCs), stem cells from exfoliated decidu-
ous teeth (SHED), stem cells from apical papilla (SCAP), 
periodontal ligament stem cells (PDLSCs), and dental fol-
licle progenitor cells (DFPCs) .There, still exists a search 
for finding more suitable stem cell origins in the oral cav-
ity to be used in tissue regenerations and cell based thera-
pies [24].

One of the secreted particles from MSCs is extracellu-
lar vesicle (EVs). EV is a term approved by International 
Society for Extracellular Vesicles (ISEV) for bilayer lipid 
membrane vesicles that are non-replicable, contain-
ing nucleic acids, proteins, lipids, and various signal-
ing molecules [25]. Most eukaryotic cells secrete EVs, 
which have essential roles in intercellular communica-
tions. They carry active signals that can influence the 
activity of adjacent or distant recipient cells [26, 27]. It 
has been suggested that MSCs’ paracrine activity is con-
trolled by growth factors and survival signals, as well as 
EVs. Current investigations have shown the beneficial 
contribution of MSC derived EVs in MSCs’ physiologi-
cal functions [28]. Due to the challenges related to stem 
cell therapy, more recent studies have focused on other 
novel alternative regenerative methods such as cell free 
therapies on based paracrine signaling and use of such 
secreted particles to overcome these obstacles [29–33]. 
The investigation onstem cells and their mechanisms of 
action have revealed the important role of bioactive mol-
ecules of these cells and the media surrounding them 
[the conditioned media (CM)]. One of the most impor-
tant secreted molecules that are released to the biological 

fluid or cell culture CM are EVs that show the same 
regenerative function as stem cells and can be considered 
as safe alternatives [34]. EVs’ valuable advantages over 
stem cell therapy are their relative ease of preservation 
and sterilization, and the capability of long-term storage 
without the risk of losing their properties. These cell-
secreted particles provide broad bio-signaling functions 
for various targeted cell types.

This capability has attracted attention to use EVs for 
transferring particular messages to multiple heterogene-
ous cells involved in tissue regeneration therapies such as 
craniofacial bone and tissue regenerations. The current 
review aims to summarize the available evidence on EVs’ 
function and also their potential applications in bone and 
periodontal regeneration.

General characteristics of EVs: biogenesis, 
components, and composition
EVs have been previously classified into three main sub-
types based on their cellular origin, size, or biogenesis. 
This includes (1) exosomes (30–150  nm) with an endo-
cytic origin, (2) microvesicles (100–1000 nm) formed by 
budding of the plasma membrane, and (3) apoptotic bod-
ies (500 nm–2 µm) derived from dying cells (Fig. 1) [35]. 
Based on new guidelines and the fact that determining 
the exact biogenesis pathway of EV is still considered dif-
ficult, use of a more general term of EV is recommended. 
Moreover, for identifying EV subtypes, use of more oper-
ational terms which refer to either their physical charac-
teristics such as size, density, biochemical composition, 
descriptions of conditions or cell of origin is suggested 
[25, 36].

Exosomes were first recognized in 1981 [37] and can be 
distinguished from other EVs by their protein and lipid 
composition. They can be secreted from almost all cell 
types and they can be found in body fluids (e.g., blood, 
breast milk, saliva, semen, and urine) [38, 39].

Exosomes are formed by the inward budding of endo-
somal membranes of multivesicular Endosome (MVE) 
and form intraluminal vesicles (ILV). These exosomes are 
released due to the fusion of the MVE with the plasma 
membrane [35].

Depending on their endosomal origin, EVs/exosomes 
may contain membrane transport and fusion proteins 
(Annexins, Rabs, flotillin), tetraspanins (CD9, CD63, 
CD81, CD82), heat shock proteins (Hsp70, Hsp 90), pro-
teins associated with MVB formation, including Endoso-
mal Sorting Complex Required for Transport (ESCRT) 
proteins, apoptosis-linked gene 2-interacting protein X 
(Alix), Tumor Susceptibility Gene 101 (TSG101), trans-
membrane receptors including MHC molecules and 
integrins as well as lipid-related proteins and phospholi-
pases [40, 41]. They also contain cytosolic proteins such 



Page 3 of 21Gholami et al. Cell Biosci           (2021) 11:16 	

as cytoskeletal proteins (Actin, Tubulin, Profilin, Cofilin) 
and various metabolic enzymes (AChE, GAPDH and 
Pyruvate kinase) [42]. Therefore, it should be taken into 
consideration that different sources of exosomes may 
cause a variation in these markers’ expression. Com-
monly used markers of exosomes identification include 
tetraspanins, Alix, flotillin, TSG101, and Rab5b [27]. So 
far, more than 4400 different proteins in addition to the 
membrane proteins have been recognized as cargo for 
intercellular communication [43]. Moreover, exosomes 
contain specific raft-associated lipids such as choles-
terol, ceramide, sphingolipids, and phosphoglycerides 
with long and saturated fatty-acyl chains [44–46]. The 
genomic molecules such as mRNA, miRNAs, and lncR-
NAs are mentioned as other exosome components asso-
ciated with the regulation of gene expression. Exosome 
miRNA content is specific to the parental cell type and 
cell condition (e.g., inflammation and hypoxia) (Fig.  2) 
[47].

EVs are released in body fluids such as blood, semen 
and urine and may also be isolated from cell culture con-
dition mediums [48–50].

Cell culture media are convenient sources of EVs that 
can result in a reproducible and high gain of EVs. Because 
of the high chance of EVs’ contamination in culture 
media that are hard to distinguish during the isolation 
process, alternative ways such as EVs-depleted FBS are 
considered to prevent the influence on the type, cargo, 
and amount of released EVs [51–56]. Numerous factors 
affect EVs’ secretion, including oxidative stress, hypoxia, 
and calcium ions [57]. These vesicles are distinguished 
by different sets of lipids, functionally active ribonucleic 
acids (e.g., mRNA, miRNA), and parental cell-derived 
cytosolic and membrane proteins [58–60]. EV-based 
therapies are relatively more convenient than cell-based 
therapeutics. However, identifying the EV separation, 
storage and retrieval methods which have been shown to 
significantly alters both the physical and biological prop-
erties of EVs, are challenging topics of research, and are 
yet being extensively studied to help pave the path for a 
better translation and clinical application of EVs [25, 48, 
61, 62]. 

EVs are involved in several biological interactions, 
such as intercellular communication, transportation of 

Fig. 1  Mechanisms of maturation and secretion of extracellular vesicles
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proteins and nucleic acids, tumorigenesis, and metabo-
lism. They may also be used in diagnostic and thera-
peutic applications in various diseases, as host immune 
response modulators, and prions carriers [60, 63]. EVs 
membrane proteins may interact with cell surface and 
result in intercellular signaling. The mentioned process is 
done when a vesicles fuses with the target cell membrane 
via EVs surface proteins such as Alix or TSG101, and 
tetraspanins such as CD9, CD63, CD81, and CD82 [64, 
65]. Also, internalization into a recipient cell may deliver 
cargo such as proteins and RNA that are active inside the 
recipient cell [66].

EVs have also been considered as therapeutic nano 
delivery systems as they have low immunogenicity, a 
long half-life in circulation, and are capable of penetrat-
ing through the brain-blood barrier [67–69]. EVs derived 
from stem/progenitor cells have the potential to mediate 
the regenerative responses of MSCs [70, 71]. As studies 
have revealed, secreted factors (also known as secretome) 
play a more critical role in tissue regeneration and repair 
than trans-differentiation capacity of cells [72]. EVs con-
tents usually determine the changes within targeted cells. 
They have been proven to result in increased prolifera-
tion of cells via mitogen-activated protein kinase (MAPK) 

Fig. 2  Components and potential applications of extracellular vesicles



Page 5 of 21Gholami et al. Cell Biosci           (2021) 11:16 	

pathway [73, 74]. Pro-angiogenic properties of EVs from 
endothelial cells [75], endothelial progenitor cells [76–
78], and mesenchymal stem cells (MSCs) [79, 80] are 
established to be related to their miRNAs contents [75]. 
Moreover, due to the secretion of anti-inflammatory 
cytokines and facilitation of M2 macrophage formation, 
EVs have been identified as the one of the main sources 
of them [81, 82].

Regenerative potential of stem cell derived 
extracellular vesicles
Regenerative medicine involves the transplantation of 
stem cells into injured organs and tissues, and improv-
ing the regenerative potential and function of existing 
adult stem cells. In the last decades, numerous studies 
have confirmed the therapeutic potentials of the stem 
cells [83–85]. Direct usage of living stem cells is however 
still associated with some complications such as uncon-
trolled proliferation, tumorigenesis and metagenesis, ter-
atoma formation, and graft-versus-host disease [30, 32]. 
Besides, the success rate of the treatment may be affected 
by improper handling methods, storage, and transpor-
tation [31]. Consequently, indirect mechanisms such as 
the application of paracrine secretions, growth factors, 
and cytokines have been considered as safer alternative 
treatments. Based on the ability of EVs to mimic stem 
cell properties, it is assumed that stem cell-derived EVs 
represent an appropriate therapeutic choice in regenera-
tive medicine [86]. Compared to the direct use of stem 
cells, EVs could be generated on larger scales. They are 
smaller, easier to handle, and less expensive. They also 
have specific targets and have lower potential ethical and 
legal concerns [87]. These vesicles have high stability and 
can keep their potency in proper storage conditions for 
approximately 6 months [88, 89].

They also eliminate the risk of pulmonary embolism 
formation caused by cell transplantation [90]. EVs have 
been shown to be able to alter the recipient cells’ func-
tions by providing genetic information that affects their 
characteristics and paracrine factors and result in tissue 
regeneration [91]. The evidence has also revealed that the 
content of EVs is dynamic and largely depends on their 
cellular origin and physiological status, which needs to be 
taken into account when used as a therapeutic agent [27].

Another introduced means of application of these 
vesicles is use of CM in which stem cells were cultured. 
According to Osugi et al. [92], there are numerous growth 
factors such as IGF-1, VEGF, and TGF-β1 in serum-free 
CM from human bone marrow-derived MSCs that can 
enhance bone regeneration. Positive anti-inflammatory 
and stimulatory effects on angiogenesis and periodontal 
and bone regeneration has been reported with applica-
tion of EVs from stem cell CM [93–95].

Similar to stem cells, it has been observed that the 
source and origin from which EVs are obtained can 
change the results of their application. For example, den-
tal pulp MSC-CM showed higher vasculogenesis in vivo 
and higher antiapoptotic, angiogenic, migration activ-
ity, and immunomodulatory effects in  vitro in compari-
son with bone marrow MSC-CM. Human umbilical vein 
endothelial cells (HUVECs) shape more tube-like struc-
tures and cords when in touch with dental pulp MSC-
CM, which is known to be the shape of endothelial cells 
[96]. PDL MSCs, as another dental source of stem cells, 
have shown a great potential for osseous regeneration 
[97, 98]. Qin et al. have reported that EVs derived from 
BMSCs can form more bony structures in the critical-
size calvaria bone defects than other cell types [99]. These 
difference should be considered along with the ease of 
access and isolation in future craniofacial regenerative 
studies [100].

Clinical applications of EVs and their limitations
The therapeutic effects of EVs have been illustrated in 
various fields, such as cardiovascular, neurological, lung, 
kidney, and liver diseases. Basu et  al. have assessed the 
effect of current exosomal therapy on neuroregeneration 
and skin regeneration. They indicated that EVs are more 
stable and storable than cells. They decrease the risk of 
aneuploidy and immune rejection caused by in vivo allo-
geneic administration and might offer a substitutional 
therapy for different diseases [101].

There are shreds of evidence of EVs and even dental 
stem cell derived EVs are being successfully utilized in 
regeneration of other tissues and cure of disease such 
as the nervous and cardiovascular systems. A previ-
ous study reported that SHED-derived EVs are able 
to improve functional recovery after traumatic brain 
injury [102]. In addition, Alvarez-Ervitl et al. have shown 
the amelioration of Alzheimer’s disease by the injec-
tion of EVs obtained from modified cells. Also, Ahmed 
et al. [103] demonstrated that DPSCs might act as a good 
source for secretome-based therapy of Alzheimer’s dis-
ease. It has also been revealed that neurons secrete EVs 
containing alpha-synuclein and amyloid-beta protein 
that are, respectively, the indicators of the progression of 
Parkinson’s and Alzheimer’s diseases [104].

In myocardial infarction in a mouse model, ventricu-
lar remolding and the left ventricular ejection fraction 
were significantly improved after treatment with EVs. 
This improvement might have been the result of trans-
porting the miR-29 family and IGF-1R from the EVs into 
the heart [104]. Lee et al.  [105] showed that in hypoxia-
induced pulmonary hypertension mice, EVs mediated the 
cytoprotective action of MSCs, which inhibited the dis-
ease progression and protected lung from adverse effects 
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of hypertension. In another study, Zhou et  al.  [74] sug-
gested that human MSC-derived EVs could be exploited 
as protection against apoptosis and cisplatin-induced 
renal oxidative stress in vivo and in vitro.

As mentioned, craniofacial regeneration is one of the 
growing fields of EV application. Furthermore, the ther-
apeutic use of EVs has also gained attention in recon-
structing the pulp complex and dentin in recent years. 
Ivica et  al.  [106] proposed that pulp-derived EVs, along 
with a fibrin gel, could be an effective combination for 
clinical translation on the way to improved cell-free 
regenerative endodontics. Furthermore, Huang et  al. 
assessed the potential characteristics of EVs from dental 
pulp stem cells that were cultured in odontogenic differ-
entiation conditions to promote odontogenic differen-
tiation of DPSCs and hMSCs in vitro and in vivo. Their 
results highlighted the possible role of EVs as biomimetic 
tools to differentiate stem cells in a lineage-specific man-
ner [107].

Although bone regeneration has been investigated 
in number of studies in recent years, there are only few 
available studies that are specifically focusing on EVs 
application in the regeneration of the tooth periodon-
tium. The available evidence on EVs potential applica-
tions in bone and periodontal regenerations will be 
further discussed.

Bone regeneration
Bone regeneration via EVs or their CM has been the 
focus of many studies in recent years (Table 1). As pre-
viously mentioned, many researches have indicated that 
EVs have essential roles in cell-to-cell interaction, organ-
to-organ communication and also, can be introduced as a 
novel signaling mediator in whole-body communications.

These naturally occurring nanoparticles include cargos 
such as genetic materials (mRNA, miRNAs and DNA), 
proteins and lipids that are able to change the function 
of targeted cells. If delivered to distinct cells via EVs, 
mRNAs and miRNAs can alter and regulate gene expres-
sion. Not only are EV required in cell-to-cell signaling, 
but abundant evidence propose that they play a key role 
in regenerative treatment through their maternal cargos 
or loaded materials.

There are four target fields in bone regeneration in 
which EVs have the potential to be utilized: angiogenesis, 
osteoblast proliferation, intercellular communications, 
and immunomodulation [108].

Blood vessels are the agents delivering minerals, 
growth factors, and progenitor cells to the area involved 
in regenerative activity and help sustain homeostasis. 
There is evidence suggesting possible angiogenic ability 
of EVs by improving vessel formation which may lead to 
stimulation of bone regeneration and growth [109]. It has 

been revealed that some types of EVs such as placental 
MSC-derived EVs stimulate endothelial cell proliferation, 
migration, and tube formation in  vitro [110]. Further-
more, there are studies showing angiogenesis improve-
ment in animal models due to EVs injection. Including 
injection of MSC-derived EVs, which reduced myocar-
dial ischemic injury and improved angiogenesis in the 
ischemic heart [80].

It has been established that osteoblasts’ primary func-
tion is bone formation by producing calcium and phos-
phate-based minerals. There are shreds of evidence on 
firming that EVs induce bone regeneration by direct 
regulation of osteoblast activity and proliferation [171]. 
Inder et al. [118] demonstrated that prostate cancer cell-
derived EVs regulated osteoblast proliferation by 1.5-
fold, showing excellent bone affinity. In another in  vivo 
study, bone marrow stromal cell-derived EVs stimulated 
osteoblastic activity and resulted in an earlier rat calvaria 
defect healing [99].

EVs role in the bone metabolism is more recognized. 
For example, the differentiation of both osteoclasts and 
osteoblasts is activated by osteoclast precursors-derived 
EVs where osteoblast precursors-derived EVs induce 
osteoblastic activity [172]. Tan et  al. have thoroughly 
investigated the available literature on bone regenera-
tion using EVs from MCS finding positive therapeutic 
outcomes in a recent systematic review. They identified 
several factors influencing the potency of EVs and the 
outcomes of these regenerative treatments. These factors 
included the source of EVs, the anatomical origin and 
developmental age of the tissues for isolation of MSCs 
dosage/concentration of MSCEVs [173]. Several different 
bone defect and disease modules have been studied in EV 
bone regenerative methods with successful alleviation of 
the pathologic processes involved in bone injury/diseases 
through improvement of cell migration, survival, prolif-
eration and osteogenic and angiogenic differentiation.

Understanding the underlying pathways of the effect 
of EV in bone formation has been also investigated. The 
study of signaling pathways displayed protein cargos of 
EVs involved in EVs biogenesis and production, inter-
nalization and several proteins implicated in osteogen-
esis. Proteomics analysis of MC3T3-EVs showed the high 
expression level of associated proteins with the eukary-
otic initiation factor-2 pathway. These EVs proteins may 
have important role in osteoblast differentiation via 
BMP2. Cui et al., investigated MC3T3-E1 cells by micro-
array analysis and their findings showed mineralizing 
osteoblasts (MOBs) EVs contained 457 miRNAs, from 
which 43 had high expression levels, consisting of several 
“osteo-miRNAs”known to be expressed in osteoblasts 
(miR-1192, miR-680, and miR-302a). Analysis of miR-
NAs expression level in ST2 cells treated with MC3T3-E1 
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derived EVs detected 91 upregulated (including miR-
3084-3p, miR-680, miR-677-3p, and miR-5100) and 182 
downregulated miRNAs which cross-talked through the 
β-catenin gene as a valuable transcription factor in osteo-
blast differentiation [121, 142].

EV-based intercellular communication between osteo-
blasts and osteoclasts may be considered as a novel regu-
lator of bone remodeling. Osteoblasts release RANKL 
containing EVs, which are transferred to osteoclast 
precursors. It also facilitates osteoclast formation by 
stimulation of RANKL–RANK signaling. The studies 
also established the EVs application as a pro-osteogenic 
approach in bone regenerative field. In addition to their 
osteogeniccapacity, RANKL protein of UAMS-32P stro-
mal/osteoblastic cell line-EVs can regulate formation of 
osteoclast cells [121, 142].

Qin et  al.  [99] showed that miR-196a is the key fac-
tor in the regulation of osteoblastic differentiation and 
the expression of osteogenic genes. Cui et al.  [121] have 
reported that the EVs from mineralizing osteoblasts are 
capable of entering into ST2 recipient cells in  vitro and 
induce osteoblastic differentiation via the Wnt signal-
ing pathway by affecting Axin1 and βcatenin expression. 
According to the study by Li et al. aging can change bone 
metabolism and interfere with it. They showed that miR-
214-3p, as a cargo of EVs secreted from osteoclasts, could 
be associated with less osteoblastic bone formation in 
elderly patients [144].

Furthermore, some studies have applied EVs through 
new techniques. For example, Diomede et  al. used a 
three-dimensional printed PLA scaffold and human gin-
gival stem cell-derived EVsto promote bone healing in 
rat calvaria bone defect [137]. Meanwhile, Zhang et  al. 
showed that EVs combining tricalcium phosphate-mod-
ified scaffolds caused an increased osteogenic differentia-
tion in vitro. They also reported promoted osteogenesis 
in rat calvarial bone defects induced by activating the 
PI3K/Akt signaling pathway [99]. Together, controlling 
intercellular communications and signaling pathways by 
EVs gives us the opportunity of regulating bone metabo-
lism and mineralization.

The mechanisms by which EVs modulate immune sys-
tem are not yet completely understood; however, they 
may have the potential to be used as a tolerant thera-
peutic agent in bone regeneration in immune-compe-
tent animals [108]. Ji et al. [174] have demonstrated that 
DPSC-derived EVs are a potential option that may reg-
ulate immune responses. Both immune cells and non-
immune cells have the ability to produce EVs to regulate 
immunity. Antigen-presenting and tumor-derived EVs 
are the most frequently mentioned immunological EVs. 
Tumor-derived EVs inhibit macrophage maturation asso-
ciated with TGF-β. Many researchers have also focused 

on EVs’ function in inflammation. For example, Ismail 
et  al.  [175] reported macrophage-derived EVs envelop-
ing miR-223 regulated macrophage differentiation. As 
we know, M2 macrophages play an important role in tis-
sue and bone regeneration [176]. Tumor-derived EVs, by 
contrast, inhibit macrophage maturation associated with 
TGF-β [177]. Generally, modulation of innate or adaptive 
immunity by EVs is a potential target for clinical thera-
peutics in bone regeneration.

Periodontal regeneration
Routine periodontal treatments can successfully reduce 
the number of pathogens in a periodontal defect; how-
ever, a predictable treatment procedure for reconstruct-
ing the lost structures has not been found yet [1]. Some 
evidence support that MSC-derived EVs can be useful 
in promoting periodontal ligaments regeneration. As 
noted, the secretomes of MSCs are known to be respon-
sible for their regenerative effects, containing proteins, 
lipids, nucleic acid, and trophic factors as growth factors, 
chemokines, cytokines, hormones, and EVs. Therefore, 
many studies have started using EVs or their CM as cell-
free techniques in periodontal regeneration. Different 
sources and delivery routes have been used for this pur-
pose (Table 2).

Most studies on periodontal regeneration have utilized 
MSCs CM reporting positive outcomes. Kawai et al. [181] 
have used Human bone marrow MSCs-CM and reported 
that it may lead to the enhancement of periodontal tissue 
regeneration by stimulating angiogenesis and even the 
mobilization of endogenous MSCs.

Among different sources of MSCs, periodontal liga-
ment stem cells (PDLSCs) are the most commonly stud-
ied and potentially considered the most suitable source 
for periodontal regeneration [183, 184]. They are easily 
accessible and capable of secreting mineralized struc-
tures and can be the best choice for periodontal regen-
eration due their similar origin. PDLSCs carried by 
hydroxyapatite/tricalcium phosphate (HA/TCP) were 
shown to be able to form a cementum/PDL-like structure 
in  vivo [183]. Transplantation of PDLSC-CM has been 
investigated in some studies and demonstrated consid-
erable new PDL attachment and bone defect regenera-
tion. Nagata et al. investigated the regenerative potential 
of conditioned mediums (CMs) acquired from cultured 
periodontal ligament stem cells (PDLSCs) on regenerat-
ing periodontal defects models in rats. Their results sug-
gested improved periodontal regeneration and reported 
a suppression of the inflammatory response caused by 
TNF-α production as a result of this treatment method 
[93]. Qiu et  al. explored the periodontal tissue regen-
eration by conditioned media from gingival mesenchy-
mal stem cells (GMSCs) or PDLSCs in rat periodontal 
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defects. Their results showed that similar to PDLSC-CM, 
GMSC-CM transplantation significantly promoted peri-
odontal defect regeneration in rats. They expressed that 
this resulted from the regulation of inflammation by 
MSC-CM and also the facilitation of osteogenic differen-
tiation of bone progenitor cells in the wound region.

EVs isolated from adipose-derived stem cells were used 
by Mohammed et al. as supplementary treatment to the 
non-surgical periodontal therapy. They divided 50 rats 
with ligature-induced periodontitis into four groups, 
including control, SRP, ADSCs, and exosome group. EVs 
were locally injected through the pockets by using a plas-
tic syringe after doing a scaling and root planning. They 
evaluated the progress at different intervals, and the EVs 
treated group showed the best result with a significantly 
higher area percentage of newly formed tissues [179].

Chew et al. have also applied EVs derived from hMSCs 
in regeneration of surgically created periodontal defect 
in a rat model. They reported that single implantation of 
collagen sponges has the potential to elevate periodon-
tal regeneration by increasing bone construction and 
enhancing functional PDL length. They suggested that 
this could be related to adenosine receptor activation of 
AKT and ERK signaling pathways, promoting prolifera-
tion and migration of PDL cells [178]. MSC-derived EVs 
have also documented to be able to enhance the repair 
of osteochondral defects through a reduction in proin-
flammatory cytokines and an increase in regenerative 

M2 macrophage counts [185]. Since the activation of 
pathways that cause bone loss requires an adequate 
amount of inflammatory factors concentration, the anti-
inflammatory characteristic of MSC-derived EVs gained 
noticeable attention for periodontal regeneration appli-
cations [186]. The available evidence indicates that EV 
based therapies are of valuable therapeutic approaches 
and have the potential of increasing the success of peri-
odontal regenerative therapies [182]. Further research 
is still necessary in order to find ideal and standardized 
sources of EVs, their effective concentration, frequency of 
treatment and suitable scaffolds or delivery routes used 
for efficient regeneration of the complex structure of 
periodontal tissue and further develop their therapeutic 
applications in this field.

Future landscapes of EVs applications
Many studies have focused on biomedical EVs applica-
tions. Based on their physical functions, EVs of particu-
lar cell types have been used as therapeutic mediators in 
immune therapy, drug delivery, vaccination trials, and 
regenerative medicine. For example, Xu et al. [187] high-
lighted the utility of EVs for the development of cancer 
diagnostics and therapeutics. Mianehsaz et  al.  [188] 
reviewed the evidence for EVs from MSCs as a new cell-
free therapy method osteoarthritis and joint damage. 
Synthetic EVs, tunable EVs, and EVs mimetics, as well 
as EVs designed to overexpress or knockdown signaling 

Table 2  Characteristics of studies conducted on the application of EVs for periodontal regeneration

Origin/source Study mode Active EV cargo molecules Key function/targeted genes References

MSCs-EVs In vitro and in vivo (rat periodontal 
defect model)

– Improved periodontal ligament 
function and promoted regenera-
tion/initiation of prosurvival AKT 
and ERK signaling in PDL cells/
enhanced cell viability

[178]

ADSCs-EVs In vivo (rat ligature model) – Improved periodontal repair and 
regeneration

[179]

Mobilized-DPSCs-CM In vitro – Greater proliferation and migratory 
activity of NIH3T3 cells/higher 
immunomodulatory effects/
decreased apoptosis

[180]

PDLSCs-CM In vivo (rat periodontal defect model) SerpinE1, MCP-1, TIMP-1, uPA, VEGF, 
IGFBP6, IGFBP2, PDGFR-β, and 
IFN-ɣ

Enhanced periodontal regeneration 
by suppressing the inflammatory 
response via decrease in TNF-α

[93]

MSCs-CM In vitro and in vivo (rat periodontal 
defect model)

IGF-1, VEGF, TGF-β1, HGF Increased wound-healing and 
angiogenesis/up-regulation of 
osteogenetic- and angiogenic-
related genes expression/induced 
periodontal tissue regeneration

[181]

GMSCs-CM
PDLSCs-CM

In vitro and in vivo (rat periodontal 
defect model)

– Promoted periodontal defect 
regeneration/lower expression 
levels of TNF-α and IL-1β/higher 
IL-10 expression/higher expression 
levels of BSP-II and Runx2

[182]
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pathways associated with pathological conditions, are 
considered as the next generation of EVs-based products 
to be studied and developed which may have potential 
applications in oral and craniofacial diseases [101].

Adequate standards for EVs isolation, manipulation, 
and characterization need to be defined to reach future 
progression in the clinical application of EVs. Factors 
such as the distribution, cargoes, and the purification 
protocols can manipulate EVs effects [63]. Since EV car-
goes depend significantly on their origins, it is essential 
to profile EVs before clinical applications [189]. There 
are two commonly used purification procedures, which 
exploit either repeated ultracentrifugation or ultrafiltra-
tion. These techniques provide only a low EVs yield and 
take a relatively long time. For instance, 5 × 106 myeloma 
cells can deliver only 5–6 µg of EVs [190, 191]. Achieving 
good manufacturing practices requires development in 
EVs isolation techniques. Therefore, developments in EVs 
studies highly rely on finding novel methods to efficiently 
isolate them.

It should be noted that delivering EVs in therapeutic 
dosage to target cells, particularly via systemic injec-
tion, may not always be as simple as it looks. Riau et al. 
proposed the possibility of using the encapsulated form 
of EVs with biodegradable or highly porous hydrogels. 
Approaches to encapsulate nanoparticles, like EVs, and 
instances of possible materials for sustained delivery of 
the EVs from the stem cells are also main areas of focuses 
in several studies [192].

After injection, EVs are distributed mostly in the bone, 
lung, spleen, liver, and kidney. Therefore, it is necessary 
to assess the clearance and final dosage in the organs 
[193]. It is still imprecise how to end the biological effects 
of EVs when the satisfactory outcome is accomplished. 
Moreover, the half time of EVs applied should be con-
sidered to be long enough for achieving the therapeutic 
aim. Thus, examining EVs in pre-clinical models before 
moving on to the clinical phase is crucial for their correct 
translational applications.

Conclusion and prospects
Several recent studies have been exploring the applica-
tion of EVs in regenerative medicine. According to these 
studies, EVs have the potential of regulating immune 
microenvironment, promoting vascularization, facilitat-
ing osteoblasts activity, proliferation and mineralization. 
Significant development has been made to explore EVs 
biology, structure, and contents as well as understand-
ing the exact mechanisms by which EVs may alter target 
cells functions. It is well established that the source of 
stem cells and their culture conditions affect the func-
tional properties of the secreted EVs. EV-based therapies 
are considered as novel free-cell therapy approach which 

is easier to handle and reduces the risk of tumorigenesis, 
host rejection, and infections associated with direct cell 
therapy. The available research indicates a great potential 
for EV application for improvement in success and pre-
dictability of bone and periodontal tissue regeneration 
therapies.

However, we are still facing challenges for ideal clinical 
application of EVs and further investigations are needed 
to achieve a protocol for efficient engineering of these 
nano-bioparticles to maintain exact composition and 
structure of isolated EVs.
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