
Received: 27 March 2022 Revised: 20 April 2022 Accepted: 21 April 2022

DOI: 10.1002/mco2.144

REVIEW

Epithelial–mesenchymal transition: The history, regulatory
mechanism, and cancer therapeutic opportunities

Zhao Huang1 Zhe Zhang1 Chengwei Zhou2,∗ Lin Liu2,∗ Canhua Huang1,∗

1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine,
Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
2Department of Thoracic Surgery, the Affiliated Hospital of Medical School of Ningbo University, Ningbo, China

∗Correspondence
Canhua Huang, State Key Laboratory of
Biotherapy and Cancer Center, West
China Hospital, Sichuan University,
Chengdu 610041, China.
Email: hcanhua@hotmail.com

Lin Liu & Chengwei Zhou, Department of
Thoracic Surgery, the Affiliated Hospital
of Medical School of Ningbo University,
Ningbo 315020, China.
Email: fyliulin@nbu.edu.cn;
nbzhouchengwei@163.com

Zhao Huang and Zhe Zhang contributed
equally to this work.

Funding information
National Key Research and Development
Project of China, Grant/Award Numbers:
2020YFA0509400, 2020YFC2002705;
Guangdong Basic and Applied Basic
Research Foundation, Grant/Award

Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells
lose their junctions and polarity while acquiring mesenchymal properties and
invasive ability. Originally defined as an embryogenesis event, EMT has been
recognized as a crucial process in tumor progression. During EMT, cell–cell
junctions and cell–matrix attachments are disrupted, and the cytoskeleton is
remodeled to enhance mobility of cells. This transition of phenotype is largely
driven by a group of key transcription factors, typically Snail, Twist, and ZEB,
through epigenetic repression of epithelial markers, transcriptional activation
of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanisti-
cally, EMT is orchestrated by multiple pathways, especially those involved in
embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as
an intrinsic link between embryonic development and cancer progression. In
addition, redox signaling has also emerged as critical EMTmodulator. EMT con-
fers cancer cells with increased metastatic potential and drug resistant capacity,
which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT
can be a therapeutic option providing a chance of cure for cancer patients.

Abbreviations: bHLH, basic helix–loop–helix; ceRNA, competing endogenous RNA; circRNA, circular RNA; CSC, cancer stem cell; CTC, circulating
tumor cell; DTP, drug-tolerant persister; E-cadherin, epithelial cadherin; ECM, extracellular matrix; EGF, epidermal growth factor; EMT,
epithelial–mesenchymal transition; EMT-TF, EMT-associated transcription factor; EPSC, EMT-promoting Smad complex; EZH2, enhancer of zeste
homolog 2; F-actin, filamentous actin; FGF, fibroblast growth factor; G-actin, globular actin; GAP, GTPase-activating protein; GDI, guanine nucleotide
dissociation inhibitor; GEF, guanine nucleotide exchange factor; HDAC, histone deacetylase; HGF, hepatocyte growth factor; IL, interleukin; lncRNA,
long noncoding RNA; LSD1, lysine-specific histone demethylase 1; m6A, N6-Methyladenosine; M-cadherin, muscle cadherin; MDR, multidrug
resistance; MET, mesenchymal-epithelial transition; miRNA, microRNA; MMP, matrix metalloproteinase; NAC, N-acetylcysteine; N-cadherin,
neuronal cadherin; ncRNA, noncoding RNA; OS, overall survival; P-cadherin, placental cadherin; PRC1/2, polycomb repressive complex 1/2;
R-cadherin, retinal cadherin; ROS, reactive oxygen species; Snail1/2, zinc finger protein SNAI1/2; TAM, tumor-associated macrophage; TGF,
transforming growth factor; Twist1/2, Twist-related protein 1/2; USP, ubiquitin-specific protease; ZEB1/2, zinc finger E-box-binding homeobox 1/2; ZO,
Zona occludens.
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Here, we introduce a brief history of EMT and summarize recent advances
in understanding EMT mechanisms, as well as highlighting the therapeutic
opportunities by targeting EMT in cancer treatment.
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1 INTRODUCTION

Epithelial–mesenchymal transition (EMT) describes a
reversible transition process during which epithelial cells
reduce their epithelial properties and gain mesenchymal
characteristics.1 In the reverse process, MET, the transdif-
ferentiatedmesenchymal cells can revert back to epithelial
state.1,2 EMT was initially identified as an embryogenesis
event, which is now recognized to be ubiquitous through-
out every aspect of life activity, including wound healing,
fibrosis, and tumor metastasis.3–8 During EMT, epithelial
cells lose their junction proteins, among them the epithe-
lial cadherin (E-cadherin) is themost known glue.9 Down-
regulation of E-cadherin renders cells to be separated with
each other, acquiring mesenchymal morphology and inva-
sive capability. Besides, cytoskeleton is also reorganized
in this process, which is associated with the formation of
pseudopodia and consequent enhanced mobility as well
as metastatic capacity.10–12 Moreover, matrix metallopro-
teinases (MMPs) secreted during EMT lead to destruc-
tion of matrix barrier, making cells ready to move.13–16
Generally, these programs are orchestrated by a group of
EMT-associated transcription factors (EMT-TFs), includ-
ing zinc finger protein SNAI1 (Snail1), zinc finger protein
SNAI2 (Snail2, also known as Slug), Twist-related protein
1/2 (Twist1/2), and zinc finger E-box-binding homeobox
1/2 (ZEB1/2).17–21 These EMT-TFs induce epigenetic silenc-
ing of epithelial marks such as E-cadherin while activating
mesenchymal marks such as N-cadherin, vimentin, and
MMPs, which proceeds EMT program.22,23 The upstream
signals regulating EMT can be various, many of which are
embryogenesis-related, including TGFβ, Wnt, Hedgehog,
and Hippo.3,24–31 This fact addresses the intrinsic crosstalk
between embryonic development and cancer metastasis.
In terms of cancer biology, EMT is one of the most

notable hotspots for its crucial role in the regula-
tion of metastasis, metabolic reprogramming, stemness,
inflammation, chemoresistance, and other hallmarks of
cancer.2,20,32–37 In the clinic perspective, EMT is fre-
quently observed in high-grade tumor cases with poor
prognosis.27,38–40 It is well known that EMT leads to
detachment of cancer cells from extracellular matrix

(ECM) and subsequent entering into blood, resulting in
the generation of circulating tumor cells (CTCs) thus pro-
moting tumor metastasis.41 Interestingly, many EMT-TFs
can also activate the transcription of genes related with
metabolic reprogramming, stemness, and inflammatory
responses, indicating that EMT andmany other hallmarks
of cancer are inter-connected.42–45 Furthermore, given
that EMT is a highly reversible process, a part of cancer
cells is in an intermediate state between epithelial and
mesenchymal phenotype (intermediate EMT, also known
as hybrid EMT, partial EMT, or incomplete EMT) thus
exhibiting plasticity and heterogeneity, which contribute
to cancer progression and drug resistance.2,33,46–49 These
facts indicate that EMT promotes more aggressive behav-
iors of tumor but also implicate therapeutic opportunity.
For example, loss of epithelial junctions indeed enhances
invasive ability, but also makes cancer cells vulnerable to
ferroptosis.50,51 Therefore, EMT acts as a double-sword in
cancer, which implicates a promising anticancer strategy
via selectively inhibiting prometastasis effect or boosting
proferroptosis effect of EMT.52–55
Here, we briefly review the history of EMT research

and provide several prospects or visions for the future in
this field. We summarize recent advances in understand-
ing EMT phenotypes and mechanisms including the loss
of junction proteins, reorganization of cytoskeleton, acti-
vation of EMT-TFs, and signal transduction of multiple
embryogenesis and redox pathways. We also discuss the
impact of EMT on the metabolic reprogramming, stem-
ness acquisition, and inflammatory microenvironment of
tumors, and highlight the therapeutic intervention target-
ing EMT so as to provide new insights into the treatment
of cancer.

2 A BRIEF RESEARCHHISTORY OF
EMT

Elizabeth D Hay is the pioneer who discovered EMT
in 1958, though this term was not formally used at that
time.56,57 She found that during the forelimb regen-
eration of Amblystoma larvae, the blastema cells can
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dedifferentiate, proliferate, and then redifferentiate into
cartilage, thus contributing to the development of the
limb.56 Three years later, she used an autoradiography
method to label epidermis before amputating limbs,
where she observed epidermis cells can migrate over the
wound surface which is required for limb regeneration.58
These findings show similarity with EMT program and
implicate EMT as an important development event during
wound healing and tissue biogenesis. In 1966, Elizabeth D
Hay and her colleagues reported that the tight junctions
are upregulated at the advanced stages of development
in chick embryogenesis, making the cells connected with
each other thus functioning as a single tissue, rather
than separated cell populations.59,60 Now we know her
observation resembles a MET process in which epithelial
marks are reexpressed. The concept of EMT was not so
popular until 1968, when Elizabeth D Hay was present
at the 18th Hahnemann symposium in Baltimore. At this
meeting, she introduced how epithelial cells transformed
into mesenchymal cells during the development of neu-
ral tube. This speech addressed the importance of the
epithelial–mesenchymal interactions during embryonic
development and attracted attention of researchers of this
field, leading to a rapid evolution of this filed. As a result,
a variety of studies were conducted by different research
groups to elucidate the roles of epithelial–mesenchymal
interactions in organ biogenesis, including the devel-
opment of heart valve, neural crest, Mullerian duct,
intestinal brush border membrane, embryonic lungs,
and so on.61–65 In 1982, Elizabeth D Hay used the term
“epithelial–mesenchymal transformation” to describe the
transformation into mesenchymal cells from epithelial
cells under the three-dimensional collagen gel condition,
which repressed the apical–basal polarity of epithelial cells
and enhanced their mobility.66 However, Elizabeth D Hay
used another term “epithelial–mesenchymal transition”
in 1995, when she summarized several EMT-promoting
genes and the reversed process MET in a review.67
After that, “epithelial–mesenchymal transformation” and
“epithelial–mesenchymal transition” were both referred to
EMT programwith no substantial differences. In 2003, the
term “epithelial–mesenchymal transition” was confirmed
as the official name to describe EMT after the meetings of
the EMT International Association, in order to distinguish
EMT from malignant transformation used in oncology.1
After the extensive research of EMT phenotypes, scien-

tists were curious as to which factors can induce EMT.
In 1985, hepatocyte growth factor (HGF) was reported to
act as the “scatter factor” to dissolve the junction proteins
between epithelial cells, resulting in their morphologic
changes and migration.68,69 Besides, fibroblast growth
factor (FGF) and transforming growth factor (TGF) were
both found to induce EMT in rat bladder carcinoma cells

in 1990, suggesting the role of EMT in cancer.70,71 Another
growth factor, epidermal growth factor (EGF), was also
demonstrated to promote EMT in rat neonatal hepato-
cytes by upregulating the expression of vimentin, a cru-
cial mesenchymal mark.72 These observations indicated
that a variety of growth factors, at least including HGF,
FGF, TGF, EGF, are potent inducers of EMT. Among then,
TGFβ is probably the most investigated growth factor in
EMT research. In 1990, TGFβ was found to dynamically
express in mouse endocardial cells according to different
embryonic stages, contributing to cardiac development via
regulation of EMT.73 In the same year, TGFβ was also
reported to alter morphology and activate migration in the
chicken chorioallantoic membrane, resulting in microvas-
cular angiogenesis.74 Given the secretory nature of TGFβ,
it is not surprising that the EMT-promoting function of
TGFβ requires its receptor on cell membrane. In 1994,
TGFβ was demonstrated to induce EMT in mouse mam-
mary gland NMuMG cells, as evidenced by the decrease
of epithelial markers, increase of mesenchymal marks
and reorganized cytoskeleton.75 Importantly, truncation of
Tsk7L type I receptor abolished these EMT phenotypes,
indicating that this receptor is indispensable for the EMT-
promoting function of TGFβ.75 In addition to the receptor,
the activation of TGFβ signaling also involves Smad pro-
teins, suggesting that Smads play certain roles in TGFβ-
induced EMT.76 As expected, in 1999, TGFβ was found to
promote the nuclear translocation of Smad2/3/4, leading
to EMT in NMuMG cells.77 These findings indicate that
various growth factors, especially TGFβ, are crucial signals
activating EMT. Importantly, since 1990s, the roles of EMT
in oncology were gradually noted. For instance, TGFβ-
induced EMT was demonstrated to enhance invasiveness
of cancer cells, leading to tumor metastasis, which can be
abrogated by its neutralizing antibodies.78 This observation
is in line with the concept that cancer is to some extent
a type of developmental disease, given the fact that they
share common features such as aberrant EMT program.
Along with the rapid evolution of this field, the mecha-

nisms of EMT were gradually uncovered in 1990s. Indeed,
EMT is largely driven by several EMT-TFs, which initiate
complex transcriptional program to regulate EMT mark
expression, cytoskeleton organization, pseudopodia for-
mation, MMP secretion, as well as consequent cell migra-
tion and invasion. Snail is the first EMT-TF identified in
1992, when it was found to be involved in the gastrulation
duringmurine development.79 And after 2 years, Slug, also
known as Snail2, was documented.80 Using the antisense
oligonucleotides against Slug, EMT events were abolished
in early chick embryos, indicating its key roles in vertebrate
development.80 In 2001, Twist was identified as another
EMT-TF, facilitating the palatogenesis in embryonic rats.81
This finding provided an explanation for whymutations of
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Twist gene result in Saethre-Chotzen syndrome, a develop-
mental disease in human. In the same year, the zinc finger
E-box-binding homeobox (ZEB) was demonstrated as an
important EMT-TF.82 In this study, ZEB was found to bind
with the promoter of E-cadherin, repressing its transcrip-
tion. This effect mitigates E-cadherin-mediated intercellu-
lar adhesion, leading to cell invasion thus being involved in
tumor progression.82 Actually, the epigenetic silencing of
E-cadherin was found to be a common mechanism shared
by all these EMT-TFs in 2000s, suggesting the central roles
of EMT-TFs in the loss of cell junctions during EMT.83–86
Before long, EMT-TFs were also reported to be capable of
regulating the cytoskeleton organization, pseudopodia for-
mation, and MMP secretion.87–91 These evidences indicate
EMT-TFs underlie the molecular basis of EMT program.
In addition to their roles in embryonic development, these
EMT-TFs were also investigated in the context of cancer in
2000s. For example, Snail was found to be associated with
the progression of poorly differentiated breast carcinoma
in 2002.92 Two years later, the metastasis-promoting role
of Twist was demonstrated.9 Since then, the connection
between EMT and cancer has been greatly appreciated.
In recent years, the studies focused on EMT and can-

cer have beenmore comprehensive, in which several novel
mechanisms and concepts were elucidated.2,20 First, novel
EMT-TFs were characterized. In 2007, the Forkhead box
(FOX) transcription factor FOXC2 was shown to promote
breast cancer metastasis through activating EMT.93 This
finding was followed by the characterization of other FOX
family members during EMT, including FOXO3a, FoxF1,
FOXA1, FOXA2, and FOXQ1 in the next years.94–97 In addi-
tion to FOX proteins, a GATA transcription factor Serpent
(Srp) was also found to regulate EMT through repressing
E-cadherin in Drosophila in 2011, and the similar func-
tion was also observed in the mammalian orthologs of
Srp, GATA4, and GATA6.98 Moreover, other novel EMT-
regulating transcription factors, such as PRRX1 and Sox
protein family members, were also reported.99–102 Second,
EMT was found to be regulated at the RNA level. In 2008,
the RNA alternative splicing of p120 was reported to pro-
mote invasiveness via regulating EMT.103 Three years later,
a high-throughput analysis revealed the alternative splic-
ing signature during EMT, and the key splicing mediators
such as RBFOX, MBNL, CELF, hnRNP, and ESRP were
also identified in this process.104 Moreover, microRNAs
(miRNAs) were also demonstrated to regulate EMT either
positively or negatively. For instance, miR-200 and miR-
205 were shown to inhibit EMT through targeting ZEB1
andZEB2,whereasmiR-9 downregulated the expression of
E-cadherin thereby facilitating EMT.105,106 More recently,
the circular RNAs (circRNAs) and their alternative
splicing factor, Quaking, were presumed to be involved
in the regulation of EMT.107 Third, EMT was realized

as a hybrid process in which epithelial and mesenchy-
mal characteristics coexist, instead of a binary process,
in most cases.108 In 2011, the intermediate stages of
EMT were defined in trophoblast stem cells. These cells
expressed both epithelial and mesenchymal marks and
acquired higher metastatic potential compared with cells
in the beginning epithelial state and ending mesenchy-
mal state.109 Following studies revealed that cells in
hybrid EMT state were associated with stemness, plastic-
ity, distant colonization, and anoikis resistance, contribut-
ing to drug resistance, immune suppression, and tumor
recurrence.110–113 Moreover, it has been recently shown
that the loss of Fat1 promotes hybrid EMT state of cancer
cells via CAMK2–CD44–SRC axis and EZH2–SOX2 axis,
which upregulates the mesenchymal properties and main-
tains the epithelial characteristics, respectively.114 This
finding provided new insights for understanding mecha-
nisms underlying intermediate EMT state. Fourth, EMT is
probably not required formetastasis. In 2015, two indepen-
dent groups found that inhibition of EMT did not abro-
gate cancer metastasis, but improved drug sensitivity of
tumors.115,116 Their observations suggest that EMT is dis-
pensable for metastasis; however, the combinational treat-
ment of chemotherapies with EMT inhibition could be
potential strategy for overcoming cancer drug resistance.
Fifth, the importance of MET in tumor metastasis was
gradually appreciated. In 2016, researchers found thatmes-
enchymal cells arriving at distant organ readily underwent
MET program to enter into an epithelial state, which is
required for colonization in the final stage of metastasis.117
This observation was further supported by the finding in
2019, which described that E-cadherin facilitates breast
cancer metastasis.118 Together, these evidences indicate
that EMT is a rapidly evolving field (Figure 1).

3 REORGANIZATION OF CELL
JUNCTIONS AND CYTOSKELETON: KEY
CHARACTERISTICS OF EMT

The integrity of epithelial tissues and the morphology
of epithelial cells are maintained by specialized surface
proteins and cytoskeleton. Surface proteins form cell–
cell junctions and cell–matrix junctions, making epithe-
lial cells as a whole thus restricting individual mobility.
Deconstruction of cell junctions, including adherent junc-
tions, tight junctions, desmosomes, and gap junctions,
leads to separation of epithelial cells with each other and
disassociation with basement membrane, as well as the
loss of cell contact inhibition.119 These events result in
loss of apical–basal polarity, thus facilitating metastasis. In
addition to their well-known metastasis-suppressive func-
tions, several junction proteins can also promote tumor
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F IGURE 1 A brief history of EMT. The EMT phenotype was firstly discovered by Elizabeth D Hay, who is the pioneer for this field. From
1950s to1980s, EMT was largely investigated in the context of developmental biology with few mechanistic studies. During 1980s to 2010, the
connection between EMT and cancer metastasis was intensively documented, and mechanistic studies revealed the central roles of EMT-TFs
in EMT program. From 2010s to now, new concepts of EMT is increasingly developed, which include novel EMT regulators, the hybrid EMT
state, multiple cancer hallmarks induced by EMT, the tumor-suppressive effects of EMT, and EMT-based cancer therapeutic strategies

dissemination, such as claudin-11.120 This observation sug-
gest that junction proteins play dual roles in tumor metas-
tasis. Moreover, crosstalk exists among these different
types of cell junctions. For instance, desmoplakin, one of
the components of desmosomes, is able to maintain gap
junctions through regulating Ras/MAPK signaling.121 As
transmembrane proteins, junction proteins are commonly
associated with Rho GTPases through their cytoplasmic
domains, thereby regulating cytoskeleton organization.122
Cytoskeleton controls the morphology and mobility of
cells, reorganization of which promotes morphological
change of epithelial cells into a spindle-like mesenchy-
mal shape. During this process, pseudopodia is elongated
to enable directional motility and consequent cell move-
ment. In addition to these physical effects, emerging evi-

dence showed that junction proteins and cytoskeleton can
also function as signaling molecules to regulate signal
transduction, thereby affecting invasiveness of cells.123,124
Actually, cell junctions mediate cell–cell communications
mediating nonautonomous behaviors of cells, whereas
cytoskeleton might serve as scaffold to facilitate biochemi-
cal reactions via providing reaction places. Therefore, reor-
ganization of cell junctions and cytoskeleton are key char-
acteristics during EMT (Figure 2).

3.1 Altered junctional components

There are four common junction types that comprise
the epithelial connection, namely adherent junctions,
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F IGURE 2 An overview of cellular phenotype changes during EMT. EMT is a highly reversible process with epithelial, hybrid, and
mesenchymal states. In epithelial state, cells are hold together to preserve epithelial integrity via several junction structures, namely adherens
junctions, tight junctions, desmosomes, and gap junctions, which is composed of several epithelial proteins including E-cadherin, claudins,
occludins, connexins, and many others. Disruption of these junctions leads to the entry of cancer cells into hybrid state and following
mesenchymal state, in which cells express mesenchymal marks such as N-cadherin, Vimentin, and MMPs. In addition, cells reorganize their
cytoskeleton networks to support the formation of pseudopodia thereby facilitating metastasis

tight junctions, desmosomes, and gap junctions. One of
the most known adherent junctions is the transmem-
brane protein E-cadherin (epithelial cadherin, encoded
by CDH1 gene), whose cytoplasmic region binds with
β-catenin and p120 catenin, thereby being associated with
cytoskeleton. The extracellular fragment of E-cadherin
provides intercellular adhesion between opposing epithe-
lial cells in a calcium-dependent manner.125 In normal
condition, E-cadherin is one of the most important epithe-
lial marks. Given the fact that most tumors originate
from epithelial tissues, deregulation of E-cadherin has
been regarded as a hallmark of tumorigenesis. Indeed,
in the context of neoplasm, E-cadherin has long been
proved as a tumor-suppressor gene inhibiting cancer
initiation and progression. Loss of E-cadherin, often
caused by epigenetic silencing or genetic mutations, is a
common event in a wide range of tumors, including breast
cancer, gastric cancer, colorectal cancer, liver cancer, lung
cancer, and so on.30,126–129 Interestingly, E-cadherin has
been also shown considerable expression level in tumor
metastases.130 Moreover, a recent study indicated that
E-cadherin is required for tumor metastasis by buffering

oxidative stress in breast cancer.118 One possible expla-
nation is that E-cadherin has to be reexpressed in MET
process, which facilitates the distal colonization in the
late stage of metastasis. Other adherent junctions, such
as N-cadherin (neuronal cadherin, CDH2), P-cadherin
(placental cadherin, CDH3), R-cadherin (retinal cadherin,
CDH4), and M-cadherin (muscle cadherin, CDH15),
share similar structure but their functions are distinct.131
N-cadherin is a mesenchymal mark promoting tumor
metastasis, which is opposite to E-cadherin.132 R-cadherin
is an epithelial mark resembling E-cadherin, loss of
which has been shown to facilitate EMT and tumor
progression.133 Interestingly, the role of P-cadherin can be
either tumor promoting or tumor suppressive, depending
on particular context.134 For instance, the high expression
of P-cadherin was correlated with the progression of lung
cancer and ovarian cancer,135,136 whereas other reports
showed that P-cadherin preserves epithelial barrier to
inhibit the metastasis of melanoma.137,138 These dual
functions of P-cadherin in regulating cancer metastasis
might be attributed to the distinct characteristics of
different cancer types. To be specific, in response to
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gonadotropin-releasing hormone (GnRH), P-cadherin
induces the activation of IGF-1R in a ligand-independent
manner, which phosphorylates p120 catenin, thereby
promoting metastasis in ovarian cancer.136 However, other
tumor types such as melanoma might not be relevant to
GnRH, IGF-1R, or p120 catenin. In other words, GnRH,
IGF-1R, or p120 catenin might be with very low basal
level or loss of function in other cancers, leading to the
disruption of this pro-metastatic signaling, therefore
P-cadherin failed to activate metastasis in such cancers. In
this context, P-cadherin may serve as intercellular glue to
prevent metastasis. Certainly, this postulation needs to be
validated by substantial evidence.
Apart from adherent junctions, the epithelial integrity

is also maintained by tight junctions, which consist
of claudins, zonula occludens, and others. These tight
junction proteins contain several family members. For
instance, 27 members are characterized in claudin family,
whereas only three members are found in zonula occlu-
den family.139 Similar to adherent junctions, tight junc-
tions also play crucial roles, either positive or negative,
in the EMT phenotype and cancer progression. Claudin-
1 was shown to promote EMT and invasion of colorec-
tal cancer through upregulating ZEB-1, while inhibit-
ing tumor metastasis in gastric cancer via mediating the
tumor-suppressive function ofRUNX3.140,141 Besides, it has
been reported that claudin-2 promotes tumormetastasis in
breast, lung, and colorectal cancer, but is negatively asso-
ciated with the high-grade pancreatic cancer.142–146 There-
fore, the specific roles of claudin proteins in EMT sta-
tus and tumor progression are largely context dependent.
Another tight junction proteins, Zona occludens (ZO), are
also key components of epithelial tissue. There are three
members found in ZO family, namely ZO-1, ZO-2, and
ZO-3. Among them, ZO-1 is the most investigated one
in the neoplastic context. For example, loss of ZO-1 was
reported to promote metastasis of breast cancer, colorec-
tal cancer, liver cancer, pancreatic cancer, and so on.147–150
These observations indicate that ZO-1 mainly serves as
a tumor suppressor, in contrast to the diverse functions
of abovementioned claudin proteins. However, a recent
study provided exceptional evidence describing that ZO-
1 can activate Rac-1-mediated cytoskeletal organization,
thereby promoting metastasis in colorectal cancer.151 More
intriguingly, different tight junction proteins can be asso-
ciated with each other, thereby forming complex junc-
tion architecture. For instance, the cytoplasmic region of
claudins is able to bind with the PDZ domain of zonula
occludens.152 Though physical association is observed, the
functional link between claudins and ZO proteins remains
elusive.
Desmosomes represent another form of cell junc-

tions, which consist of desmosomal cadherins (includ-

ing desmogleins and desmocollins), armadillo proteins
(including plakoglobins and plakophilins), and desmo-
plakin. These proteins form complex structure anchor-
ing the intermediate filaments to the plasma membrane
between neighboring cells, thus maintaining epithelial
integrity.153 As tumor suppressors, downregulation of
desmosomal components plays vital roles in EMT pro-
gram and consequent cancer progression.154 For example,
impaired desmosomes were shown to promote EMT and
consequent tumor progression in invasive breast cancer.155
Besides, loss of desmosomes was observed in invasive
pancreatic neuroendocrine tumors (PNET), and genetic
deletion of desmoplakin enhanced tumor metastasis in
the PNET mouse model.156 Interestingly, the proper func-
tions of desmosomes require particular posttranslational
modifications on several components. Palmitoylation of
plakophilinwas shown to play critical roles in the assembly
of desmosomes, and dephosphorylation of plakophilin-1 is
able to promote epidermal carcinogenesis.157,158 In fact, the
tumor-suppressive roles of desmosomeswere also reported
in several other tumor types, including liver cancer, breast
cancer, and lung cancer.159,160 Even so, the oncogenic roles
of desmosomal components have been also reported. For
instance, desmoglein-3 is overexpressed in human head
and neck cancer and associated with advanced tumor
stage, and inhibition of desmoglein-3 is sufficient to miti-
gate tumor progression both in vitro and in vivo.161 In addi-
tion to desmoglein-3, the tumor-promoting functions of
several other desmosomal components were recently sum-
marized elsewhere.162 This evidence suggest that desmo-
somes might not be simply regarded as tumor suppres-
sive molecules, but rather multifunctional structure dur-
ing tumor development.
Gap junctions are ion channels formed by connexin,

pannexin, and innexin proteins, which provide both adher-
ence and direct intercellular communication between
neighboring cells.163 Among them, connexins are the
most investigated channels. Similar to other junction
proteins, connexins play dual roles in tumorigenesis. It
has been reported that connexins are overexpressed in
tumors, such as connexin-26 in pancreatic cancer and
colorectal cancer.164,165 However, it has been also shown
that connexins can serve as tumor suppressors, including
connexin-43 and connexin-45 in colorectal cancer.166,167
Moreover, high expression of connexins can predict either
better or poor prognosis in cancer patients. For instance,
overexpression of connexin-43 prolongs the survival of
patients with prostate cancer, breast cancer, and colorec-
tal cancer,166,168,169 whereas accelerating death of patients
with bladder cancer, esophageal squamous cell carcinoma,
and oral squamous cell carcinoma.170–172 Not surprisingly,
gap junction-regulated EMT and tumor progression are
largely dependent on their ion channel function, which
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provide communication between nearby cells, in addition
to their adherent effect. It has been reported that gap junc-
tions among U2OS cells failed to inhibit EMT, but gap
junctions between U2OS cells and osteoblasts did, sug-
gesting that gap junctions inhibit EMT through U2OS-
osteoblast communication rather than merely intercellu-
lar glue.173 Moreover, gap junction was shown to amplify
potassium currents, thereby establishing electrochemical
communication between neuron and glioma. This effect
significantly promotes glioma progression, which can be
abrogated by gap junction antagonists.174 Thus, targeting
gap junctions can be a potential therapeutic strategy for
cancer treatment.

3.2 Cytoskeleton reorganization

As mentioned above, cell–cell junctions are linked
with actin cytoskeleton to form epithelial architecture,
suggesting the vital roles of cytoskeleton organization
during EMT program. Indeed, junction proteins are
associated with Rho GTPases, which are dominantly
responsible for the organization of actin cytoskeleton.10,175
The activity of RhoGTPases is finely tuned by three classes
of regulators, namely guanine nucleotide exchange factors
(GEFs), GTPase-activating proteins (GAPs), and guanine
nucleotide dissociation inhibitors (GDIs).176 In response
to adherent or growth factor signals, Rho GTPases are
activated by the exchange of GDP with GTP, and this
process is catalyzed by GEFs. In contrast, Rho GTPases
can be inactivated by GAP-mediated hydrolyzation of
GTP into GDP. GDIs controls the subcellular localization
of Rho GTPases by forming protein complex. To date,
20 Rho GTPase family members are identified, among
which RhoA, Rac1, and Cdc42 are the most documented,
especially in neoplastic context.177,178 For example, RhoA
has been found to be overexpressed in colorectal can-
cer, breast cancer, lung cancer, ovarian cancer, gastric
cancer, and so on.179–181 The upregulation of Rac1 can
be observed in prostate cancer, gastric cancer, breast
cancer and leukemia.179,181–183 Cdc42 was reported to be
overexpressed in colorectal cancer, breast cancer, lung
cancer, and melanoma.179,184–186 Interestingly, RhoA gene
was shown to be rarely amplified but frequently deleted in
a wide range of tumors according to The Cancer Genome
Atlas dataset, suggesting its tumor suppressive role which
is somewhat contradictory to most literatures.177 Rho
GTPases regulate actin polymerization through complex
mechanisms, thereby organizing cytoskeleton. In this
process, globular actin (G-actin) is polymerized to form
filamentous actin (F-actin), whereas Arp2/3 complex is
one of the key molecular machines enabling this.187 For

example, Rac1 can bind with the nucleation promoting
factorWAVE, which activates Arp2/3 to generate branched
actin networks.187,188 Similarly, Cdc42 interacts with N-
WASP, leading to the activation of Arp2/3 thus playing
critical role in actin polymerization.189,190 Aberrant for-
mation of F-actin in cancer cells is closely correlated with
EMT and metastasis of a variety of tumors, including hep-
atocellular carcinoma, glioblastoma, pancreatic cancer,
bladder cancer, breast cancer, and so on.30,191–197 Besides,
the antagonists for actin polymerization, latrunculin A/B,
have been shown anticancer effects through disrupting the
formation of F-actin.30,198–200 This evidence indicates that
the organization of actin cytoskeleton network profoundly
affects EMT and tumor progression.
Cytoskeleton reorganization frequently leads to the for-

mation of membrane protrusions, namely lamellipodia,
filopodia, invadopodias, and podosomes, thus contribut-
ing to the migration and invasion of tumor cells. Lamel-
lipodia and filopodia are defined as sheet-like and spike-
like extensions, respectively. Both protrusions are present
on the leading edge of migrating cells, which determine
the movement direction of cells.201 Invadopodia appears
on the ventral surface of membrane, and often involved
in the degradation of ECM via MMPs.202 Podosomes are
similar to, but less effective in ECM degradation than
invadopodia.203,204 These membrane protrusions can be
visualized from microscopy, thus being useful marks for
EMT. Compelling evidence suggests the crucial roles of
membrane protrusions inEMTand tumor progression. For
instance, formation of filopodia encouraged by EMT pro-
gram facilitates both initiation andmetastatic colonization
in breast cancer.205 Besides, invadopodia is correlated with
the EMT program and consequent metastasis in a variety
of tumors, including hepatocellular carcinoma, breast can-
cer, bladder cancer, and so on, suggesting invadopodia as
a potential prognostic marker for tumor metastasis.206–210
Given their critical roles in tumor metastasis, inhibitors
targeting these protrusions can be of therapeutic value. For
example, lidocaine has been shown to reduce metastatic
dissemination of breast cancer by inhibiting the formation
of invadopodia.211 However, the formation and turnover
of these membrane protrusions are highly dynamic and
the duration ranges fromminutes to hours, targeting these
structures might be with off-target effects thus waiting for
further investigation.

4 ACTIVATION OF KEY
TRANSCRIPTION FACTORS

Cells that undergo EMT program are characterized by
a global change in gene expression, resulting in loss of
epithelial marks and gain ofmesenchymal properties. This
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F IGURE 3 EMT-TFs are key drivers of EMT program. The EMT program is controlled by several EMT-TFs, including Snail, Twist, and
ZEB. These EMT-TFs are regulated at transcriptional and posttranslational levels, such as protein phosphorylation, ubiquitination, and RNA
m6A modification. The m6A modification on EMT-TF mRNAs can be recognized by different m6A readers, which facilitate the translation or
promote RNA decay. The protein phosphorylation is coordinated by kinases and phosphatases, whereas the ubiquitination can be balanced
via E3 ligases and deubiquitinases. When translocated into nucleus, EMT-TFs bind with different epigenetic modifiers such as EZH2,
HDAC1/2, BMI1 to form transcriptional complexes, thereby regulating EMT program

process is largely regulated at the transcription level by sev-
eral EMT-TFs, including Snail (encoded by SNAI1), Slug
(SNAI2), Twist-related proteins, zinc-finger E-box-binding
(ZEB) proteins, and others (Figure 3). During EMT, these
EMT-TFs are activated at the transcriptional level (e.g.,
transcribed by other TFs) and posttranslational level (e.g.,
phosphorylation and ubiquitination), which have been
observed in various cancer thus can be potential thera-
peutic targets. One of the most known target genes of
EMT-TFs is CDH1, which encodes the important epithe-
lial mark E-cadherin. Nearly all EMT-TFs can repress the
transcription of E-cadherin through similar mechanisms,
suggesting the functional redundancy between them.212
However, these EMT-TFs differ from each other in many
aspects, such as individual structure, size, tissue speci-
ficity, binding partner, and target preference. Therefore,
the specific, nonredundant functions of EMT-TFs are grad-
ually appreciated.213 Indeed, EMT-TFs are spatiotempo-

rally regulated thus contributing to distinct expression
patterns in different cancer types, which is correlated with
specific characteristics of different tumors such as drug
sensitivities.214 The idea of nonredundant functions of
EMT-TFs can be supported by plenty of evidence. First,
an EMT-TF can be either oncogenic or tumor suppres-
sive. For instance, the tumor-promoting role of ZEB1
has been widely reported.17,215,216 However, ZEB1 can also
function as a tumor suppressor to inhibit the progres-
sion of acute myeloid leukemia (AML).217 Moreover, in
KRAS-mutated lung cancer, ZEB1 was shown to inhibit
tumor progression via repressing ERBB3.218 Given the fact
that EMT-TFs are oncogenic in most cases, those tumor
suppressive effects directly demonstrate their nonredun-
dant functions. Second, different EMT-TFs can exhibit
diverse expression pattern in the same cancer type. For
example, Twist1 and ZEB1 were reported to be respectively
overexpressed and downregulated in lung cancer.218 This
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finding indicates that Twist1 and ZEB1 regulate lung can-
cer through contraryways. Third, differentmembers in the
same EMT-TF protein family can play opposite roles. For
instance, ZEB1 was shown to promote the progression of
melanoma, whereas ZEB2 functions as a tumor suppres-
sor to inhibit this process.4,219 Fourth, different members
in the same EMT-TF protein family can be selectively acti-
vated by the same upstream signal. In response to proan-
giogenic factor SDF1α, endothelial Slug, but not Snail, is
activated thus contributing to pathological angiogenesis
and tumor growth.220 Moreover, one EMT-TF can be regu-
lated by another EMT-TF. It has been shown that Snail can
transiently repress the transcription of Twist1 in response
to TGFβ stimuli, which is followed by Snail degradation,
Twist1 reexpression, and consequent EMT aswell as tumor
metastasis in breast cancer.221 This evidence suggest that
different EMT-TFs can form complex regulatory network
to coordinate the EMT program, and a single EMT-TFmay
not be sufficient to dictate cancer metastasis in some cir-
cumstances.

4.1 Snail

Snail proteins include Snail1 (Snail) and Snail2 (Slug),
which promote EMT and metastasis in a variety of can-
cer through the epigenetic regulation. Briefly, Snail har-
bors four zinc-finger motifs in its carboxy-terminal region,
which bind with the E-box DNA sequence of target
genes.20 This event facilitates the recruitment of the poly-
comb repressive complex 2 (PRC2), which contains the
methyltransferase enhancer of zeste homolog 2 (EZH2).
The recruitment of PRC2 leads to DNA methylation as
well as repressive histonemodifications such asH3K9me2,
H3K9me3, andH3K27me3 on the promoter of target genes,
resulting in epigenetic silencing.222 A variety of junction
proteins are repressed through this mechanism, including
E-cadherin, occludin, ZO-1, claudin-3, claudin-5, claudin-
7, and so on.83,223–226 Interestingly, PRC2 also induces
active marks, such as H3K4me3.227 This mark might be
associated with the MET program, or the increase of
mesenchymal proteins including N-cadherin and MMP-
9.228,229 In addition to PRC2, Snail also recruits other epige-
netic modifiers such as histone deacetylases (HDACs) and
lysine-specific histone demethylase 1 (LSD1), thereby reg-
ulating EMT program.230–232 For example, Snail has been
found to form protein complex with HDAC1 and HDAC2
at the promoter of E-cadherin, leading to the deacetylation
and consequent repression of E-cadherin, which results in
the EMT and migration of breast cancer, pancreatic can-
cer, and nasopharyngeal cancer.233–236 To date, the mech-
anisms underlying the preference of Snail to different epi-
genetic modifiers remain unclear.

The expression and function of Snail can be regu-
lated at transcriptional level, posttranscriptional level,
and posttranslational level. The transcription of Snail
involves other transcription factors, such as NF-κB, YY1,
and even Snail itself.237–239 Particularly, several transcrip-
tion factors capable of regulating Snail are the com-
ponents of embryogenesis-related pathways, including
YAP (component of Hippo pathway), Gli1 (Hedgehog),
Smad (TGFβ), and many others.240–242 This connection
between EMT and embryonic development signaling will
be discussed in the following section. The regulation of
Snail at the posttranscriptional level is evidenced by N6-
Methyladenosine (m6A) modification on its mRNA.243
Briefly, the methyltransferase-like 3 (METTL3) induces
m6A modification in Snail CDS, which can be recognized
by YTH domain-containing family protein 1 (YTHDF1).243
This event facilitates polysome-mediated translation of
Snail, leading to EMT and metastasis of tumor cells.243
Besides, it has been reported that UDP-glucose enhances
the stability of Snail mRNA, resulting in the overexpres-
sion of Snail and the metastasis of lung cancer.244 In
terms of its posttranslational regulation, the most known
mechanisms are phosphorylation and ubiquitination. For
instance, GSK-3β-mediated phosphorylation of Snail at
its first motif promotes its ubiquitination and subse-
quent degradation, whereas phosphorylation at its sec-
ondmotif leads to its cytoplasmic retention.245 In contrast,
phosphorylation of Snail at Ser249 by the PAR-atypical
protein kinase C (aPKC) inhibits the ubiquitination of
Snail, thus promoting tumor metastasis.246 Besides, the
ubiquitin-specific protease 3 (USP3) has been shown to
stabilize Snail via deubiquitination.247 Interestingly, afore-
mentioned transcription factor, NF-κB, also regulates the
ubiquitination of Snail.248 Another member of Snail pro-
tein family, Slug, is also regulated by ubiquitination. It has
been shown that several deubiquitinases, including USP5,
USP10, USP20, counteract the ubiquitination of Slug there-
fore enhancing its protein stability.249–251 Moreover, recent
study showed that Slug can be SUMOylated through the
interaction with Ubc9 and SUMO-1, which enhances the
transcriptional repression activity of Slug andpromotes the
progression of lung cancer.252

4.2 Twist

Twist protein family consists of two members Twist1 and
Twist2, which belong to the basic helix–loop–helix (bHLH)
transcription factors.253 Based on their structural similar-
ities and functional redundancy, we mainly discuss Twist1
here although the differences between them have been
reviewed elsewhere.254 As one of important EMT-TFs,
Twist1 has long been associated with cancer progression.
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For instance, knockout of Twist1 was shown to abrogate
tumor metastasis in breast cancer.255 Similar to Snail,
Twist1 represses the epithelial marks such as E-cadherin,
α-catenin, γ-catenin and upregulates mesenchymal marks
including vimentin, fibronectin, N-cadherin, leading to
EMT and cancer progression.9,256 Aforementioned epi-
genetic repressing complex, PRC2, can be also recruited
by Twist1 to induce the H3K27me3 modification at
Ink4A/Arf locus, thus preventing the senescence of
mesenchymal stem cells.257 Besides, Twist1-mediated
EMT program involves other epigenetic modifiers, such as
the methyltransferase SET8, the PRC1 component BMI1,
and the NuRD transcriptional repressive complex. For
example, during breast cancer metastasis, Twist1 interacts
with SET8 thus inducing a H4K20 monomethylation
mark at the promoter of E-cadherin and N-cadherin,
which downregulates and upregulates the transcription,
respectively.258 Besides, Twist recruits BMI1 to repress the
transcription of E-cadherin, and this effect is correlated
with the poor prognosis of head and neck cancers.259
Furthermore, it has been reported that Twist1 can recruit
NuRD complex, which contains HDAC1/2, to decrease the
acetylation of H3K9 at Foxa1 promoter, thereby repressing
the expression of Foxa1.260 This event contributes to
the Twist1-induced metastasis of breast cancer, but less
responsible for Twist1-induced EMT phenotype of breast
cancer cells, which is interesting.260
Compelling evidence has suggested that Twist1 can be

regulated at transcriptional level and posttranslational
level. In neuroblastoma, both N-Myc and c-Myc proteins
physically associate with the promoter of Twist1, thus
activating its transcription.261 Other transcription factors,
such as Sox12 and Sox13, can also transcribe Twist1 thus
leading to EMT and metastasis of HCC cells.262,263 In
contrast, the bHLH transcription factors BHLHE40 and
BHLHE41 inhibit the transcription of Twist1.264 The
posttranslational modifications on Twist1 include phos-
phorylation and ubiquitination. For example, PTEN with
K27-linked polyubiquitination (PTENK27-polyUB) can
dephosphorylate Twist1 at Ser123, resulting in the nuclear
translocation of Twist1 and subsequent EMTphenotype.265
In terms of the ubiquitination, the E3 ligase Pirh2 is able
to prime Twist1 for degradation.266 Interestingly, the
RING-finger E3 ligase RNF8 promotes the K63-linked
ubiquitination of Twist1 at K38, which enhances, but not
decreases, the protein stability of Twist1, leading to its
nuclear localization thereby playing critical roles in cancer
drug resistance.267 It is worth noting that there is causal
relationship between the phosphorylation and ubiquitina-
tion of Twist1, as evidenced by the facts that protein kinase
Cα (PKCα)-mediated phosphorylation of Twist1 at Ser144
diminishes the ubiquitination of Twist1, whereas AKT1-
mediated phosphorylation of Twist1 at Ser42, Tyr121,

and Ser123 enhances its ubiquitination.268,269 Sometimes,
these posttranslational modifications regulate Twist1
activity through affecting protein–protein interaction. For
instance, LYN-mediated phosphorylation of Twist1 leads
to the dissociation between Twist1 and its cytoplasmic
anchor G3BP2, resulting in the nuclear translocation of
Twist1.270,271 This event underlies the nature of Twsit1
as a mechanomediator in response to mechanical cues
such as matrix stiffness.270,271 Besides, the association
between Twist1 and another binding partner TGIF1 is
able to inhibit Twist1, whereas this inhibitory effect can
be abolished by the phosphorylation of TGIF1 in pan-
creatic ductal adenocarcinoma.272 Interestingly, Twist1
can bind with itself to form a homodimer, regulating
fibroblast activation, cell migration, and embryonic
development.273,274

4.3 ZEB

ZEB is potent EMT inducer, which represses epithe-
lial marks including E-cadherin, ZO-1, claudin-1, desmo-
plakin, and is implicated in various type of cancer such as
gastric cancer, leukemia, squamous cell carcinoma, liver
cancer, colorectal cancer, and so on.82,140,150,159,275–278 There
are twomembers in vertebrate ZEB protein family, namely
ZEB1 and ZEB2, which share structural and functional
similarities but are also distinguished by considerable dif-
ferences. For example, a switch from ZEB2 to ZEB1 pro-
motes the progression of melanoma, suggesting these two
ZEB proteins function in an opposite manner under this
condition.4 These diverse effects of ZEB1 and ZEB2 can
be explained by different epigenetic modifiers recruited by
them. ZEB1 binds p300 to activate transcription, whereas
ZEB2 interacts with C-terminal-binding protein (CTBP)
to silence the target genes.279 In addition, ZEB1 has been
shown to recruit the SWI/SNF chromatin-remodeling pro-
teinBRG1, thereby repressingE-cadherin independently of
CTBP.280 Moreover, ZEB1 can also recruit NuRD complex,
which contains HDAC1/2, to promote the EMT and tumor
progression in pancreatic cancer and lung cancer.281,282
Similarly, the NuRD complex can also recruited by ZEB2,
thus regulating the metastasis of breast cancer and the dif-
ferentiation of neural cells.283,284
A variety of transcription factors have been found to

activate ZEB1, such as Snail1, Twist, ETS1, and myocyte
enhancer factor 2A (MEF2A).285,286 In addition to this
transcriptional regulation, ZEB1 is also regulated at the
protein level, such as phosphorylation. For instance,
ERK phosphorylates ZEB1 at Thr867, which inhibits its
nuclear translocation, DNA binding, and function of tran-
scriptional repression.287 This ERK–ZEB1 axis is involved
in the progression of various tumors, including lung
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cancer, breast cancer, liver cancer, prostate cancer, ovarian
cancer, and glioblastoma.288–293 Interestingly, ERK also
activates ZEB1 through upregulating aforementioned
transcription factor ETS1, suggesting that ERK can regu-
late ZEB1 in either direct or indirect manner.294 Moreover,
ZEB1 has been also reported to be phosphorylated by
ATM at S585, which enhances its protein stability in
breast cancer cells.295 Similar to other EMT-TFs, ZEB1
can also be regulated by ubiquitination. For example, the
E3 ligase tripartite motif-containing 26 (TRIM26) down-
regulates ZEB1 through ubiquitination-mediated protein
degradation, whereas USP39 acts as a deubiquitinase to
stabilize ZEB1.296 Thus, TRIM26 and USP39 function in
an antagonistic manner to coordinate the fate of liver
cancer.296 Besides, the ubiquitination of ZEB1 involves
additional E3 ubiquitin ligases such as checkpoint with
Forkhead and ring finger domains (CHFR), F-box only
protein 45 (FBXO45), and deubiquitinases including
USP51 and USP43.297–300 As to ZEB2, the regulation of
protein stability is associated with E3 ubiquitin ligases
FBXW7 and TRIM14.301,302 These observations indicate
that the regulation of ZEB proteins is rather complex in
tumor progression.

4.4 Novel EMT-regulating transcription
factors

As a rapidly evolving field, more transcription factors have
been identified as novel regulators of EMT, such as PRRX1
and Sox. PRRX1 cooperates with Twist1 to induce EMT
during embryogenesis and tumor invasion, but overex-
pression of PRRX1 is associated with a favorable prog-
nosis in breast cancer patients.99 Mechanistically, loss of
PRRX1 induces MET, which is required for metastatic col-
onization of breast cancer cells.99 Moreover, PRRX1 loss-
mediated MET also confers cancer cells with stemness,
leading to drug resistance thus further explaining why
PRRX1 overexpression predicts good prognosis.99,303 How-
ever, opposite finding showed that upregulated PRRX1
induces EMT, cancer stemness, metastasis, and poor prog-
nosis in colorectal cancer, suggesting the role of PRRX1 is
highly context-dependent in different tumor types.100 This
contradiction might be attributed to the diverse functions
of PRRX1 isoforms, namely PRRX1b that activates EMT,
whereas PRRX1a that activates MET, and this isoform
switching underlies tumor invasion and metastatic colo-
nization in pancreatic cancer.304 Sox protein family con-
sists of over 20 members in vertebrates, many of which are
involved in tumor initiation and progression.305 Numer-
ous studies indicated that Sox proteins regulate EMT via
classical EMT-TFs. For instance, Sox13 transcriptionally
activates Twist, thereby promoting EMT in liver cancer.263

Interestingly, several Sox proteins have been shown to
modulate EMT through either direct or indirect way. Sox4
binds with the promoter of Slug to activate its transcrip-
tion, leading to EMT in uterine carcinosarcoma.306 Alter-
natively, Sox4 can also directly transcribe N-cadherin,
thus inducing EMT independent of classical EMT-TFs.101
Another Sox protein, Sox9, can directly bind with the pro-
moters of claudin-1 and ZEB1 to modulate their transcrip-
tion, suggesting both direct and indirect regulation of EMT
by Sox9.102

5 SIGNALINGS IN EMBRYONIC
DEVELOPMENT LINK TO EMT

It is well acknowledged that carcinogenesis and embry-
onic development share remarkable similarities. A series
of features of embryogenesis, including EMT, angiogene-
sis, ECM remodeling, cell differentiation, and migration,
are also important hallmarks of cancer. Indeed, EMT is
fine-tuned during embryonic development for morpho-
genesis of organs, whereas tumor cells hijack this pro-
gram for cancer progression. Therefore, tumor is to some
extent considered a problem in the field of developmental
biology. For instance, proregenerative glia progenitors per-
form spinal cord repair via EMT in response to spinal cord
injury in zebrafish, whereas dysregulated brain develop-
ment such as excessive interneuron generation promotes
the formation of brain tumors in human.307,308 Aforemen-
tioned EMT-TFs that widely studied in the context of neo-
plasm, actually play critical roles in embryonic develop-
ment. For example, Snail and PRRX1a govern the inter-
nal left–right (L/R) asymmetry, which is fundamental
to the proper function of organs (e.g., the heart lateral-
ity) during the development of vertebrates.309,310 Gener-
ally, embryonic development is regulated by several evolu-
tionarily conserved signaling pathways, including TGFβ,
Wnt, Hedgehog, and Hippo.311–314 These signalings have
to be restricted when developmental processes are com-
pleted,which is the prerequisite for the propermorphology
and function of organisms. Aberrant reactivation of these
pathways in awell-mature organ, however, frequently con-
tributes to tumor development. Compelling evidence indi-
cate that EMTprogram in cancer cells are largely regulated
by embryogenesis-related signalings, suggesting EMT as
an intrinsic link between embryonic development and
tumor progression.

5.1 TGFβ

TGFβ signaling is activated by the interaction between
TGFβ ligands and receptors (type I and type II) on
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F IGURE 4 The crosstalk between EMT and TGFβ signaling. Activated TGFβ signaling leads to the nuclear translocation of Smad2/3/4
complex, which directly recognizes the promoters of EMT-TFs to initiate their transcription. In turn, EMT-TFs can bind with Smad proteins
to form EMT-promoting Smad complex (EPSC), thus regulating the transcription of epithelial and mesenchymal marks. Besides, TGFβ
signaling also regulate the expression of EMT-TFs through noncoding RNAs

the cell membrane. Next, type I receptor is phospho-
rylated by type II receptor, which then phosphorylates
Smad proteins, the key transcription factors mediating
the biological consequence of this signaling. There are
eight members in Smad protein family with different
roles. Briefly, Smad1/2/3/4/5/8 positively regulate TGFβ
signaling through the formation of activated Smad com-
plexes, which translocate into nucleus to initiate gene
transcription. In contrast, Smad6/7 negatively regulate
TGFβ signaling via preventing the formation of activated
Smad complexes and facilitating the degradation of TGFβ
receptors.315 In the context of neoplasm, although TGFβ
signaling can be both oncogenic and tumor suppressive,
a variety of tumors benefit from activated TGFβ signal-
ing, and targeting TGFβ signaling can be a promising
therapeutic strategy for cancer treatment.316,317 One of the
mechanisms is that TGFβ signaling regulates EMT pro-
gram of tumor cells, thus promoting cancer progression
(Figure 4). For example, TGFβ–Smad signaling has been
shown to activate the expression of Snail1, leading to
EMT and proliferation of lung cancer cells.24 Not surpris-
ingly, Smad proteins play central roles in TGFβ-mediated

EMT program. Indeed, Smads physically associate with
EMT-TFs such as Snail, Twist, ZEB to form an EMT-
promoting Smad complex (EPSC; e.g., Snail1–Smad3/4
complex), which represses the transcription of epithelial
marks while increasing the expression of mesenchymal
marks.224,318 Besides, TGFβ induces long noncoding RNA
(lncRNA)-ATB, which acts as a competing endogenous
RNA (ceRNA) to competitively bind with miR-200s. This
effect increases the expression of ZEB1/2, leading to EMT
andmetastasis of liver cancer.319 In contrast, several tumor
suppressors exhibit their antimetastatic function through
inhibiting TGFβ signaling, including circular RNA cir-
cPTK2 and lncRNA SMASR.320,321 Interestingly, TGFβ sig-
naling has been also demonstrated tumor-suppressive via a
lethal EMT.322 This observation is in line with the context-
dependent roles of TGFβ signaling.

5.2 Wnt

Wnt signaling exert its biological effects mainly through
the control of transcription cofactor β-catenin. Briefly, in
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F IGURE 5 Regulation of EMT via canonical or noncanonical Wnt pathway. In canonical Wnt pathway, nuclear β-catenin/LEF/TCF
transcriptional complex activates the transcription of EMT-TFs, thus regulating EMT. In turn, EMT-TFs affect Wnt signaling to form feedback
loops. For example, Snail/β-catenin complex activates transcription of TCF1, which is the key transcription factor of Wnt signaling. ZEB
represses the transcription of miR-200a, leading to the reactivation of β-catenin. Twist can transcribe Wnt5a, which activates Wnt receptor
Frizzled. In noncanonical Wnt pathway, activation of Frizzled2 leads to the phosphorylation and consequent nuclear translocation of STAT3,
which upregulates mesenchymal marks and represses epithelial marks independent of β-catenin

the quiescent state, β-catenin is ubiquitinated and inhib-
ited by GSK-3β complex. When activated, Wnt proteins
bind with the Frizzled receptor, leading to the recruitment
of coreceptor LRP5/6. This event leads to the activation
of Dishevelled (Dvl), which inhibits GSK-3β thus protect-
ing β-catenin from degradation. Then, stabilized β-catenin
translocates into nucleus, where it interacts with tran-
scription factor LEF/TCF to activate transcription.323–325
In terms of oncology, Wnt signaling is overall oncogenic,
which allows malignant proliferation and metastasis of
cancer cells, and this process involves the induction of
EMT program326 (Figure 5). For instance, Her2 positive
early disseminated cancer cells can enter into a par-
tial EMT state via activation of Wnt signaling, thereby
initiating metastasis in breast cancer.327 Mechanistically,
the EMT-promoting function of Wnt pathway is largely
attributed to β-catenin/LEF/TCF-mediated transcription
control. This is supported by the fact that β-catenin/TCF4

can bind to the promoter of ZEB1 and increase its tran-
scription, leading to the EMT and metastasis of colorectal
cancer.328 Similarly, β-catenin/TCF3 and β-catenin/LEF1
interact with and activate the promoter of Snail and Twist,
respectively.329–331 As a consequent, Snail can physically
associated with β-catenin to form a transcription complex,
which activates Wnt target genes independent of TCFs.332
In contrast, autophagic degradation of β-catenin has been
shown to inhibit EMT and abrogate the metastasis of col-
orectal cancer.333 Interestingly,Wnt signaling can also pro-
mote EMT through a noncanonical way independent of β-
catenin. For example, the Wnt receptor Frizzled2 drives
EMT and tumor metastasis in liver cancer via Fyn and
Stat3, and this process is not affected by pharmacologi-
cal inhibition of β-catenin.27 In addition, EMT-TFs can
in turn activate Wnt signaling, forming a positive feed-
back loop to proceed EMT program. It has been shown
that ZEB1 can repress the expression of miR200A, leading
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F IGURE 6 Hedgehog signaling regulates EMT and cancer progression. Hedgehog (Hh)-mediated inhibition of PTCH1 leads to the
activation of SMO, which promotes the activation of the transcription factor Gli1/2. The target genes of Gli1/2 include several EMT associated
proteins such as Snail and E-cadherin. Besides, Snail and Gli share the same protein turnover system, namely β-TrCP-mediated protein
degradation and USP37-induced protein stabilization. In turn, cellular EMT status affects Hedgehog signaling, as evidenced by loss of
E-cadherin has been shown to activate Gli1/2

to the reactivation of β-catenin.334,335 Besides, Twist binds
with the promoter of Wnt5a to increase its transcription,
which activates Wnt signaling thus promoting breast can-
cer metastasis.336

5.3 Hedgehog

Hedgehog signaling is activated by the binding of hedge-
hog ligands with the receptor Patched (PTCH1). This
binding leads to the activation of membrane GPCR-like
protein Smoothened (SMO). In the absence of activated
SMO, the transcription factor complex Gli1/2/3 is pro-
cessed by proteasome, during which the active Gli1/2
is degraded, whereas the repressive Gli3 is preserved,
resulting in transcriptional repression. When SMO is
activated in response to Hedgehog signals, Gli1/2/3 is
differentially processed to yield an active Gli1/2, which
translocates into nucleus to initiate transcription.337,338
Similar to other developmental pathways, Hedgehog sig-
naling is tightly correlated with EMT program (Figure 6).
For instance, aberrant activation of Hedgehog signaling
promotes EMT of immature ductular cells, the accumula-
tion of which results in fibrosis, cirrhosis and other liver
diseases.29,339,340 In the field of oncology, Hedgehog sig-

naling has long been implicated in cancer progression, at
least partially due to its critical role in the regulation of
EMT program of cancer cells.341–343 In human cholangio-
carcinoma tissues, Hedgehog ligand is highly expressed
to repress E-cadherin, leading to a EMT phenotype and
elevated viability of tumor cells.344 Besides, Hedgehog
signaling-mediated EMT, characterized by the overexpres-
sion of vimentin, Snail, N-cadherin, and repression of E-
cadherin, ZO-1, has been also reported in the metasta-
sis of bladder cancer and breast cancer.345,346 Inhibition
of Hedgehog signaling with the administration of Vis-
modegib, the antagonist for PTCH1, is able to suppress
EMT and cell proliferation of castration-resistant prostate
cancer.347 Compelling evidence suggest that Hedgehog sig-
naling promotes EMT via the key transcription factor Gli.
Indeed, the EMT-TF Snail is a transcriptional target of
Gli1.241 Stabilization of Gli1, which is mediated by the
deubiquitinase USP37, has been shown to activate EMT
and increase invasiveness in breast cancer.348 Interest-
ingly,USP37 also catalyzes the deubiquitination of Snail.349
Moreover, both Gli and Snail can be ubiquitinated by E3
ligase β-TrCP.245,350 Therefore, EMT program and Hedge-
hog signaling are connected via sharing protein turnover
machinery. In turn, loss of E-cadherin or activation of
EMT-TFs can activate Gli, thus probably forming a positive
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F IGURE 7 The connection between EMT and Hippo signaling. When Hippo signaling is inactivated, YAP and TEAD form complex in
nucleus to direct transcription. EMT-TFs can bind with YAP/TEAD complex, leading to a functional switch of EMT-TFs from epigenetic
repressors into activators, resulting in the overexpression of YAP target genes to facilitate tumor progression. Besides, Hippo signaling can
regulate EMT via the interplay with other developmental pathways, such as TGFβ signaling and Wnt signaling. For instance, YAP can
stabilize Smad3, the component of TGFβ signaling, thus promoting TGFβ-mediated EMT. Besides, YAP/TEAD complex can be associated
with β-catenin to form a novel transcriptional complex, which activates the transcription of EMT-TFs. Moreover, TEAD4 can transcriptionally
activate the mesenchymal protein vimentin independent of YAP

signaling circuit to sustain EMT phenotype.351,352 Briefly,
EMT-TFs activate Six1, which stimulate Hedgehog sig-
naling in neighboring tumor cells, but how E-cadherin
deficiency activates Gli remains elusive.351,352 Although
most literatures indicate that Hedgehog signaling posi-
tively regulates the EMT program and tumor progres-
sion, the contrary findings were also reported that describe
that Gli1 binds with the promoter of E-cadherin to acti-
vate its transcription, thereby inhibiting EMT.353 Besides,
downregulation of Gli1 results in the disassembly of
adherens junctions, leading to EMT and cell migration in
pancreatic ductal adenocarcinoma.353 This observation
suggests a context-dependent role of Hedgehog signaling
in EMT and cancer progression.

5.4 Hippo

The core of Hippo signaling is a kinase cascade that
negatively regulates the activity of transcription cofactors
YAP/TAZ. Given the oncogenic nature of YAP/TAZ,
the Hippo signaling is generally regarded as a tumor-
suppressive pathway. Briefly, active Hippo signaling

is characterized by phosphorylation of MST1/2–SAV1
complex, which phosphorylates LATS1/2–MOB1 complex.
Then, phosphorylated LATS1/2 induce the phosphoryla-
tion of YAP/TAZ, leading to their cytoplasmic retention or
ubiquitin-mediated degradation. When Hippo signaling is
inactivated, dephosphorylated YAP/TAZ can translocate
into nucleus, where they interact with transcription factors
TEAD1/2/3/4 to initiate transcription.354,355 YAP/TAZhave
been demonstrated potent EMT inducers promoting the
progression of a variety of cancer (Figure 7). For instance,
YAP is able to promote EMT and tumor metastasis by
downregulating E-cadherin and remodeling cytoskeleton
in renal cancer and nasopharyngeal carcinoma.356,357
Mechanistically, YAP interacts with several EMT-TFs,
including ZEB1, Snail, and Slug to form a transcriptional
complex. This event results in a functional switch of EMT-
TFs from transcriptional repressors to transcriptional acti-
vators, which activates tumor-promoting genes involved in
EMT, tissue regeneration, and cancer metastasis.216,358–361
During EMT, the activation of YAP can be attributed
to multiple mechanisms. For example, the catalytic
subunit of protein phosphatase 2A (PP2Ac)-mediated
dephosphorylation of YAP facilitates YAP nuclear
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translocation, leading to EMT and metastasis of HCC.362
Besides, excessive formation of filamentous actin (F-actin)
leads to the dephosphorylation of LATS1, resulting in YAP
stabilization and consequent liver cancer metastasis.30
Interestingly, YAP can either positively or negatively
regulate the formation of F-actin, suggesting this pro-
cess is highly context-dependent.363,364 Besides, the
activity of YAP can also be regulated at the RNA level.
N6-methyladenosine (m6A) modification on the YAP
mRNA can be recognized by YTHDF1 and YTHDF2,
which facilitates the translation and decay of YAP mRNA,
respectively.365 Moreover, Hippo signaling can be cross-
linked with other developmental pathways, such as
TGFβ and Wnt, to coordinate EMT program. It has been
shown that YAP can prevent GSK3β-mediated Smad3
degradation, thereby promoting Smad3-induced EMT.366
Furthermore, YAP is physically associated with β-catenin
to form a transcriptional complex with TEAD4 in nucleus,
leading to the overexpression of EMT-TFs including Slug
and Twist in breast cancer.367 It is worth noting that
TEAD4 can regulate EMT and promote metastasis by
directly transcribing vimentin without the binding with
YAP in colorectal cancer, which is interesting.368

6 REGULATION OF EMT BY REDOX
SIGNALING

In cancer cells, active metabolic patterns result in accu-
mulation of reactive oxygen species (ROS), including
hydroxyl free radicals, superoxide, and hydrogen perox-
ide, leading to oxidative stress. On one hand, ROS promote
malignant transformation via inducing DNA damage and
genomic instability, therefore being regarded as oncogenic
molecules.369 Besides, ROS also sustain the proliferation
of tumor cells and drive more aggressive phenotype.370,371
However, excessive accumulation of ROS leads to cell
death, suggesting that oxidative stress regulates cancer in
contradictory ways.372 For example, oxidative stress can
promote ferroptosis in melanoma to inhibit tumor metas-
tasis, whereas administration of antioxidants has been
shown to facilitate the metastasis of lung cancer.373,374
In order to preserve rapid proliferation and aggressive
behavior while avoiding death, tumor cells achieve redox
equilibrium via increasing their antioxidant capacity. This
process is enabled by the activation of antioxidant tran-
scription factors (e.g., NRF2,NF-κB, p53, FOXO, etc.),375–378
the expression of antioxidant enzymes (e.g., SODs, CAT,
PRDXs, TRXs, GPXs, etc.),379–383 and the production
of small antioxidant molecules (e.g., GSH, vitamin C,
vitamin E, etc.).384–386 Therefore, targeting oxidative stress
is a potential anticancer strategy.387–389 Particularly, oxida-
tive stress regulates cancer initiation and progression at
least partially through modulating EMT program. For

instance, ROS stimulate the expression of Snail, thus
promoting EMT in breast cancer.13 Similarly, ROS accu-
mulation induced by lipid peroxidation, GSH depletion,
and SLC7A11 deficiency can initiate EMT in lung cancer
cells.390 In consistence with these, treatment of antioxi-
dants, such as N-acetylcysteine (NAC), curcumin, resver-
atrol, has been shown to inhibit EMT in a variety of tumor
cells.391–393 It is worth noting that ROS also promote MET
in cancer cells. For example, 2-deoxyglucose-induced ROS
accumulation promotes the phenotype transition of mes-
enchymal breast cancer stem cells (CSCs) into epithelial
breast CSCs.394 This evidence suggests that EMT program
is profoundly affected by cellular redox status.
Mechanistic studies have revealed that ROS are not

only toxic molecules that randomly cause damages, but
also serve as secondary messengers to regulate signal-
ing transduction.395 This is enabled by a number of ROS-
sensitive proteins, termed redox sensors.396 In response
to the stimulation of ROS, certain cysteine residues on
redox sensors can be oxidized at their sulfhydryl to gener-
ate cysteine sulphonate or to form disulfide bonds, lead-
ing to the conformational changes, formation of pro-
tein complex, and consequent acquisition of new bio-
logical functions.397 These processes can be reversed by
antioxidant machinery, thus fine-tuning cell behaviors
called redox signaling.398 Compelling evidence suggest
the critical roles of redox signaling in cancer progression.
For example, redox modification of pyruvate kinase M2
(PKM2) at Cys358 causes a decrease of PKM2 enzymatic
activity, leading to a metabolic reprogramming of can-
cer cells which supports tumor growth under oxidative
stress.399 In terms of EMT program, redox signaling regu-
lates the functions of junctions proteins, actin cytoskele-
ton, and EMT-TFs, thereby affecting cancer progression
(Figure 8).400 Aforementioned developmental pathways
that control EMT program are actually crosslinked with
redox signaling. For instance, TGFβ-induced EMT can be
enhanced or abolished by the treatment of hydrogen per-
oxide (H2O2) or NAC, respectively.401 Besides, ROS has
been shown to activateWnt signaling and subsequent EMT
during wound healing.402 Furthermore, theHippo compo-
nent TAZ is a typical redox sensor, whose cysteines can
undergo S-glutathionylation in response to ROS.403 This
redox modification improves the protein stability of TAZ,
which facilitates its nuclear translocation and subsequent
transcription of target genes.403 Together, these evidence
suggest that redox signaling plays critical roles in EMT.

6.1 Redox regulation of cell junctions
and cytoskeleton

ROS increase endothelial permeability through disrupt-
ing the integrity of cellular junctions between endothelial
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F IGURE 8 Regulation of EMT by oxidative stress and redox signaling. Redox signaling modulates EMT program via the regulation of
redox sensors, including AP-1, PHD, IKKγ, FOXO1, and many others. Briefly, these redox sensors can be either activated or inactivated via
cysteine oxidation, thereby positively or negatively regulate the transcription of EMT-TFs. Moreover, FOXO1 mRNA acts as ceRNA which
binds with miR-9, protecting E-cadherin mRNA from miR-9-mediated degradation. This effect inhibits EMT program independent of
EMT-TFs

cells. For instance, ROS induced by the metabolic inter-
mediate, 4-hydroxy-2-nonenal, has been shown to mod-
ulate adherens junctions, tight junctions and integrins,
leading to dysfunction of endothelial barrier.404 In line
with it, another study showed that protein tyrosine phos-
phatase SHP2 is a critical factor preserving the integrity
of endothelial barrier.405 In response to lipopolysaccha-
ride (LPS)-induced oxidative stress, SHP2 is oxidized at
its Cys459, leading to its inactivation.405 This event acti-
vates Fyn-related kinase, which phosphorylates several
junction proteins, resulting in the disruption of endothe-
lial adherens junction.405 Besides, ROS-mediated endothe-
lial permeability also involves the S-glutathionylation of
Rac1, a small Rho GTPase that regulates cytoskeleton.406
Metabolic stress-induced S-glutathionylation of Rac1 at
Cys81 and Cys157 can inactivate Rac1, leading to the
reorganization of cytoskeleton network and consequent
vascular permeability in the aorta.406 Interestingly, β-actin
can be oxidized at Cys374, suggesting a direct regulation
of cytoskeleton by redox signaling.407 In intestinal epithe-
lial cells, the protein level of E-cadherin can be decreased
in response to TNF-α-induced oxidative stress, while its
mRNA level is not changed.408 This observation suggests
that ROS-mediated loss of E-cadherinmight be at least par-
tially independent of conventional epigenetic mechanisms
by EMT-TFs.408 In addition to E-cadherin, many other
EMT marks have been shown to be regulated by oxidative

stress, including claudins, occludin, zonula occludens, α-
SMA, and vimentin.409,410

6.2 Regulation of EMT-TFs by redox
sensors

As mentioned above, EMT-TFs play crucial roles in EMT
program. Though most EMT-TFs do not seem to undergo
direct redox modification, they are actually regulated by
other redox sensors. The transcription factor, activator
protein-1 (AP-1), is a typical redox sensor involved in EMT
program. In response to oxidative stress, cysteines between
its subunits are oxidized to form intermolecular disulfide
bond, which decreases its DNA binding affinity.411–413 AP-
1 has been shown to directly bind with the promoter of
Snail and ZEB2, thus activating their transcription, lead-
ing to EMT and metastasis of skin cancer, cervical can-
cer, and breast cancer.414–417 Besides, AP-1 can also phys-
ically interact with Snail and Twist, forming a transcrip-
tional complex to induce EMT.418,419 Another redox sensor,
prolyl hydroxylase (PHD), can be inactivated by the oxida-
tion of cysteines in its catalytic domain.420 This event leads
to the activation of HIF-1α, which transcribes ZEB1 and
Twist to induce EMT and promote tumormetastasis.421–423
HIF-1α can also improve the protein stability of Snail,
thereby promoting cancer metastasis.424 In addition, the
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redox sensor IKKγ (also known as NEMO) can be acti-
vated via ROS-induced disulfide bond formation between
Cys54 and Cys347.425 Activated IKKγ phosphorylates IκB,
leading to the dissociation between IκB and NF-κB. This
effect results in the activation of NF-κB, which promotes
the transcription of several EMT-TFs.426 Moreover, FOX,
class O (FOXO) proteins are a group of redox sensitive
transcription factors, which play vital roles in cellular
antioxidant defense.378,427 In response to ROS, FOXO4
and transportin-1 can form protein complex through inter-
molecular disulfide bond, promoting the nuclear translo-
cation of FOXO4, which is required for the transcrip-
tion of SOD2 and subsequent ROS elimination.428 Simul-
taneously, FOXO proteins are largely involved in cancer
progression, notably the EMT program.429 For example,
hypoxia-induced oxidative stress promotes the phospho-
rylation and activation of FOXO1, which directly binds
with the promoter of Twist to increase its transcription,
leading to EMT and metastasis of prostate cancer.430
Besides, FOXO1 can also upregulate ZEB1 during EMT
process.431 Another FOXO family member, FOXO3a,
has been shown to inhibit β-catenin via upregulating
miR-34 or directly protein binding.432 This effect abol-
ishes the β-catenin-mediated transcription of ZEB1, thus
repressing EMT in prostate cancer.432 Interestingly, FOXO
proteins might regulate EMT independent of classical
EMT-TFs. For instance, FOXO1 mRNA serves as a com-
petitive endogenous RNA (ceRNA), whose 3′UTR region
can be targeted bymiR-9.433 This event protects E-cadherin
mRNA from miR-9-mediated degradation, resulting in
maintenance of E-cadherin expression thus inhibiting
breast cancer metastasis.433

7 EMERGING ROLES OF EMT IN
HALLMARKS OF CANCER

Cancer cells acquire distinct hallmarks in different
stages during progression, including rapid prolifera-
tion, resisting cell death, deregulating cellular energet-
ics, tumor-promoting inflammation, acquiring stemness,
inducing angiogenesis, activating metastasis, and many
others.434 Among them, tumor metastasis is the canonical
consequence of EMT program which has been widely
reported. Even so, new concepts have also emerged in
recent years. For instance, tumor cells in hybrid EMT
state, but not completed mesenchymal state, possess high-
est metastatic capability.108 In line with this, expression of
the epithelial mark E-cadherin, which is conventionally
thought to inhibitmetastasis, actually promotesmetastasis
in some circumstances.118 Moreover, it has been reported
that EMT is not required for metastasis.115,116 This evi-
dence indicate that EMT-regulated tumor metastasis is

highly context-dependent. Here, we mainly focus on the
contribution of EMT on other cancer hallmarks, includ-
ing metabolic reprogramming, CSC property, and tumor-
promoting inflammation.

7.1 Metabolic reprogramming

Cancer cells undergo metabolic reprogramming to meet
the energy and nutrient demand, which enables the sus-
taining proliferation in adverse condition. One of the well-
known metabolic reprograming is the “Warburg effect”
describing that tumor cells utilize glycolysis rather than
oxidative phosphorylation even in a normoxia condi-
tion, termed as “aerobic glycolysis.”435 During EMT pro-
cess, tumor cells reprogram their glucose metabolism and
lipid metabolism to maintain aggressive behaviors. Specif-
ically, the key EMT-TF Snail can regulate the transcrip-
tion of enzymes in glucose metabolism. For instance,
Snail represses the expression of phosphofructokinase
PFKP, thus switching the glucose flux toward pentose
phosphate pathway.436 Besides, Snail-mediated silencing
of fructose-1,6-biphosphatase induces glycolysis, which
maintains stemness and invasiveness of basal-like breast
cancer cells.437 However, it has been also reported that
metastatic cancer cells prefer oxidative phosphorylation
to glycolysis, which might be due to the decease of glu-
cose uptake and consequent energy crisis in CTCs.438
Therefore, tumor cells probably tend to utilize oxidative
phosphorylation to achieve more efficient ATP produc-
tion rather than glycolysis during EMT.439 This concept
is supported by the finding that nuclear phosphoglycer-
ate kinase 1 drives EMT and metastasis by oxidative phos-
phorylation in Smad4-deficient pancreatic ductal adeno-
carcinoma cells.440 Notably, aberrant glucose metabolism
in turn affects EMT through regulating EMT-TFs, such
as Snail. It has been shown that hyperglycemic condition
induces an O-GlcNAc modification at Ser112 on Snail1,
thereby enhancing its protein stability to facilitate EMT
program in breast cancer cells.441
Lipid metabolism is closely related with cancer metas-

tasis, as evidenced by the finding that the metabolic shift
toward fatty acid oxidation is critical for tumor metastasis
to lymph nodes.442 Besides, the formation of lipid droplets
has been found to promote metastasis of tumor cells.443
Given the direct connection between EMT and metasta-
sis, it is not surprising that lipid metabolism plays vital
roles during EMT program. Indeed, EMT-like morpho-
logical changes require the alterations in membrane lipid
composition, which is enabled at least partially through
the fatty acid translocase CD36.444,445 In addition, the
formation of invadopodia, a classical EMT-like morpho-
logical alteration, is induced by the reprogramming of
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lipid metabolism during the progression of liver cancer.446
Apart from regulation of membrane dynamics, lipid
metabolism also regulates the fate of EMT cells through
ferroptosis, a cell death form induced by lipid peroxidation.
Cancer cells in completed mesenchymal state that lack
of E-cadherin expression largely suffer from severe oxida-
tive stress,making themhighly vulnerable to ferroptosis.118
Nevertheless, lymph protects those metastatic cancer cells
from ferroptosis by reliving oxidative stress, which is
dependent on the abundant oleic acid, a kind of unsatu-
rated fatty acid.373 This evidence suggests that metabolism
with different lipid substrates can diversely regulate
ferroptosis, cell survival, and metastasis during EMT. Fur-
thermore, different lipid metabolism enzymes also regu-
late metastasis in contrary ways. For example, the lipid
metabolism enzyme ATP-citrate lyase can promote the
metastasis of colorectal cancer and liver cancer.447,448 In
contrast, another lipid metabolism enzyme, acyl-CoA syn-
thetase long-chain family member 4, sensitizes cancer
cells to ferroptosis by esterifying arachidonic acid and
adrenic acid into phosphatidylethanolamine.449 Accord-
ing to the profound impacts of lipid metabolism in EMT
andmetastasis of cancer, targeting lipidmetabolism can be
a potential therapeutic strategy for cancer treatment. For
instance, inhibiting lipidmetabolism by simvastatin-based
nanomedicine has been shown to reverse EMT and over-
come cancer drug resistance.450

7.2 Cancer stem cell property

The capacity of tumor initiation is partly driven by the acti-
vation of the EMT program because active EMT-TFs con-
fer numerous properties of stemness on those with cell
plasticity. Indeed, aberrant expression of EMT-TFs, such
as Twist1, SIP-1, and Snail, in cancer cells contributes to
the acquisition of stem-cell features, as evidenced by the
increased self-renewal ability in vitro and tumor propa-
gation potential in vivo.42,437,451,452 Moreover, ZEB1, as an
EMT activator, has been identified to enhance tumori-
genic and colonization capacity by stabilizing the stem
cell marker Sox2 in a miR-200c-mediated manner in pan-
creatic cancer derived from a KPC model with mutant
Kras and p53.17 Similar results have been demonstrated
in glioblastoma, where ZEB1 contributes to tumor initia-
tion by orchestrating a series of stemness effectors, includ-
ing SOX2, OLIG2, and CD133/PROM1.452 Additionally, the
results from breast cancer indicate that the EMT regula-
tors ZEB1/2 and Bmi1 promote stemness toward tumori-
genesis and metastasis via TET-Family-dependent epige-
netic modulation. Mechanistically, miR-22 induces chro-
matin remodeling by decreasing 5hmC levels by inhibit-
ing the TET family, therefore leading to epigenetic silenc-

ing of miR-200, which is involved in the expression of
ZEB1/2 and Bmi1.453 Recently, a novel signaling axis, the
basic helix–loop–helix (bHLH) transcription factor E2A
with Snail1, was confirmed to participate in the mainte-
nance of breast cancer stemness, facilitating tumor initi-
ation, metastasis, and drug resistance.454 It has also been
reported that deletion of the protocadherin FAT1 induces
a hybrid EMT state in skin squamous cell carcinoma
and lung tumors by triggering not only CAMK2–CD44–
SRC axis-mediated YAP1 activation and ZEB1 expres-
sion but also EZH2-regulated SOX2 expression, thus
resulting in maximal stemness and accelerated cancer
progression.114
In addition to the involvement of tumorigenesis, EMT-

mediated stemness is also identified as a key driver of
acquired drug resistance and subsequent tumor relapse
after drug holidays.35 Accumulated evidence reveals that
cancer cells in EMT activation seem to undergo dediffer-
entiation similar to stem cells, showing upregulation of
antiapoptotic and drug efflux proteins.455,456 For instance,
multidrug resistance (MDR), especially to gemcitabine,
in pancreatic cancer is closely correlated with the acti-
vation of the EMT-like transcription factor ZEB1.457 In
detail, solute carrier family 39 member 4, which func-
tions to modulate the intracellular zinc concentration,
induces the expression of the zinc-dependent EMT pro-
tein ZEB1 by stimulating STAT3 activation. Consequently,
ZEB1-induced ITG A3/B1 triggers integrin α3β1 signal-
ing and subsequent c-Jun-N-terminal kinase signaling,
therefore inhibiting the expression of gemcitabine trans-
porter ENT1.457 Similarly, SRF/MRTF-mediated signaling
is involved in the mesenchymal transition of melanoma
with RAC1P29S by upregulation of the EMT-TFs Snai2 and
Jun, driving a low apoptosis rate and BRAFi resistance.458
Of note, various cancer therapies, including chemo-,

radio-, and immunotherapy, can also result in an EMT-
mediated stress adoption mechanism, which was recently
defined as one feature of the drug-tolerant persister (DTP)
state.459 These residual cells with EMT characteristics
govern the nongenetic mechanisms to enter the dor-
mant state against a wide spectrum of antiproliferation
treatments.460 For example, Matthew and colleagues
indicate that high-mesenchymal persister cancer cells
derived from drug treatments hold more resistance to
tyrosine kinase inhibitor therapy and chemotherapy.461
Furthermore, the features of EMT activation, upregulation
of vimentin, and downregulation of E-cadherin have also
been examined inMDR persister cells, which develop DTP
phenotypes after canonical MDR reversal treatment.462
Notably, observations in patients with breast cancer
or mice with lung cancer suggest a strong underlying
connection among EMT, stemness, and drug resistance by
analyzing the expression of EMT markers in posttherapy
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specimens, showing an activated EMT program and
elevated chemoresistance-related proteins.115,463

7.3 Tumor-promoting inflammation

The progression of cancer is largely dependent on
the interaction between tumors and tumor microenvi-
ronment, especially local inflammatory status. Inflam-
matory microenvironment is composed by a variety
of cells, including tumor cells, stromal cells, tumor-
associated macrophages (TAM), cancer-associated fibrob-
lasts, myeloid-derived suppressive cells, T cells, mono-
cytes, dendritic cells, adipocytes, and so on. Inflammatory
response is required for immunosurveillance to kill cancer
cells; however, it can also promote cancer progression. For
example, macrophages can be polarized into M2 tumor-
promoting ones. During cancer progression, EMTprogram
can regulate the function of inflammatory and immune
cells, whereas several inflammatory cytokines are potent
inducers of EMT.45 As such, EMT program and inflamma-
tory response are affected by each other thus forming com-
plex network, which leads to cancer regression or progres-
sion.
Mounting evidence indicate that EMT can be reg-

ulated by inflammation. For instance, pancreatitis has
been found to promote EMT of premalignant pancreatic
epithelial cells, leading to their dissemination to liver,
and this process can be abolished by the administration
of immunosuppressive agent dexamethasone.464 Gener-
ally, inflammation-induced EMT is largely attributed to
proinflammatory cytokines, such as NF-κB, interleukins
(ILs), interferons, chemokines, and others. The level of
IL-22 is increased during pancreatitis, which promotes
EMT of pancreatic ductal adenocarcinoma cells and sub-
sequent tumor progression.465 Another IL, IL-6, facili-
tates the transformation of normal liver stem cells into
metastatic CSCs by inducing EMT.466 Interestingly, IL-
35 derived from M2 TAMs has been reported to pro-
mote MET of metastatic tumor cells, thus resulting in dis-
tant colonization.467 Similar tumor-promoting effects were
also observed in other proinflammatory factors, such as
M2 TAM-derived chemokine CCL-22 and natural killer
cell-derived interferon IFN-γ, both of which promote the
progression of liver cancer via induing EMT.468,469 Mech-
anistically, these cytokines might regulate the expression
of EMT-TFs, thus affecting EMT program. For instance,
the pro-inflammatory cytokine NF-κB is able to inhibit the
ubiquitination anddegradation of Snail, therebymediating
inflammation-induced tumor metastasis.248
In contrast to the large amount of literature describing

inflammation-regulated EMT, the investigation of EMT-
regulated inflammation and immune response is rather

limited. It has been shown that EMT can change the
antigens present in tumor surface, recruit M2 TAMs
instead of M1 macrophages, thus contributing to the
immunosuppression in breast cancer, and this process is
probably enabled by the release of cytokine granulocyte-
macrophage colony-stimulating factor.470,471 Besides, the
EMT-TFZEB2 can regulate cytokine signaling thus playing
critical role in hematopoietic differentiation and myeloid
diseases.276 Interestingly, tumor cells undergoing EMT
have been reported to increase susceptibility to natural
killer cells, which enhance immunosurveillance to inhibit-
ing metastasis in lung cancer.472 This observation suggests
that inflammatory or immune responses are not always
tumor promoting, but can provide beneficial for cancer
patients in some circumstances if not being hijacked by
tumor cells.

8 EMT-BASED CLINICAL
APPLICATIONS IN ONCOLOGY

8.1 Clinical diagnosis by identifying
EMTmarkers

Given the crucial role of the EMT program in tumori-
genesis and development, the identification of EMT-
involved biomarkers has accordingly emerged as a diag-
nostic approach, which is used to match personalized
therapies or adjust the treatment intensity. Indeed, an
increasing number of clinical cases have indicated that
EMT multi-marker combination analysis by immunohis-
tochemistry or immunofluorescence is a key part of tumor
stratification or companion diagnostics for patients with
different tumor types.473,474 (Table 1)
In colorectal cancer, miR-200c, a known EMT mediator

that has been investigated in preclinical models, is exam-
ined in 45 pairs of primary tumor tissues and correspond-
ing matched liver metastases. Expectedly, altered expres-
sion of miR-200c, which has low expression in the invasive
front of primary cancer tissues and high expression in
liver metastasis tissues, showed a strong association with
various EMT-related proteins, such as ZEB1, E-cadherin,
and vimentin, suggesting a potential metastatic indica-
tor for patients.475 In line with this, the results from a
longitudinal follow-up study based on 185 stage II/III
colorectal cancer patients solidly demonstrated a rela-
tionship between a high combined EMT score and poor
prognosis.476 Furthermore, several EMT genes, including
CDH11,MMP2, andZEB1, have been identifiedwith higher
expression in invasive breast cancer than in pure ductal
carcinoma in situ, indicating that EMT activation is related
to a high risk of invasive disease in all subtypes of breast
cancer, especially in ER-negative disease.477 A study inves-
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TABLE 1 Implications of several EMT markers in the diagnosis of cancer

EMT
markers Sample types Synergetic markers Clinical symptoms Cancer types
miR-200c Tissue biopsy ZEB1, E-cadherin, and vimentin Liver metastases Colorectal cancer
ZEB1 Tissue biopsy CDH11, MMP2 Invasive disease Breast cancer
E-cadherin Tissue biopsy N-cadherin, vimentin Biochemical recurrence Prostate cancer
β-catenin Tissue biopsy E-cadherin, vimentin, CD133,

CD44v6, and so on
Metastases and therapy
adaptation

Prostatic, colorectal, breast cancer,
and so on

Twist1 Liquid biopsies Akt2, PI3Kα, and ALDH1 Metastases and therapy
adaptation

Breast cancer

PI3Kα and/or
Akt-2

Liquid biopsies ALDH1 Metastases and therapy
adaptation

Colorectal cancer

tigating prostate cancer patients treated pre- and postra-
diotherapy revealed that downregulation of E-cadherin
combined with upregulation of N-cadherin and vimentin
was correlated with biochemical recurrence, providing an
independent predictive factor for treatment response to
radiotherapy.478 Recently, Navas and colleagues proposed a
validated, high-resolution digital microscopic immunoflu-
orescence assay for assessing the EMT phenotype of
various human tumor specimens. Their study revealed
that β-catenin+ cancer cells accompanied by the induction
of E-cadherin and vimentin exist in various metastatic
patients. Notably, the expression of stemness markers,
such as CD133, CD44v6, ALDH1, and NANOG, is also
examined in some cases, implying a standardized assess-
ment for clinical monitoring of EMT-mediated therapy
adaptation.474
In addition to tissue biopsy, liquid biopsies are another

promising method for clinical diagnosis and can also be
used to analyze EMT characteristics of tumors, mainly
CTCs from the blood of cancer patients. For example,
a follow-up study comprising 226 blood samples of 39
patients with metastatic breast cancer showed that the
expression rates of EMT-related proteins and the stem-
ness marker ALDH1 were 62 and 44%, respectively, in
CTCs of patients with no response to therapy. In con-
trast, the expression rates in responders are 10 and 5%,
respectively.479 Likewise, through investigating related
protein expression in CTCs isolated from blood, Ning
et al. demonstrated that the coexpression pattern of EMT
markers (PI3Kα and/or Akt-2) and stemness markers
(ALDH1) predicts significantly shortened progression-free
survival and overall survival (OS) in metastatic colorec-
tal cancer patients.480 To date, the clinical trials of CTCs
with EMT features are ongoing or have already been
activated for diagnosing or treating patients with breast,
prostate, pancreatic, and colorectal cancers (NCT04265274,
NCT04021394, NCT04323917, and NCT04323813, respec-
tively).

8.2 Therapeutic interventions targeting
the EMT program

With the increasing in-depth knowledge of detailed mech-
anisms modulating the EMT program, the identification
of novel agents targeting this program has been an irre-
versible trend. Thus far, three reasonable strategies aimed
at preventing the initiation of EMT activation, selectively
eliminating mesenchymal-like cancer cells, and reversing
the EMT process by inducing theMET program all seem to
be promising for controlling EMT-mediated tumorigenesis
and therapeutic tolerance. However, which approach is the
best one with long-term efficacy in the clinic remains con-
troversial. In this section,we present variousEMT-targeted
drugs based on the approaches mentioned above and list
the related clinical trials (Table 2).

8.2.1 Strategies to inhibit EMT induction

Intervention with TGFβ signaling, the confirmed path-
ways involved in EMT induction by several preclinical
studies, is currently the most recognized strategy. Galunis-
ertib (LY2157299) is a small molecule inhibitor targeting
TGFβR1 and has been investigated in various advanced
tumors.481–483 Importantly, the anticancer effect of galu-
nisertib is at least partially attributed to its capability of
inhibiting EMT. For example, galunisertib was revealed to
show a marked sensibilization to enzalutamide treatment
in prostate cancer due to that galunisertib-mediated TGFβ
signaling inhibition prevented EMT process.481 To date,
more than 10 clinical trials of galunisertib have been
completed for treating metastatic or recurrent cancer
(https://clinicaltrials.gov/). Among them, a clinical trial
for advanced or metastatic unresectable pancreatic cancer
suggests that galunisertib combined with gemcitabine has
a promising anticancer effect on patients, as evidenced
by the prolonged OS (NCT01373164).484 Similarly, the

https://clinicaltrials.gov/
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TABLE 2 Cancer therapeutic strategies based on targeting EMT

Drugs or combination Targets or pathways Cancer types Intervene strategies Clinical trials
Galunisertib, gemcitabine TGFβ signaling Pancreatic cancer Inhibiting EMT induction NCT01373164
Galunisertib, sorafenib TGFβ signaling Hepatocellular carcinoma Inhibiting EMT induction NCT01246986
Antisense TGFβ2 mRNA Gliomas Inhibiting EMT induction NCT00431561
Tepotinib, cetuximab HGFR (Met) Colorectal cancer Inhibiting EMT induction NCT04515394
Tepotinib HGFR (Met) NSCLC, hepatocellular

carcinoma
Inhibiting EMT induction NCT01982955,

NCT01988493
Capmatinib c-Met Glioblastoma multiforme,

colorectal cancer, and so
on

Inhibiting EMT induction NCT02386826

Cabozantinib AXL Several solid tumors Inhibiting EMT induction NCT03170960
ADH-1 N-cadherin Several solid tumors Killing cells undergoing EMT NCT01825603,

NCT00421811
Pritumumab Vimentin brain cancer Killing cells undergoing EMT NCT04396717
Mocetinostat, nivolumab HDAC-mediated ZEB1 NSCLC Killing cells undergoing EMT NCT02954991
All‑trans retinoic acid Activation of MET Breast cancer, head and

neck cancer,
neuroblastoma

Reversing the EMT process NCT05016349,
NCT03370367,
NCT03042429

Tazemetostat EZH2 Prostate cancer,
lymphomas, and so on

Reversing the EMT process NCT04179864,
NCT01897571

therapeutic effect of galunisertib combined with sorafenib
was confirmed in a phase II study regarding advanced
hepatocellular carcinoma, showing acceptable safety and
a pronounced improvement in OS (NCT01246986).485
Notably, there also exist many similar small molecule
inhibitors depending on TGFβR1 inhibition, such as
EW-7195, LY580276, and SD-208, displaying potential
anticancer effects by blocking TGFβ pathways.486 In
addition to small molecular inhibitors, antisense ther-
apy targeting TGFβ2 mRNA has been revealed to have
comparable effects, and related clinical trials have been
ongoing (NCT00431561).487 Nonetheless, it will be coun-
terproductive to perform a blind targeting of TGFβ
signaling, which has multifaceted biological functions in
tumorigenesis and development.488 Indeed, in the early
stages of cancer, induction of TGFβ signaling actually
limits the proliferation of tumor cells.489 Thus, rational
patient stratification and optimized drug administra-
tion will be key to the effective use of these therapeutic
regimens.
The HGF–HGF receptor (also known as Met) axis is

anotherwell-knownmediator of EMT induction.490 Exces-
sive activation of the signaling axis is often attributed to
point mutation or amplification of the HGFR gene, there-
fore triggering EMT-induced cell motility and conferring
resistance to a series of anticancer agents in cancer.491
As such, substantial efforts have been made to develop
HGF-HGFR signaling inhibitors; furthermore, an increas-
ing number of clinical studies are evaluating the anticancer
effect of c-Met inhibitors in different types of cancer.492

For example, scientists from the EMD Serono Research
& Development Institute recently combined the selec-
tive c-Met inhibitor tepotinib with cetuximab for treat-
ing metastatic colorectal cancer in a Phase II clinical
trial (NCT04515394). Moreover, the effects of tepotinib
were also identified in patients with EGFR-mutant non-
small-cell lung cancer (NCT01982955)493 or with advanced
hepatocellular carcinoma (NCT01988493),494 as observed
by improved anticancer activity and time to progres-
sion, respectively. Capmatinib, another selective c-Met
inhibitor, has also been approved for treating Met exon
14-altered non-small-cell lung cancer.491 Furthermore, a
phase I clinical trial of capmatinib is ongoing for the treat-
ment of glioblastoma multiforme, gliosarcoma, colorectal
cancer, and renal cell carcinoma (NCT02386826).
In addition, the potential therapeutic agents for block-

ing EMT induction include other target inhibitors, such
as COX-2 inhibitors and AXL inhibitors. The COX-2 selec-
tive antagonist celecoxib was revealed to prevent EMT-
mediated malignant transformation by modulating β-
catenin nuclear localization, the vimentin/E-cadherin pro-
portion and EMT-TFs (Slug, Snail and ZEB1) in colorectal
cancer cells and oral squamous cell carcinoma.495,496 Addi-
tionally, inhibition of AXL by the multikinase inhibitor
cabozantinib reverses EMT-associated drug resistance in
renal cell carcinoma and non-small-cell lung cancer.497,498
Since 2017, the City of Hope Comprehensive Cancer
Center has been conducting a phase I clinical trial of
combination therapy of cabozantinib and atezolizumab,
treating more than 10 different types of advanced or
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metastatic solid tumors (NCT03170960). Recently, their
study reported that cabozantinib combined with ate-
zolizumab showed encouraging efficacy and acceptable
tolerability in advanced clear cell and nonclear cell renal
cell carcinoma.499

8.2.2 Strategies to kill cells undergoing EMT

Compared with prevention of EMT induction, a promising
alternative strategy is to selectively target EMT-induced
mesenchymal-like cancer cells by therapeutically inhibit-
ing the functions of EMT-specific markers. For exam-
ple, the novel pentapeptide ADH-1 was identified as
an N-cadherin antagonist, which breaks extracellular N-
cadherin adhesion, therefore disturbing the interaction
with FGFR-1 and accelerating the degradation of FGFR-
1. ADH-1 treatment markedly enhances the cytotoxicity
of chemotherapy.500 Notably, the clinical applications of
cisplatin, gemcitabine hydrochloride, or melphalan com-
bined with ADH-1 have been completed and display con-
siderable promise (NCT01825603 and NCT00421811). Fur-
thermore, vimentin, another classic EMT marker, has
been revealed as the direct target of withaferin A, which
reduces EMT-associated cancer metastasis by triggering
the degradation of vimentin intermediate filaments.501,502
Pritumumab, a natural IgG1κ antibody derived from cervi-
cal carcinoma patients, is also an antagonist of vimentin
and was originally evaluated in a clinical trial of patients
with brain cancer in Japan.503 Recently, a clinical trial
of pritumumab in brain cancer therapy has been con-
ducted again, implying promising clinical therapeutic
potential (NCT04396717). Beyond the direct suppression
of these EMT effectors, targeting EMT-TFs is an alter-
native approach against EMT-induced mesenchymal-like
carcinoma. Indeed, inhibition of the EMT activator ZEB1
by the HDAC inhibitor mocetinostat has been shown
to impede drug resistance to oncotherapy in lung and
pancreatic cancer.504,505 Moreover, a phase II clinical trial
in which mocetinostat was combined with nivolumab
for treating advanced or metastatic non-small-cell lung
cancer is ongoing (NCT02954991). Similarly, pharmaco-
logic inhibition of another EMT-TF, Snail, can also pre-
vent EMT-derived malignancy. Lee and colleagues pro-
vided a small chemical inhibitor named GN25 and GN29,
which showed significant anticancer effects by specifi-
cally breaking p53-Snail binding in KRAS-driven human
cancer.506
Importantly, EMT-driven mesenchymal phenotype of

cancer cells seems to hold unique therapeutic vulnera-
bilities. For example, the aforementioned study reports
that mutation-induced FAT1 function defects result in
Hippo signaling inhibition and ZEB1 expression by acti-

vating the CAMK2-CD44-SRC axis, thus conferring mes-
enchymal state-related stemness and metastasis. Interest-
ingly, compared to FAT1 wild-type cancer cells, the loss of
FAT1 dramatically enhances the drug sensitivity of can-
cer cells to dasatinib, saracatinib (SRC inhibitors), and
KN93 (CAMK2 inhibitor).114 Similarly, Kosuke et al. indi-
cated that treatment with the EGFR inhibitor osimertinib
causes acquired resistance by promoting the EMT process
in lung cancer. These cells with a mesenchymal-like phe-
notype activate the ATR–CHK1–AURKB axis, simultane-
ously showing obvious therapeutic vulnerability. AURKB
inhibitors and ATR/CHK1 inhibitors.507 Additionally, the
sustainment of endoplasmic reticulum (ER) homeosta-
sis and redox balance is also confirmed as an indispens-
able requirement for EMT subpopulation survival in var-
ious types of cancer, suggesting that ER or oxidative
stress inducers can selectively kill these clusters.394,508
Recently, a novel strategy based on cell plasticity, aiming
to force trans-differentiation of EMT-related breast cancer
cells into postmitotic adipocytes, seems to work. Ronen
and colleagues combined rosiglitazone (antidiabetic drug)
with trametinib (MEK inhibitor) to suppress the metasta-
sis of breast cancer.509 With the in-depth understanding
of EMT-driven characteristics, high‑throughput screen-
ing approaches have been used to identify therapeu-
tic vulnerabilities in carcinoma cells with EMT-induced
phenotypes.510–512 Nevertheless, the clinical application of
a similar strategy for treating EMT-mediated metastasis
and drug resistance still requires further exploration and
validation.

8.2.3 Strategies to reverse the EMT process

Since EMT induction leads to elevatedmetastatic potential
and stemness, activation ofMET, a reverse process of EMT,
would be a reasonably alternative therapeutic option. This
strategy, by forcing differentiation of mesenchymal-like
cancer cells into regain epithelial features, resembles “dif-
ferentiation therapy” treated for AML, whereby all‑trans
retinoic acid treatment breaks the poorly differentiated
state of AML with potential EMT traits, eventually result-
ing in differentiation-mediated apoptosis.217,513,514 Notably,
all‑trans retinoic acid treatment for solid cancers has been
universally used in preclinical and clinical studies. In
breast cancer cells and paclitaxel-resistant colorectal can-
cer cells, all‑trans retinoic acid has been shown to reverse
the EMT process, thus decreasing the motility of can-
cer cells both in vitro and in vivo.515,516 Furthermore,
all‑trans retinoic acid also displays dramatic anticancer
potential in phase II and phase III clinical trials of var-
ious cancer patients (NCT05016349, NCT03370367, and
NCT03042429).
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In addition to retinoic acid, which removes EMT-
modulated malignant phenotypes by directly inducing
differentiation, several epigenetic-associated drugs have
been identified as potential inducers of the MET pro-
gram in preclinical models by preventing EMT activation-
mediated metastasis or drug resistance.517 Pattabiraman
et al. indicated that the intracellular second messen-
ger adenosine 3′,5′-monophosphate induces epigenetic
reprogramming by triggering the activation of protein
kinase A and the subsequent phosphorylation of histone
demethylase PHF2. Thus, PHF2 decreases histone methy-
lation in mesenchymal cancer cells, in turn inducing a
MET process and compromising tumor initiation, imply-
ing promising clinical therapeutic potential of inhibitors
of histone methyltransferases.518 Indeed, tazemetostat, a
kind of EZH2 histone methyltransferase inhibitor, has
rapidly progressed into Phase II or Phase III clinical tri-
als (NCT04179864 and NCT01897571). Additionally, epi-
genetic regulation-mediated reprogramming of metabolic
patterns in cancer cells can control cell state transitions.
For example, Loo and colleagues reported that rechannel-
ing fatty acid β-oxidation toward lipid storage by retinoids
reverses the mesenchymal-like phenotype to an epithelial-
like phenotype in breast cancer, accompanied by a loss
of EMT-driven metastasis ability. Mechanistically, fatty
acid β-oxidation in the mesenchymal cell state exhibits
epigenetic controls of EMT genes via upregulation of
acetyl-CoA-dependent histone acetylation.519 In particu-
lar, morphological screening based on an organoid plat-
form from a recent study has identified multiple class I
HDAC inhibitors and bromodomain inhibitors as poten-
tial inducers of the MET program.520 However, MET pro-
gram plays a key role in metastatic colony formation.48
Thus, the opportune moment of MET induction treatment
is undoubtedly the most important. Nonetheless, such an
“EMT reverse strategy” still holds a very attractive perspec-
tive for clinical application.

9 CONCLUSIONS AND FUTURE
PERSPECTIVES

EMTunderlies various physiological and pathological pro-
cesses, including embryonic development, wound healing,
tissue fibrosis, and cancer progression. This event is largely
driven by a class of EMT-TFs, whose functions are con-
text dependent, therefore EMT status cannot be evaluated
based on a single or a very few marks.1 To this end, EMT
status is encouraged to be assessed by certain “EMT signa-
tures” containing dozens of related genes including epithe-
lial marks, mesenchymal marks, EMT-TFs, and upstream
or downstream factors.521–523 In addition to the reliabil-
ity, EMT signatures can also reveal the hybrid EMT state

(also known as partial EMT, incomplete EMT, or interme-
diate EMT), which is a common event, whereas absolute
epithelial or mesenchymal state are rarely observed during
cancer progression. Moreover, it will be more convincing
to evaluate EMT status using gene signature in conjunc-
tion with morphological changes, such as the presence of
a spindle-like shape or the formation of membrane protru-
sions.
Classical EMT-TFs including Snail, Twist, and ZEB

are potent inducers of EMT, which has been exten-
sively investigated. Nevertheless, as a rapid evolving field,
novel EMT regulators are gradually identified, notably
noncoding RNAs (e.g., microRNAs and lncRNAs).524,525
These EMT-regulating microRNAs include miR‑1, miR-
22, miR‑29, miR‑30, miR‑34, miR-125, miR-130, miR-182,
miR‑192, miR‑200, miR‑203, miR-205, miR-216, miR-217,
miR-331, miR‑365, miR-506, miR-517, miR-1199, and many
others.105,453,475,526–540 However, most these microRNAs
regulate EMT through targeting classical EMT-TFs, and
lncRNAs affect EMT via serving as molecular sponge tar-
geting those microRNAs. For example, miR-205 has been
shown to prevent EMT via repressing of ZEB in the metas-
tasis of breast cancer.105 Meanwhile, lncRNA PNUTS com-
petitively binds with miR-205, leading to the upregulation
of ZEB and consequent EMT during tumor progression.541
Therefore, regulation of EMT by ncRNAs is probably bet-
ter to be a part of classical EMT-TF pathways, instead of a
novel mechanism. Nevertheless, several microRNAs have
been found to regulate EMT independent of EMT-TFs.
For instance, miR-9 directly targets E-cadherin mRNA
for degradation, leading to a EMT phenotype and conse-
quent tumor metastasis in breast cancer.106 Besides, miR-
22 can also directly target E-cadherin, enhancing the inva-
siveness of prostate cancer cells.542 Moreover, lncRNA
NEAT1 facilitates the formation of FOXN3–NEAT1–SIN3A
complex, which directly represses the transcription of
GATA3 and ZO-1, leading to EMT.543 These observations
suggest a direct regulatory mechanism of EMT by ncR-
NAs, but more evidence is still required for ascertain
it. Recently, a large number of transcription factors and
miRNAs were identified as potential novel regulators of
EMT, but as well, the possibility that these novel regula-
tors act through classical EMT-TFs was not precluded.544
More intriguingly, E-cadherin has been shown to be
degraded in response to oxidative stress. TNF-α-induced
oxidative stress can modulate the phosphorylation of E-
cadherin/β-catenin complex, thus facilitating the degra-
dation of E-cadherin without altering the mRNA level
of E-cadherin.408 Administration of NAC restores the E-
cadherin protein expression.545 Furthermore, E-cadherin
has been shown to be degraded through autophagy.546,547
Hence, the regulation of EMT at the protein level might be
at least partially different from the well-known epigenetic
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mechanisms induced by EMT-TFs, which deserves further
investigation.
In terms of cancer therapy, EMT is an attractive target

due to the fact that EMT is closely linked with the hall-
marks of cancer such asmetastasis, metabolism, stemness,
drug sensitivity and immune microenvironment. Gener-
ally, EMT gives rise to a more aggressive phenotype in a
majority of cancer, thus inhibiting EMT can be a poten-
tial therapeutic strategy. However, the reversed process of
EMT, namely MET, is also required for distant coloniza-
tion of metastatic cancer cells. Moreover, incomplete inhi-
bition of EMT program might result in the hybrid EMT
state, which is charactered with high plasticity, stemness,
invasiveness, and drug resistant property, leading to amore
refractory malignancy. In contrast, EMT sometimes pro-
vides opportunity for cancer treatment, as evidenced by the
fact that tumor cells in complete mesenchymal state are
highly susceptible to ferroptosis. This evidence suggests
that strategies targeting EMT hold therapeutic potential
but still need in-depth understanding of the mechanisms
of EMT.
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