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In reverse vaccinology approaches, complete proteomes of bacteria are submitted to

multiple computational prediction steps in order to filter proteins that are possible vaccine

candidates. Most available tools perform such analysis only in a single strain, or a very

limited number of strains. But the vast amount of genomic data had shown that most

bacteria contain pangenomes, i.e., their genomic information contains core, conserved

genes, and random accessory genes specific to each strain. Therefore, in reverse

vaccinology methods it is of the utmost importance to define core proteins and core

epitopes. EpitoCore is a decision-tree pipeline developed to fulfill that need. It provides

surfaceome prediction of proteins from related strains, defines core proteins within

those, calculate their immunogenicity, predicts epitopes for a given set of MHC alleles

defined by the user, and then reports if epitopes are located extracellularly and if they

are conserved among the core homologs. Pipeline performance is illustrated by mining

peptide vaccine candidates in Mycobacterium avium hominissuis strains. From a total

proteome of ∼4,800 proteins per strain, EpitoCore predicted 103 highly immunogenic

core homologs located at cell surface, many of those related to virulence and drug

resistance. Conserved epitopes identified among these homologs allows the users to

define sets of peptides with potential to immunize the largest coverage of tested HLA

alleles using peptide-based vaccines. Therefore, EpitoCore is able to provide automated

identification of conserved epitopes in bacterial pangenomic datasets.

Keywords: reverse vaccinology, pangenome, prokaryotes, epitope prediction, vaccine candidates, bioinformatics

INTRODUCTION

The characterization of specific molecular targets for controlling and removing bacterial infections
is an important and challenging task. Surface proteins are key molecules for infection initiation
and are at the interface with the host immune system (1). Furthermore, they are underrepresented
in many experimental studies due to the fact that transmembrane proteins are heterogeneous,
hydrophobic, and often detected at low abundance (2). Conventional screening of antigens in
surface proteins is laborious, expensive and time-costly.

In silico approaches became a desirable method for mining candidate antigenic proteins. It
has been largely employed to characterize single or sets of sequences of interest (3–5). Reverse
vaccinology (RV) approaches use bacterial genomic information to achieve large scale antigen
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classification, and often integrate diverse levels of molecular
prediction, such as subcellular localization, membrane adhesion
and human cross-reactivity [for a review, see (6)]. RV was first
established to investigate antigens in serogroup Bmeningococcus
(7) and has been employed for many different pathogens [for
reviews, see (8–10)].

Not surprisingly, many bioinformatics tools were developed
in the past decade to facilitate epitope prediction in large datasets.
They are either: (i) decision-tree approaches, i.e., a large list of
protein sequences from the organism of interest is submitted
to the tool, which then apply different filters under specific
parameters to trim the list to a final, smaller dataset of potential
vaccine candidates; or (ii) machine-learning approaches, which
classify epitope candidates based on rules created by a training set
of known, well-characterized epitopes. Dalsass et al. had recently
performed comparisons and evaluations of six of the most used,
publicly available reverse vaccinology tools (6). Such pipelines,
however, are limited to the analysis of a single proteome of
a bacterial strain. Vaxign [http://www.violinet.org/vaxign/ (11)]
allows multiple comparisons of strains in its web-server interface,
however only a fraction of strains with complete sequenced
genome are available for analysis.

As more genome information of multiple strains of the
same species was made available, the presence of a core
and accessory genome was characterized in several of those
species (12). Only recently such genomic features are being
taken into consideration when performing RV, as has been
shown for Helicobacter pylori (13), Acinetobacter baumanii (14),
Leptospira interrogans (15), pathogenic Brucella spp. (16), and
Corynebacterium pseudotuberculosis (17). While these analyses
provided the complete decision-tree performed, none of them
provided the in-house scripts used for integration of all tools
employed in their approaches. To our knowledge, the only tool
available for pangenomic analysis and RV prediction is PanRV
(18), which employs routinely used membrane and subcellular
localization predictions. It also combines additional filters to
enrich possible vaccine candidates such as gene essentiality
and/or virulence factor predictions.

PanRV (and other RV tools) are protein-centric, i.e., intact
proteins are reported as vaccine candidates. If a vaccine is
developed based on intact proteins, it could be argued that
proteins containing more than two transmembrane domains are
poor vaccine candidates due to the difficulty to purify them.
However, synthetic peptides-based vaccines had been largely
used in vaccine development in recent years. They offer many
advantages to integral proteins purified from the pathogen, such
as: (i) fully in vitro manufacture, with less chance of biological
contamination from pathogen; (ii) full characterization as a
chemical entity; (iii) higher stability and storability; (iv) smaller
chance to induce non-specific reactions in the host [for a review,
see (19)].

In a peptide-centric analysis, even difficult to isolate proteins
with highly immunogenic peptides could be considered
for vaccine design. Based on this reasoning, we developed
EpitoCore, a bioinformatic strategy that integrates surfaceome
and subcellular localization prediction to pangenomic
characterization, and further defines conserved epitopes in

core proteins. For transmembrane proteins, EpitoCore correlates
structure topology and epitope position to guarantee prediction
of valid epitopes exposed to extracellular side.

METHODS

Scripts Design and Format
In-house scripts were created using Python version 3. CMG
Biotools scripts are written in Perl and we added two
modifications to guarantee that: only the best alignment to
a query sequence is reported instead of a list containing all
alignments within the requested parameters; and that homologs
are selected only if a bidirectional best hit criteria is fulfilled (see
below). The shuffle script from the package BBMAP (https://
www.osti.gov/biblio/1241166) ordered the multifasta files so
fasta_ids and CMG Biotools hash ids could be paired. The
TMHMM script was created using Perl as well. PSORT-B is
executed independently through a command line interface. IEDB
peptide-HLA binding affinity predictors are written in Python
2.7. Final scripts for immunogenic analysis and image production
were created using R studio version 1.1.442.

Users must provide a text file containing the species or
the “intraspecies” name (as seen in the NCBI’s assembly
summary information) to be investigated as input to the
script get_proteome.py. This script outputs a comma-separated
file with the assembly summary information requested and
downloads the protein sequence datasets (.faa files) to a
user’ specified folder. The .faa files are used independently
for transmembrane and cell localization prediction. Script
predict_transmembrane.py will call the TMHMM script, output
the whole prediction in a folder, and filter proteins classified as
transmembrane. Users must install and execute PSORT-B, and
script filter_psort.py will filter PSORT-B outputs based on cutoff
scores and localization given on parameters.

TMHMM transmembrane predicted proteins with a
single helix are separated from the remaining TMHMM
predictions by script filter_only_one_helix.py. Script
intersect_psort_tmhmm.py compare TMHMM outputs with
PSORT-B and only keeps single helix proteins (SHPs) predicted
with Unknown or Membrane localization. All scripts collect the
sequences of those positively filtered proteins and save them as a
new .faa file in a separate folder.

Using the shortened .faa files, users must open the CMG
Biotools suite to infer core proteins as described in detail
below. All homologous proteins present in all strains (core
proteins) will have their HLA binding affinity predicted by IEDB
recommended tools using the immuno_prediction.py file. The
immune_analysis.R script will combine the CMG Biotools core
information with the IEDB antigenic information to discriminate
protein clusters in which all homologs in all strains are highly
immunogenic. It will also quantify epitope frequency per cluster
(i.e., count of same peptide sequence present in proteins
from a cluster) and epitope promiscuity (count of number
of alleles recognized by same sequence). Comparison between
epitope position and transmembrane topology can be optionally
generated by the epitope_transmembrane_topology.R script.
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All scripts are available in GitHub (https://github.
com/fiuzatayna/epitocore). A Docker file is also available
(EpitoCore_docker.tar.xz). See documentation at repository for
installation and usage instructions. TMHMM, PSORT-B and
CMG Biotools were run on a local desktop computer with a
single Intel i7-7400 3GHz processor, 1Tb HDD and 8 Gb RAM
memory. IEDB was run on a local server containing 40 cores
(Intel Xeon E5-2650 2.30GHz) and 236 Gb RAM. EpitoCore
pipeline performed all tasks under 4 h for Mycobacterium
avium hominissuis.

Data Acquisition
To compare full proteomes ofMycobacterium avium hominissuis
strains, the amino acid sequences were obtained only for
strains with complete genomes available (as November, 2018).
Those are strains HP17 (GCA_002716905.1), OCU873s P7 4s
(GCA_002716965.1) and OCU901s S2 2s (GCA_002716925.1)
(20); H87 (GCA_001936215.1) (21), TH135 (GCA_000829075.1)
(22), MAC109 (GCA_003408535.1) (23), and OCU464
(GCA_001865635.2). Each protein dataset was retrieved
from the National Center for Biotechnology Information (NCBI)
database using a python script that uses the Gene Assembly
Summary file (assembly summary genbank.txt), available at ftp://
ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/. In total,
each strain contained from 4,499 (OCU901s S2 2s) to 4,969
(HP17) annotated proteins.

Identification of Transmembrane (TM)
Domains
The protein datasets had alpha-helices transmembrane domains
predicted by the standalone local variant of TMHMM version 2.0
(24, 25) (http://www.cbs.dtu.dk/services/TMHMM/). A second
python script selected all sequences predicted to contain one
or more TM alpha-helices as long as the helices comprised
18 or more amino acids. Predicted proteins were separated
into two datasets: one with at least one helix occurred after
the 60th N-terminal amino acid (fully embedded membrane
proteins); and the other with only one helix prior to the 60th
amino acid (helix near possible true signal peptide) (SHPs). Such
parameters are selected accordingly to TMHMM developers’
orientation. As TMHMM is a machine learning-based algorithm,
such established parameters aim to reduce the number of false-
positives as a result from expected pitfalls in the prediction. For
example, short sequences rich in hydrophobic amino acids can
be incorrectly classified as a protein containing transmembrane
alpha-helices. Proteins with only one predicted helix close to
protein N-terminal were further filtered as described below.

PSORT Analysis
All sequences were evaluated using the command line version of
PSORT-B version 3.0 (https://github.com/brinkmanlab/psortb_
commandline_docker) (26, 27). Gram-negative parameter setup
was chosen, as it considered the recommended option for
gram-positive bacteria with an outer membrane, such as
Mycobacterium spp. The remaining parameters were kept as
default. Proteins predicted to be located in periplasmic or outer
membrane regions are kept.

Definition of Pangenomic Components and
Surfaceome Comparison
To better predict antigens present in all strains, we first define
core and accessory proteins in all proteomes using the platform
Comparative Microbial Genomics (CMG) Biotools (28) version
2.2 (http://www.cbs.dtu.dk/biotools/CMGtools/). The Fasta files
containing either complete proteome sequences or only predicted
surfaceome entries were transferred to the platform, where
CMG’ pancoreplot_createConfig script was executed, followed
by CMGs’ pancoreplot script. CMG Biotools will consider two
proteins as homologs when their BLAST alignment has at least
50% identity and 50% length coverage of the longest sequence.
When BLAST aligns a protein from strain A with more than
one protein in strain B, all proteins are considered homologs.
We modified CMG’s pancoreplot script to report and cluster (i)
only the best aligned protein in strain B as an homolog; and
(ii) if same result is also true when strain B is used as query,
i.e., a bi-directional approach where same result is achieved for
strain A and B regardless which is used as query. All homologs
are then clustered and classified as a single group. CMG also
aligns a protein from a strain against all proteins from same
strain, so sequences from within the same strain that fulfill the
alignment threshold will be clustered together, meaning that
some clusters may contain more than 7 proteins. CMG Biotools
then outputs a group_n.dat file (where n is the cycle number) for
every strain iteration, as well as a tbl file containing a summary
and other intermediary documents. The data is cumulative for
every iteration, therefore we use the last group_n.dat file to select
clusters with proteins present in all strains. This analysis was
performed for protein datasets previous to TMHMM prediction
(whole proteome), or post TMHMM prediction.

Immunogenetic Analysis
Immunological epitope prediction was carried out using
recommended methods available at the Immune Epitope
Database and Analysis Resource (IEDB) (29). It is well-
characterized that Mycobacterium species triggers MHC Class II
CD4+ T cell responses in hosts (30), so we performed epitope
prediction only to that MHC class. The IEDB recommended
parameters for MHC-II uses the Consensus approach (31),
combining NN-align, SMM-align, CombLib and Sturniolo.
If no corresponding predictor is available for the allele,
NetMHCIIpan is used (32). Different MHC/HLA alleles can
be considered in this step. We selected 27 alleles for CD4+
T-cell epitope prediction, highly frequent in diverse populations
and which were characterized as class II supertypes according
to (33). The alleles selected were DRB1∗01:01, DRB1∗03:01,
DRB1∗04:01, DRB1∗04:05, DRB1∗07:01, DRB1∗08:02,
DRB1∗09:01, DRB1∗11:01, DRB1∗12:01, DRB1∗13:02,
DRB1∗15:01, DRB3∗01:01, DRB3∗02:02, DRB4∗01:01,
DRB5∗01:01, DQA1∗05:01/DQB1∗02:01, DQA1∗05:01/
DQB1∗03:01, DQA1∗03:01/DQB1∗03:02, DQA1∗04:01/
DQB1∗04:02, DQA1∗01:01/DQB1∗05:01, DQA1∗01:02/
DQB1∗06:02, DPA1∗02:01/DPB1∗01:01, DPA1∗01:03/
DPB1∗02:01, DPA1∗01/DPB1∗04:01, DPA1∗03:01/DPB1∗04:02,
DPA1∗02:01/DPB1∗05:01, and DPA1∗02:01/DPB1∗14:01.
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For each protein, the immunogenetic prediction profile lists all
different epitope-MHC allele combinations with their respective
affinity scores, as well as ranked immunogenetic percentiles.
Here, we defined a protein’s immunogenetic Score as the mean
scoring epitopes based on their percentile ranking (mean of
all epitopes with score lower than 0.05). We did that for each
protein within a cluster and then compared their Immunogenetic
Scores—in a second filtering round, proteins whose scores were
lower than 0.02 were then classified as Highly Immunogenic.

Assigning Epitope Relevance to Protein
Topology
Since the complete amino acid sequences of all predicted
surfaceome proteins were submitted to epitope prediction, a vast
number of highly immunogenic peptides were either present
within the transmembrane region or in the intracellular portion
of the molecule. Therefore, we designed a script which aligns
the protein topology prediction provided by TMHMM with the
epitope prediction from IEDB. Epitopes which are located fully in
the intracellular or transmembrane region, or at the interface of
both, are excluded from the analysis.We only considered relevant
epitopes if peptides were: fully aligned to the extracellular region;
or, if partially embedded in the membrane, at least more than half
of the peptide should be in the extracellular region (defined as
parameter outside_ratio which should be higher than 0.5).

Validation of Predicted Epitopes
For validation of the epitopes predicted by EpitoCore, we checked
if their amino acid sequences corresponded to known antigens
deposited in IEDB (http://www.iedb.org/downloader.php?file_
name=doc/epitope_full_v3.zip). Only antigens classified as
‘linear epitopes‘ were considered. Antigen sequences from IEDB
were arranged in a fasta file using their IEDB identification as
headers, and a BLAST database was created using makeblastdb
script (from NCBI) for indexing. The peptides predicted as
immunogenic and conserved in all seven strains (523 peptides)
were then compared to the known antigens through a BLASTp-
short search, which is optimized for query sequences shorter than
30 residues. Hits were evaluated using the same categories as
those provided by IEDB in their “Epitope Conservancy Analysis”
web application: exact matches, partial (substring) matches and
according to alignment identity (90, 80, and 70%).

As a control, a dataset containing 15 mers generated by
IEDB from the surfaceome proteins from all strains was created.
Such dataset is exactly what EpitoCore submits to IEDB prior
to epitope prediction. Identical peptide sequences between
strains were reduced to a single copy in the dataset. A Monte
Carlo simulation was then performed, where 527 peptides were
randomly selected from the dataset and submitted to a BLASTp-
short search against IEDB known antigens. The simulation was
performed fifty times, and the percentage of identified antigens
in every simulation was recorded.

RESULTS

Protein Sequences Information and Data
Analysis Layout
Even though there were 201 genome entries for the species
“Mycobacterium avium” in the Gene Assembly Summary of
NCBI as of November 2018, we opted to perform antigenic
analysis only for proteomes derived from strains with complete
genomes sequenced. From 18 available datasets, seven belonged
to strains of the subspecies M. avium hominissuis and were used
as the raw input data in this work. The number of protein
sequences available per strain ranged from 4,499 from strain
OCU901s S2 2s to 4,969 from strain HP17 (20).

Figure 1 illustrates the data processing steps performed in
this study. Briefly, each strain annotated proteome is submitted
to TMHMM prediction and to PSORT-B prediction, to filter
possible surfaceome from intracellular molecules. Surfaceome
candidates are then compared across strains by CMG Biotools
to define protein groups containing homologs across strains.
These proteins clusters are then classified accordingly to the
number of proteins present in each group. We recommend
surfaceome prediction to be run before clustering because,
since CMG Biotools is run on a virtual machine (not locally),
performance will be faster for smaller input files. Finally, the
predicted epitopes are aligned to TMHMM topology prediction,
and only extracellular sequences present in most or all homologs
are considered valid epitopes.

Performance of Surfaceome and
Homology Predictions
All protein entries present in the strains fasta files were
submitted to transmembrane topology prediction and to
cellular localization. Roughly 16% of each proteome was
classified as sequences containing alpha-helix transmembrane
domains or located to periplasmic and outer membrane regions
(Supplementary Table 1). For now we chose to exclude beta-
barrel prediction from our approach, because such method is
still hampered by the limited availability of known structural
data (34), and because they are mostly observed in gram-
negative bacteria rather than gram-positive bacteria such as
Mycobacterium avium (35, 36).

Surfaceome protein homologs were then clustered using CMG
Biotools. Ideally, we wanted to characterize epitope presence
in a cluster of homologs containing one protein per strain
in all strains under investigation. For simplicity, from now
on we illustrate in the figures the EpitoCore performance
using the TMHMM prediction as an example. But all datasets
generated in each step of the protocol are given in the
Supplementary Data Sheet available. Clustering of this specific
dataset created a total of 577 groups, and most of those
behaved as expected, i.e., the group was made of 7 proteins
(397 clusters, Figure 2). Because CMG Biotools also BLAST a
query entry against the remaining sequences from the same
database, clusters containing more than 7 proteins were also
observed. Only 10 clusters contained such possible paralogues.
The remaining 170 clusters had six or less protein components
and, in principle, is the accessory genome of the species.
Supplementary Data Sheet 1 lists all 577 homologs from the
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FIGURE 1 | EpitoCore decision tree. Briefly, users retrieve fasta files for organism of interest, and perform transmembrane (TMHMM) and cellular localization

(PSORT-B) predictions separately. TMHMM output is further divided into proteins with helix outside or not of the signal sequence. Homologs within surfaceome

predictions are clustered with CMG Biotools. Core clusters had their epitopes ranked by IEDB, and that output is aligned to protein topology. Conserved epitopes in all

strains are then reported. Numbers 1–7 in workflow show location where each in house script is called.

TMHMM prediction (in green), 294 clusters classified as SHPs
(in orange), and 113 periplasmic and outer membrane clusters
predicted from PSORT-B (in purple). Accession numbers of the
entries that belong to each group are also given.

Some of the accessory homologs (6 or less components)
might be true core proteins and were mistakenly classified
due to different reasons. We were able to detect at least
two issues: (i) annotation errors, meaning that the nucleotide
sequence containing the gene exists in all strains, but was only
annotated as a coding region in some of them; (ii) group
of homologs with conflicting prediction, i.e., some members
containing transmembrane helices while the remaining did not,
for example. This was common in groups with lower sequence

similarity between components. To demonstrate the last issue,
we ran CMG Biotools in the whole proteome dataset prior
to surfaceome prediction, and compared group composition in
both cases. Figure 3A shows that most groups had the same
composition regardless if clustered before or after the TMHMM
protocol (zero missing proteins). The possible accessory proteins
had observed patterns that could be explained by TMHMM
variation (Figure 3B). See group 3, for example: all groups with
missing proteins had exactly four missing elements, meaning that
when clustered before TMHMM, all homologs in group 3 had
7 elements. All proteins in that group are then core proteins. A
good number of such clusters could be re-classified as core due to
different membrane domain prediction between homologs.
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MHC-II Epitope Prediction
As seen in Figure 3A, Group 7 (i.e., groups containing 7 protein
sequences, one from each strain) was almost identical regardless
if clustering is performed before or after any prediction.

FIGURE 2 | Distribution of homologs within clusters for TMHMM dataset.

Proteins with membrane helix outside the signal peptide were clustered, and

cluster composition was quantified. Majority of the clusters had, as expected,

at least seven proteins, one from each of the analyzed strains, defining the

core group. Clusters with six or less components are in principle defined as

accessory proteins from the pangenome. Only core proteins were considered

for immunogenic analysis.

Only 6 clusters had missing proteins that were paralogues
not classified as membrane proteins. For the aims of this
work, epitope prediction was performed solely on clusters
containing at least one homolog per strain. True core protein
clusters where homologs had conflicting membrane domain
or cellular localization prediction (i.e., groups 1 to 6 with
missing proteins as exemplified in Figure 3B for TMHMM)
were discarded.

All sequences present in clusters with +7 components were
submitted to MHC-II epitope prediction using IEDB. For each
cluster, its immunogenicity score was calculated by the median
distribution of its peptides percentile ranking, to any given
HLA allele, but only considering the top 5% better scoring
peptides. Considering only better scoring peptides, most of
the TMHMM predicted core groups (387 of 407) would be
considered “highly immunogenic” if a median score of 0.05 or
less is used. We restricted the analysis to only a fraction of the
clusters, therefore using a median score of 0.02 or less to define
a highly immunogenic group. Such parameter selection defined
that 112 transmembrane groups were the most immunogenic of
the dataset (Figure 4A).

Epitope Alignment to Protein Extracellular
Regions
Normally, when submitting protein data for epitope prediction,
the whole sequence is verified, including intracellular and
transmembrane regions in transmembrane proteins. We wanted
to characterize predicted epitopes which are accessible to the host
immune system, i.e., located in the extracellular region of the
protein. An additional filtering was then created in EpitoCore,
where amino acid locations provided by TMHMM topology
prediction is aligned to each predicted epitope amino acid
location in same protein.

FIGURE 3 | True core proteins with discrepant surfaceome prediction. To evaluate if clustering could be biased when performed on a smaller dataset, we also

executed CMG Biotools in the whole proteome dataset of all strains. Protein composition for most groups was identical regardless if clustering was performed before

or after surfaceome prediction (zero missing proteins when clusters are compared) (A). For core proteins (column 7), 98% of the protein groups were identical. For

accessory proteins (groups 1–6), this was closer to 55%. When hiding identical clusters (B), it is evident that for most accessory clusters, the number of missing

elements adds to the exact number of strains used. This illustrates protein groups with 7 components if no prediction is performed, i.e., true core proteins.
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FIGURE 4 | Immunogenicity Scores for TMHMM dataset and definition of valid epitopes. (A) All sequences within each cluster were submitted to MHC II

immunogenicity scoring, to all tested alleles. Sequences with percentile score lower than 0.05 were selected. Cluster immunogenicity is given by the mean distribution

of all scored epitopes under this value, for all proteins. Highly immunogenic clusters were defined as those with a mean score lower than 0.02 (black dots).

(B) Example of a homolog from cluster 71 (Cytochrome c subunit III protein). Immunogenicity prediction defined four regions of this protein to contain possible

epitopes (Before panel, in pink). As shown in the figure, three of those regions are within the transmembrane domain. Protein topology alignment allowed the removal

of such regions, which were then considered invalid epitopes (After panel). (C) Valid epitopes were then checked if they are conserved within all homologs of its

cluster. Most clusters contained conserved identical epitopes in all homologs (count 7, pink). Epitopes present in 5 or less components of the cluster were not

considered for further analysis.

An epitope was only considered as valid if at least more
than half of its length is located extracellularly. When
this parameter was applied to all highly immunogenetic

groups, approximately half of them were excluded because
they contained no valid epitopes. Only 54 transmembrane,
34 SHPs and 15 periplasmic/outer membrane groups

remained, showing that most of the predicted epitopes
by IEDB are located in intracellular/transmembrane
regions. Supplementary Data Sheet 1 lists the 103 highly

immunogenic clusters with valid epitopes listed above.
Supplementary Data Sheet 2 lists the peptide sequences of

all valid epitopes to each cluster component, which alleles they

trigger, position in the protein, their outside score, frequency in

cluster, and promiscuity.

Figure 4B illustrates a typical example, showing topology of
epitopes for a protein from cluster 71 (cytochrome c oxidase
subunit 3 family protein) before and after filtering. All seven
proteins from this cluster had five predicted epitope windows,
four of those located in transmembrane regions (“Before” panel).
Only window 120–137 (18 amino acids containing 4 overlapping
15-amino acid epitopes) was located at the surface of the cell, and
is the one that is considered a valid epitope after filtering (“After”
panel). Such observations are not surprising, selective pressure
should be higher for sequences at the interface with the host
immune system, compared to intracellular and transmembrane
regions. Therefore, observations of valid epitopes in extracellular
portion of a transmembrane protein should be less frequent
than in regions which are not under pressure of the host
immune system.
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Epitope Conservation and Validation
Overall, up to 75% of the remaining predicted epitopes are
detected in at least 6 strains, while ∼14% of the epitopes are
unique to a single strain. Figure 4C shows epitope frequency in
each of the transmembrane groups containing valid epitopes. For
35 of those, all predicted epitopes are conserved in the seven
strains being evaluated. In addition, most 43 groups contained
at least one epitope conserved in all strains, and 48 groups
contained at least one epitope present in at least 6 strains. The
remaining six clusters had epitopes which were predicted in no
more than 5 strains, and those should be poor candidates for
efficient immunization of all strains.

In total, there were 527 peptide epitopes predicted by
EpitoCore and present in all evaluated strains. We challenged
their amino acid sequences against a BLAST database created
from known antigen sequences deposited in IEDB. From
those, 124 peptides had sequence similarity to known
antigens and are therefore considered validated epitopes
(Supplementary Data Sheet 3). To guarantee that such
observation is not spurious, we performed Monte Carlo
simulations using a dataset from the predicted surfaceome of all
strains. This dataset contains sliding 15mers created by IEDB
prior to epitope prediction. Randomly sampled 527 peptides
from this dataset were selected and submitted to BLASTp-short
search as above, and this simulation was repeated fifty times. In
all simulations, on average 7.5% of the randomly selected 15mers
had sequence similarities to known antigens, with a standard
deviation of 1.01 (Supplementary Figure 1).

Finally, EpitoCore is also able to calculate the minimal set of
predicted epitopes potentially recognizable by the largest number
of HLA alleles as possible. This calculation evaluates different
combinations of epitopes with increasing group size until: (a)
all alleles tested are defined or; (b) there is no gain in allele
number as the number of epitopes being combined increases.
With our valid epitopes dataset, we defined that 9 epitopes from
8 clusters are enough to immunize a population containing
15 of the 27 HLA alleles tested (Supplementary Data Sheet 4).
Manual checking of those epitopes using BLASTp showed that
none shared sequence similarity to human proteins, and four
have sequence similarity to known antigens deposited in IEDB
(Supplementary Figure 1). This script will work accordingly to
parameters inserted by the user at previous steps. For example, if
larger population coverage is desirable, user can be less stringent
when defining the highly immunogenic dataset. To achieve that,
themean IEDB immunogenicity score for the top 5% of predicted
epitopes can be changed to 0.05 instead of the applied 0.02. In
this case, 20 clusters containing valid epitopes would be enough
to trigger immunological response from 22 of the 27 tested HLA
alleles (data not shown).

DISCUSSION

Searching for possible vaccine candidates using genomic data
and bioinformatic pipelines is a well established approach
(6). Nevertheless, the advances in next generation nucleotide
sequencers had boosted the amount of available complete
bacterial genomes. Consequently, it became evident that gene

composition within genomes of strains of the same species
can vary, characterizing pangenomes (12). Until now, very few
studies characterizing vaccine candidates had taken pangenomic
features into consideration. The majority of bioinformatics
pipelines were developed to investigate single genomes, or a very
limited number of strains, and so far a single pipeline has been
published for pangenomic RV analysis (18).

Therefore, we implemented EpitoCore to provide not only
the prediction of antigenic proteins, but also to further mine
conserved peptide vaccine candidates within core proteins of a
species. We tested the pipeline using seven complete genomes of
Mycobacterium avium hominissuis strains. Once a protein cluster
(i.e., homologs from analyzed strains) is scored as immunogenic,
we further restricted the pipeline to filter: epitopes that are
distributed equally in all homologs; correctly aligned to protein
topology; triggers MHC alleles that are representative in the
population; and can be defined as a minimal set of epitopes for
high population coverage immunization.

Initial steps in our decision-tree workflow followed routine
standards in the field, by basically eliminating intracellular and
inner membrane proteins by an alpha-helix transmembrane
prediction using TMHMM (24, 25) and PSORT-B (26, 27).
We performed the surfaceome prediction prior to homology
clustering in order to reduce dataset size and consequently,
processing time. By performing homology clustering directly
to the complete proteome of each strain, and comparing
clusters with or without subcellular localization, we noted
that many homologs had discrepant prediction due to
sequence variations. While is not clear if this is taken
into consideration by other publications using pangenomic
features for RV, we recommend that only core proteins with
similar surfaceome prediction to be considered as possible
vaccine candidates.

Core homologs were then submitted to MHC II epitope
prediction using IEDB (29, 37). All protein homologs that are
part of a cluster are challenged. Here, presence or absence of
epitopes is not enough to simply define a cluster as immunogenic.
Even when using a subset of MHC alleles frequent in the
population (33), practically all surfaceome proteins will have
epitopes. EpitoCore lists all epitopes predicted by IEDB and sort
those with lower percentile rankings (<0.05) for each protein
within each cluster. The cluster immunogenicity is then given as
the average percentile score of those epitopes for all proteins.

In addition to define protein groups with predicted epitopes,
it is important to distinguish: (a) if epitopes are in accordance
to protein topology, i.e., are located extracellularly; and (b) if
epitopes are conserved amongst the homologs. For membrane
proteins and SHPs, we observed that most epitopes were
intracellular or within transmembrane regions, and those were
discarded. Only a fraction of the clusters with epitopes predicted
by IEDB could be considered to possess valid extracellular
epitopes. Some of these proteins are homologs toMycobacterium
tuberculosis proteins known to be related to: virulence, such as
mammalian cell entry proteins (clusters 710, 714, 717, 734, 753,
791,798, 836, 842, 849, and 864) (38) and type VII secretion
proteins (clusters 595, 644, 773, and 774) (39); drug resistance
(clusters 283, 578, 707, 722) (40, 41); drug targets (clusters 691)
(42), to name a few.
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Once EpitoCore defines extracellular epitopes, it will
then calculate their conservation amongst homologs
from same cluster and their promiscuity, i.e., if they are
recognized by more than one MHC allele. Ideally, for vaccine
development, epitopes present in most or all strains should
be considered. Therefore, EpitoCore ranks predicted epitopes
based on their frequency, and only those conserved between
homologs are reported to users. Both features can be used
to calculate a minimal number of epitopes which binds the
largest number of MHC alleles tested. In our dataset, we
determined that 9 epitopes are predicted to bind 15 of the 27
alleles tested.

Therefore, EpitoCore reported 103 groups of homologs
to contain antigenic sequences. This amounts to ∼2.2%
of the average complete proteome (4,713 proteins) of the
investigated M. avium strains. Such is a very conservative
prediction based on performance benchmarks of open-
source RV tools (6). In addition, from the predicted 527
epitopes conserved in all 7 strains, 124 (23.5%) have
sequences that are similar to known antigens. Compared
to simulations where 527 peptides are randomly sampled
from the complete predicted surfaceome prior to epitope
prediction, we showed that on average overlapping 15mers
contain 7.5% known antigens. Meaning that EpitoCore
has a fold-enrichment ratio of 3.13 just from the predicted
surfaceome to IEDB prediction step (step 6 in Figure 1).
Finally, from the 9 epitopes predicted to bind 15 of the tested
MHC alleles, four are known antigens. This demonstrates
that EpitoCore is successfully enriching for true epitopes
from the complete proteome and surfaceome of the tested
bacteria strains.

CONCLUSION

EpitoCore is a peptide-centric epitope prediction tool which
takes into consideration pangenomic variation across strains
of a given dataset, and reports conserved epitopes between
homologs of those strains. The pipeline is highly modular,
and future developments could allow implementation of
transcriptomics/proteomics checks to verify that homologs
containing predicted epitopes are indeed expressed in the
organism of interest.
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known antigens. Plot shows that 23.5% of those epitopes had sequence similarity

higher than 70% with known antigens (EpitoCore). As control, we randomly

sampled 527 peptides from a dataset containing 15mers peptides generated by
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response in most of the tested MHC alleles. Four of those peptides (44.4%) are

known antigens deposited in IEDB.
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Supplementary Data Sheet 2 | List of all peptide sequences predicted to bind to
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more than one alelle (promiscuity) and if are conserved in homologues (frequency).
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by EpitoCore that match to known antigens reported by IEDB.
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the most number of MHC-II alelles tested.
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