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Measuring single cell divisions in human tissues
from multi-region sequencing data
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Both normal tissue development and cancer growth are driven by a branching process of cell
division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However,
quantifying somatic evolution in humans remains challenging. Here, we show that multi-
sample genomic data from a single time point of normal and cancer tissues contains infor-
mation on single-cell divisions. We present a new theoretical framework that, applied to
whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation
rate and the cell survival/death rate per division. On average, we found that cells accumulate
1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in
brain development. In both tissues, cell survival was maximal during early development.
Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates
compared to healthy development and substantial inter-patient variation of cell survival/
death rates.
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ost cells in human tissues have a limited life span and
M need to be replenished for tissues to remain func-

tional!=3. This cell turnover leads to somatic evolution,
with cells accumulating mutations upon which selection may
act®?. Inter- and intra-tumour genetic heterogeneity®’ as well as
treatment resistance® are now understood to be consequences of
somatic evolutionary processes. Recent studies demonstrate
somatic evolution in healthy non-cancerous tissues throughout
livel%-14, Normal brain cells carry hundreds of mutations weeks
after conception!? and normal skin or esophagus cells accumulate
hundreds of cancer driver mutations during adulthood!%11.

These observations call for a better quantitative understanding
of the somatic evolutionary forces in both cancerous and healthy
tissues!>. However, unlike species evolution, for which a timed
fossil record exists!17, the lack of sequential human data over time
due to ethical and technical limitations is a major obstacle. Fur-
thermore, some evolutionary forces are difficult to measure. For
example, the mutational burden in a tissue is the combined effect
of per-cell mutation and per-cell survival rates, which remain
hidden in sequencing data'®!° (Fig. 1). Currently, we cannot
independently infer these two for somatic evolution fundamental
quantities from single time point sequencing data.

Here, we show that multiple bulk or single-cell sequencing
from the same patient contain recoverable information on these
important quantities that can be recovered with evolutionary
theory. This allows inferring in vivo cell mutation and cell sur-
vival rates in tissues of individual humans from single time point
sequencing data.

We draw our inferences by defining and quantifying the dis-
tribution of mutational distances amongst multiple samples. We
first discuss the required theoretical considerations and derive an
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analytical expression for the expected distribution of mutational
distances from multi-sample sequencing data. We introduce a
Bayesian sampling framework based on the mutational distance
distribution, allowing us to disentangle mutation rates per cell
division and cell survival/death rates. We apply this framework to
whole-genome single-cell sequencing data of haematopoiesis and
brain tissue and measure both evolutionary parameters during
early development. Finally, we utilise multi-sample sequencing
data on 16 tumours to infer patient specific evolutionary para-
meters in human cancers.

Results

The distribution of mutational distances. All cells in a human
tissue must have descended from a most recent common ancestor
cell (MRCA) that existed briefly during early development.
Similarly, all cells in a sample of a tissue must have descended
from a (different) MRCA that was present in that tissue at an
earlier time (Fig. 1a). Mutations found in all cells of the sample
(clonal mutations) were present in this MRCA. If we take mul-
tiple samples of the same tissue, we can reconstruct the muta-
tional profile (all mutations carried by a single cell) of multiple
ancestral cells (Fig. la). Typically, these ancestral cells differ in
their exact mutational profile between one another, because
mutations inevitably accumulate differently in distinct lineages
(Fig. 1b). We use the differences of the mutational profiles
between ancestral cells to construct the distribution of mutational
distances. We define a mutational distance as the number of
mutations different between any two ancestral cells (Fig. 1c). In
the language of set theory, if ancestral cell 1 carries a set of
mutations A and ancestral cell 2 carries a set of mutations B, then
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Fig. 1 Multi-sample bulk sequencing encodes information on single cell lineages and single cell divisions. a Each of the seven spatially separated tissue
samples (in grey) consists of thousands to millions of cells that descended from a single most recent common ancestor (MRCA) cell. The genomic make-
up of the single ancestral cell is described by the mutations clonal to the bulk sample. Those appear at high variant allele frequency in the sample (bottom-
left panel, in purple). The intersection of mutations in any two bulk MRCA cells corresponds to the genomic profile of another more ancestral cell. This
process continues back in time until the MRCA cell of all the sampled cells is reached. b The level of genomic variation within a growing tissue (e.g.
development or cancer) is the direct consequence of mutation accumulation during cell divisions, leading to a branching structure. Importantly, the most
fundamental parameters, the mutation rate u and survival rate f§ of cells per division that drive this process are not directly observable. ¢ Mutation rate per
division u and cell survival rate g leave identifiable fingerprints in the observable patterns of genetic heterogeneity within a tissue. Cell divisions occur in
increments of natural numbers and thus the mutational distance between any two ancestral cells is a multiple of the mutation rate p.
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by definition, both cells must have coalesced from an earlier
ancestral cell (Fig. 1a). The mutational profile of this cell is given
by the intersection A N B. This allows us to construct two
mutational distances given by

y»=I[A\(ANB)| and y, =|B\ (AN B) (1)

This process can be iterated for increasing combinations of
samples per tumour.

We now turn to quantitative expressions for the expected
distribution of mutational distances P(y). In a single division, the
probability of a cell to acquire X novel mutations follows a
Poisson distribution

b'e
_ (uL) e L. (2)
X!

Here, p is the mutation rate (in units of base pairs per cell
division) and L the size of the sequenced genome. Throughout the
paper, we assume a constant mutation rate and do not consider
more punctuated catastrophic events or mutational bursts.
Distances between cells of a lineage may arise from more than
a single cell division. Instead, double, triple and higher modes of
cell division contribute to the distribution of mutational distances
of multiple samples. In general, a cell accumulates X; + X, +...+
X,, number of novel mutations after »n divisions, which is again
Poisson distributed.

In addition, we must account for cell death or differentiation,
leading to lineage loss. We therefore introduce a probability f of
having two surviving lineages after a cell division and a
probability 1 -3 of a single surviving lineage (cell death). We
can split the total of n cell divisions into r divisions that result in
two surviving lineages (branching divisions) and m divisions with
only a single surviving lineage (non-branching divisions). The
number of non-branching events m is again a random variable,
which follows a Negative Binomial distribution

poni = (7 g )

-1
The number of mutations acquired between two branching
divisions depends jointly on the Poisson distributed number of
mutations and the Negative binomial distributed number of non-
branching divisions m. Formally, we can write for the total
number of mutations between two branching divisions

Y = zmjx,.. (4)

Equation (4) is a random sum of random variables and
different combinations of X and m imply the same mutational
burden Y within a single cell lineage. Intuitively, a measured
mutational burden in a single lineage can result from either many
non-branching divisions with a low mutation rate or, alternatively
a few non-branching divisions with high mutation rate. The
mutational burden of a single sample is insufficient to disentangle
per-cell mutation and per-cell survival/death rates.

We therefore turn to the number of mutations different
between ancestral cells. Suppose two ancestral cells are separated
by r branching divisions. Following from Eq. (4), we can calculate
the probability distribution of the number of acquired mutations
P(y|r) after r branching divisions

X [i—1 ; g (iul)
P()/‘f’)zz ( > ﬁr(l—ﬁ)lireilﬂ(‘[ﬂ) ) (5)
r—1 b
Here the sum starts at r, as we need to have at least r branching
divisions and runs to infinity as in principal infinitely many non-
branching divisions can occur (with vanishingly low probability).
Finally, we need the expected distribution of branching divisions

P(X)

i=r

P(r) in a growing population of cells, which follow from
coalescence theory?0-22. For a growing population, e.g. human
tissues during early development or cancer growth, we find

P(r) = exp(— #) — exp(_e*;f) | o

We provide a more detailed derivation in the Methods.
Combining Egs. (5) and (6) we arrive at the final expression for
the expected distribution of mutational distances in an exponen-
tially growing population

i i—1\ ir i (L)
P =2 r0(L ) ) pa-pren o)
r=1 i=r r—1 y:

The two evolutionary parameters of interest here, the mutation
rate per cell division ¢ and the cell survival rate §, disentangle in
Eq. (7). There are approximately four possible regimes for the
distribution of mutational distances, discriminated by uni- or
multimodality determined by combinations of small or large u
and B. In Fig. 2a we show four representative realisations of Eq.
(7). The distribution of mutational distance is unimodal for
sufficiently small mutation rate y (bottom panels in Fig. 2a) with
a single peak at the mean mutational distance yL. The per-cell
survival probability 8 determines the weight of the distribution
towards larger distances. For =1 the distribution is sharply
located around the mean mutation rate. However, for smaller f
more weight is given to larger distances and the distribution gets a
fat tail. The same is true for the case of high mutation rate y,
except the distribution is multi-modal with peaks separated by
multiples of the mean mutational distance yL (Fig. 2a). Again, f8
determines the weight to higher mutational distances with lower
B causing a distribution with a long oscillating tail (top right panel
in Fig. 2a). Note, the y-axes in Fig. 2a correspond to the
probabilities of observing certain mutational distances. Lower
probabilities require a higher resolution and therefore more
sampling to resolve the exact shape of the distribution. In
practice, the distribution of mutational distances is easiest to
recover from data with low y and high S (fewest number of tissue
samples required), whereas most samples are required for high u
and low 3 (top right panel in Fig. 2a).

Computational validation and MCMC inference framework.
We implemented stochastic spatial simulations of mutation
accumulation in growing tissues using previously published
code?3. Briefly, cell birth and death on a two- or three-
dimensional grid was simulated using a Gillespie algorithm?4.
During division, cells accumulate a number of new mutations
drawn from a Poisson distribution. Simulations were stopped
when the tissue reached ~1 million cells. This allowed us to take
samples (either single cells or bulks) and construct all pairwise
mutational distances of all ancestral cell lineages detectable in the
samples. In Fig. 2b we show an example of the mutational dis-
tance distribution derived from 200 samples of a stochastic
simulation (dots) compared to the theoretical prediction
(dashed line).

We want to infer the microscopic evolutionary parameters y
and f given a measured distribution of mutational distances. This
can be done by Markov chain Monte Carlo methods (MCMC).
We implemented a standard Metropolis-Hastings algorithm. In
brief, a random pair of parameters y and f is drawn from
uninformed uniform distributions and the likelihood of the
model parameters given the data is calculated. The new set of
parameters is accepted with a probability proportional to the
likelihood ratio of the new and old parameter set (see Methods
for more details). This framework recovers the true underlying
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Fig. 2 Distribution of mutational distances and computational validation. a The quantised nature of cell divisions leads to a characteristic predicted
distribution of mutational distances across cell lineages. The shape of the distribution depends on the exact values of x and . Roughly four different
scenarios of combinations of small and large u and § are possible. They influence the shape of the distribution differently and thus constructing the
distribution of mutational distances allows disentangling the mutation rate y and cell survival rate . b Spatial stochastic simulations confirm the ability of
mutational distance distributions to disentangle mutation and lineage expansion rates (red area shows the spatial spread of a subclonal mutation). Dots
show mutational distances inferred from 200 samples of a single stochastic computer simulation (u =20, = 0.95), the dashed line is the predicted
distribution based on our Eq.(7). ¢ A Monte Carlo Markov Chain inference framework based on mutational distance distributions reliably identifies
mutation and lineage expansion rates in simulations of spatial and stochastically growing tissues (two-dimensional spatial stochastic simulations, u:
Spearman Rho = 0.98, p =4 x10723; p: Spearman Rho=0.93, p=8x 1076, Relative error: 1, = 0.056, nz=0.045).
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Fig. 3 Per-cell mutation and per-cell survival rate inferences in healthy haematopoiesis during development. a Mutational distance distribution inferred
from 89 whole-genome sequenced healthy haematopoietic stem cells from ref. 13 (black dots), and best theoretical fit (grey line). Posterior parameter
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distribution of the MCMC inference for b the mutation rate per cell division (uL = 114755 mutations per genome per cell division) and ¢ the cell survival
rate (f = O.96f8:?§28). Median point estimates and 95% credibility intervals were taken from the posterior parameter distributions. The inferred mutation
rate per cell division agrees with the original estimation of 1.2 mutations per cell division. Furthermore, our joined inference of mutation and cell survival
rate confirms the original assumption of no cell death during early development of haematopoiesis.

parameters from stochastic simulations (Fig. 2c and Supplemen-
tary Figs. 17-21).

In vivo mutation and cell survival rate inference in healthy
haematopoiesis during early development. We discuss the
in vivo mutation accumulation in healthy haematopoiesis during
early development as a first application. The cell population is
growing and we expect a low mutation rate and a high per-cell
survival rate during the development of early haematopoiesis!3-2°.
In a recent study, Lee-Six and colleagues!3 sequenced the genome
of 89 healthy haematopoietic stem cells of a single 59-year-old
man and subsequently constructed the phylogeny of healthy
haematopoiesis. They estimated the per-cell mutation rate to be
1.2 mutations per genome per division during early development
assuming perfect cell doublings. Using the same data we construct
the pairwise mutational distances of all ancestral cells limited to
the 20 earliest branching events. The resulting distribution of
mutational distances is shown in Fig. 3a. We then use the same
MCMC framework discussed above to jointly infer the mutation
and cell survival rate. The MCMC algorithm rapidly converges to

a fixed set of parameters (Supplementary Fig. 17). In Fig. 3a, b we
show the posterior parameter distributions after an initial burn in
phase of 200 MCMC steps. In agreement with Lee-Six and col-
leagues, we find a mutation rate of y = 1.147032 mutations per
genome per division (shown is the medium mutation rate per bp/
cell-division and 95% credibility intervals inferred from the
MCMC posterior parameter distribution), which corresponds to a
mutation rate of y=3.9x 10710 base pairs/division (assuming
3x 10° bp in the human genome). Furthermore, we infer a per-
cell survival rate of 8 = 0.9670938, independently confirming the
original assumption of almost perfect cell doubling during early
development!3.

In vivo mutation and cell survival rate inference in single
neurons during development. In a recent publication, Bae et al.!2
collected single neurons from three fetuses 15 to 21 weeks post
conception. Cells were expanded in culture and the whole-
genome was sequenced. Here we focus on the case where 14
whole-genome sequenced single neurons were available (one fetus
17 weeks after conception). Again, we inferred all pairwise
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Fig. 4 Per-cell mutation and per-cell survival rate inferences in single neurons during development. a Mutational distance distribution inferred from 14
whole-genome sequenced single neurons from ref. 12 derived from one fetus (17 weeks past conception) (black dots), and best theoretical fit (grey line).

MCMC inference for b the mutation rate per cell division (uL = 1.37+3]

mutations per genome per cell division) and ¢ the per-cell survival rate

(B = 0.998+9:902) ‘Median point estimates and 95% credibility intervals were taken from the posterior parameter distributions. The inferred mutation rate

—0.01

per cell division agrees with the original estimation of 1.3 mutations per cell division. Furthermore, our joined inference of mutation and cell survival rate
confirms the original assumption of no cell death during early brain development.

mutational differences, constructed the corresponding distribu-
tion of mutational distances (Fig. 4a) and used our MCMC fra-
mework for joint parameter estimates. The MCMC converges
rapidly and we find sharply localised posterior distributions for
the mutation and cell survival rate. We infer a median mutation
rate of y = 1.377)1 mutations per genome per division (corre-
sponding to a mutation rate of y = 4.6 x 10710 base pair/division)
and a per-cell survival rate of = 0.998709)%. This inference
agrees with Bae and colleagues original estimate of 1.3 mutations
per genome per division based on a weighted average of all three
fetuses, again assuming no cell death during early development. It
also agrees with estimates of 1.2 mutations per division from de
novo SNVs in familial trios26. The almost identical mutation rates
in haematopoietic and brain tissue during early development may
not be surprising. We would expect the DNA duplication and
repair machinery to be stable across tissues during early devel-
opment. It may even remain stable throughout live, as suggested
by the linear rate of mutation accumulation with age across
individuals?’~2°.

In vivo mutation and cell survival rates in human tumours. We
then investigated the per-cell mutation and survival rates in
individual tumours. We analysed whole genome or exome
sequencing of 131 biopsies from 16 tumours comprised of 1 colon
adenoma, 7 colon carcinomas, 5 clear cell renal carcinomas and 2
lung squamous cell carcinomas (Table 1). When whole-genome
sequencing was available, the mutational load was sufficient to
apply the inference framework to each chromosome separately
(Fig. 5 and Supplementary Figs. 1-9). The analysis was restricted
to regions of chromosomes with same copy number profile in all
samples of a tumour and inferences were normalised by copy-
number and genome content. The resolution to infer the dis-
tribution of mutational distances from tumours was lower com-
pared to healthy haematopoiesis or brain during development.
Nevertheless, in most cases, the reconstructed distributions
recover important features of the theoretical distribution (Sup-
plementary Figs. 1-9 and 14). We found that mutation rates per
cell division were 4-100 times higher in tumours compared to
healthy tissue, ranging from 2.91 x 10~2 (bp/division) in the colon
adenoma to 53 x 10~ (bp/division) in one lung squamous cell
carcinoma (Table 1). Mutation rates differ significantly between
patients but not across chromosomes of the same patient (Sup-
plementary Figs. 11 and 12). Overall this suggests important
differences in mutation accumulation at the single cell level
between tumours and is in agreement with recent experimental
in vitro single cell mutation rate inferences?%-30.

Table 1 Data summary and evolutionary parameter
inferences.

Tissue type Sequencil # ux10° g Source

HSC (development) Whole genome 89 0.39 0.96  Lee-Six
Neuron (development) ~ Whole genome 14 0.46 0.99 Bae

CRA Exome 6 2.91 0.46  Cross

CRC (MSS) Exome 13 30.1 0.84  Cross

CRC (MSS) Exome 8 125 0.43  Cross

CRC (MSS) Whole genome 6 24.0 0.65  Cross

CRC (MSS) Whole genome 7 10 0.51 Cross

CRC (MSS) Whole genome 9 89 0.45  Roerink

CRC (MSS) Whole genome 9 9.9 0.50  Roerink

CRC (MSD) Whole genome 9 30.9 0.34  Cross

CRC (MSD) Whole genome 7 17.9 0.47  Roerink
CCRCC Exome 8 217 0.66  Gerlinger
CCRCC Exome 1 312 0.86  Gerlinger
CCRCC Exome 8 15.8 0.47  Gerlinger
CCRCC Exome 8 23 0.80  Gerlinger
CCRCC Exome 8 2.1 0.72 Gerlinger
NSCLC Exome 7 53 036  Jamal-Hanjani
NACLC Exome 7 14 0.59  Jamal-Hanjani

The data of healthy tissue during development was taken from Lee-Six et al.!3 and Bae et al.'2.
Data on colorectal cancers is from Cross et al.#2 and Roerink et al.43, data on renal cell
carcinoma from Gerlinger et al.#4 and data on lung carcinomas from Jamal-Hanjani et al.>.
Estimates for mutation and cell survival rates are from best MCMC fits based on the distribution
of mutational distances.

To further unravel the underlying differences in mutation
accumulation during tumour growth, we decomposed somatic
mutations into the most prevalent trinucleotide mutational
signatures’! for three whole-genome sequenced colorectal
carcinomas and inferred per-cell mutation and per-cell survival
rates per signature in each chromosome (Fig. 5). Again, we find
significant differences between patients (Supplementary Fig. 13),
further supporting inter-tumour differences of mutation accu-
mulation at the single cell level.

The inter-patient variation of the cell survival rate was evident.
Whereas in healthy tissue almost all cells survive during
development, in tumours cell survival rates vary between 0.34
in one MSI+ colon carcinoma and 0.86 in one renal cell
carcinoma (Table 1). Again, per-cell survival rates were overall
consistent if inferred from chromosomes of individuals, but
varied significantly between patients (Fig. 6 and Supplementary
Fig. 12). The underlying reasons for this inter-patient variation
may be cell intrinsic and/or extrinsic, e.g. high cell death due to
genomic instability, high mutational burden or immune surveil-
lance. It will be of high interest to further unravel these
differences on a patient specific basis in future studies. It should
be noted that the inferred cell survival rates are high compared to
previous estimates3233. This is a direct consequence of the joint
inference of mutation and cell survival rates that was not possible
in earlier work.
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Fig. 5 Mutational distance for three colorectal tumours. a-c Examples of the mutational distance distribution on single chromosomes for three different
colorectal carcinomas for which 6, 7 and 9 multi-region bulk samples were sequenced at whole-genome resolution (dots = data, dashed line = theoretical
prediction based on MCMC parameter estimates—see insets). The distribution of mutational distances differs between patients, with Patient 04 (MSI
Microsatellite Instability) showing one order of magnitude larger mutational distances. d-f Per-cell mutation rate per chromosome separated by
trinucleotide mutational signature. Results are consistent across chromosomes, as expected (Methods). g-i The mean overall mutation rates are

(Ho2 = (1.07338)x 1078, gy = (2.47379)x 1078and py, = (3.11335) x 1078bp/division, dashed lines), 20-60 times higher compared to healthy somatic
cells. Patient 04 is MSI+ highlighted by signature 6. j-I Estimates of per-cell survival rates per chromosome are consistent across chromosomes of the
same patient (Median: o, = 0.5175:92, B, = 0.657592 B, = 0.34735)), but vary considerably between patients (Supplementary Fig. 12).

Discussion

Here we presented a framework that allows disentangling the
microscopic evolutionary forces of mutation and survival rates
per cell division in humans from single time point measurements.
Leveraging data on mutations in healthy haematopoiesis'®> and
brain tissuel2, we found, in agreement with previous estimates,
mutation rates of 1.14 and 1.37 mutations per whole-genome per
cell division. Mutation rates were 4-100 times higher in cancers
and showed considerable inter-patient variation.

The inference framework presented here relies on some
assumptions. Mutation and cell survival rates are kept constant
trough time and spatial location. We do not consider significant
changes in cell fitness during growth and/or spatial resource
constraints. These limitations are more important for tumour
specific inferences and less relevant for healthy tissue. The exact

temporal and spatial change of the underlying microscopic evo-
lutionary parameters over the lifetime of an individual tumour
remains an open question. In some cases, there is evidence for
singular catastrophic events’* and mutational signatures may
change between resection and relapse®>. However, it will also be
important to disentangle mutation and cell population dynamic
processes in these cases. A more fine-grained sampling over space
and time is needed to better access if and how evolutionary
parameters change within tumours. Given the technological
advances in single cell genomics®%37, sequencing of potentially
thousands of single cells would lead to significant information
gain. This will allow probing potential changes of these evolu-
tionary parameters over time.

Furthermore, we expect the inter-patient variation of per-cell
mutation and survival rates to directly influence clinically
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Fig. 6 Map of per-cell mutation and per-cell survival rates across cancer types. For each of the 16 tumours analysed we plot the per-cell mutation rate
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important variables, such as the likelihood of pre-existing treat-
ment resistance®, tumour age and aggressiveness®. Measuring
microscopic evolutionary forces in humans allows for a
mechanistic foundation for precision medicine.

Methods

Branching distribution in exponentially growing populations. To calculate the
expected distribution of branching events in an exponentially growing population,
we can make use of coalescence theory?%2l. Note that in coalescence theory one
usually uses a backward time convention. If a population grows exponentially with
N(1) = éP7, coalescence considers backward time ¢ = —7 such that populations
effectively shrink exponentially. The probability of coalescence Pi(t) at time ¢ in an
exponentially growing population is given by

1 et 1 et 1—é
= — [ i, 8
o =gt -5~ () ®)
where N(f) is the size of the growing population at time t. In our case, we are
concerned with mutational distances and thus we ask for the distribution of times
between coalescence events At rather than the distribution of coalescence times .
However, we can directly infer this distribution from Eq. (8), by rewriting At =t, -
t as the time of the initiating cell population at some point in the past. By sub-

stituting fo = log(Ny)/(B), we have At = WTN") — t and we find for the distribution

of times between coalescence events
log(Ny) A 1— Noe #4
P(At):P(ift =ePlexp(— 2. 9)
B BN,
This is for large N, well approximated by

P(Af) = e PM exp (— e?) . (10)

We show the validity of this approximation in Supplementary Fig. 16. The
normalized expression holds for all Np>1. We can discretise this probability
density function to derive at the probability for the number of branching
divisions r via

P(r) = ’7 d(AF) P(AL) — '7 d(at) P exp<_ e*;At)

(11)

o) ()

As we are interested in positive branch length only, we need to normalise the
distribution for non-negative integers such that 1 = £>°°) P(r = i). The

et

normalising factor is C =1 — exp(f 5 ), and the distribution of branching

divisions r in an exponentially expanding cell population becomes

oy 255 ()
1 —exp (7 %) -

Equation (12) together with Eq. (6) in the main text allows a complete
description of the expected distribution of mutational distances in exponentially
growing populations. It has to be noted that the coalescence approximation used
here is based on a deterministic exponential growth function. It is known that such
approaches do not always fully capture the full stochasticity especially at small

(12)

population sizes and birth-death processes often perform better?2. The individual
based computer simulations used here are implementations of the Gillespie
algorithm and are exact numerical representations of the underlying stochastic
process. However, a further analysis on the stochasticity of the process for small
population sizes is warranted.

Interpretation of effective survival rate. Throughout the paper we use the
concept of the effective cell survival rate 8. One can also formulate cell death with a
microscopic perspective given a probability « for a daughter cell to die (or dif-
ferentiate) after division. Such a probability allows for three outcomes after a cell
division: with probability (1 - )% both daughter cells survive, with probability 2a
(1 - ) one daughter cell survives and with probability a2 both daughter cells die.
However, as we are bound to find surviving cell lineages in every possible measure
of tumours, none of the observed cell lineages can have gone extinct. Mathema-
tically, this implies that measurement conditions cell division on non-extinction of
both daughter cells and we can write

. . P(successful division & non extinction)
B = P(successful division|non extinction) = —— .
P(non extinction)

With the corresponding probabilities « we get

7(1—&)271—()(

= = X 13
P 1—a? 1+« (13)
We also can rearrange Eq. (13) to solve for a,
l —
a= 1-f (14)
1+

If we interpret « as the probability of random cell death after a division, & must
be smaller than 1/2. If o were larger than 1/2, tumour populations extinct almost
surely after sufficiently many cell divisions. This implies > 1/3 for growing
populations.

Simulations of mutation accumulation in growing tissues. We simulated cell
populations of ~1 million cells on a grid with varying birth-death and mutation
rates using an implementation of the Gillespie algorithm based on code published
in ref. 2. The code is available at https://github.com/sottorivalab/CHESS.cpp. A
cell division produces two surviving cells with probability 8 or one surviving cell
with probability 1-B. During each division, each daughter cell inherits the muta-
tions of its parent and in addition accumulates novel mutations. The number of
novel mutations is drawn from a Poisson distribution with mean y. During
simulations, the mutations for each cell as well as the division history of each cell
are recorded.

We took samples (between 1 and 10k cells per sample) from each simulated
tumour. For most inferences, we used maximal distance sampling. Sequencing
errors were simulated for each bulk by binomial sampling assuming sequencing
depths of 100x, by generating dispersed coverage values for input mutations. We do
that by sampling a coverage from a Poisson distribution: Poisson (A = Z) with
mean A equal to a desired sequencing depth Z. Once we have sampled a depth value
k for a mutation, we sample its frequency (number of reads with the variant allele
frequency) with a Binomial trail. We use f~ Binomial(n, k), where 7 is the
proportion of cells carrying this mutation given all cells sampled in the simulated
biopsy. This generates realistic mutation distributions comparable to available
genomic sequencing data.
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Bayesian parameter inference. We use a MCMC to recover the mutational
distance yL and the cell survival rate 3 given a measured distribution of mutational
distances. More precisely we implemented a standard Metropolis-Hastings-
algorithm following below steps:

(i) Create a new random set of model parameters w given the current set of
parameters v from a defined probability density Q, such that Q(x|y) = Q(y|x).

(ii) Calculate the likelihood L(P(w)) of the model distribution P(w) given

the data.

Calculate the ratio of the new and old likelihood p = L(P(w))/L(P(v)).

Accept the new parameter set with probability p otherwise reject.

Repeat.

(i)
(iv)

In our case the model distribution is given by Eq. (7) in the main text. To
calculate the likelihood of Eq. (7) given the data, we have to choose a cut off for the
infinite sums. However, real data always has a maximum mutational distance.
Higher terms of the infinite sums contribute to higher mutational distances. The
distribution of interest does not change for a sufficiently high cut off and each
observed data set only requires finite many terms. Here we used r = i = 30 as upper
cut-off, which is a conservative choice. We used uninformed uniform prior
distributions for mutational distance uL and the per-cell survival rate § in all cases.
Point estimates were extracted as sample medians from the MCMC inferences. The
ranges of the uniform priors were adjusted to optimise acceptance rates and
computational time. In our implementation, a new set of parameters is relative to
the previously accepted parameter set Wyeyw = Woia + P(w), where @ is the prior
parameter distribution. A typical range used in our inference scheme is ®ypiform
(B) = [-0.06, 4+0.06] and Dypiform () = [-0.15, +0.15]. We also tested Gamma
prior distributions and did not see differences in convergence. One numerical
realisation of the Log-Likelihood function is shown in Supplementary Fig. 18 and
example traces of the MCMC algorithm are shown in Supplementary Fig. 17. We
also tested the influence of sequencing depth and spatial sampling strategies on the
performance of the MCMC inference framework (Supplementary Figs. 19 and 20).
The code for the MCMC inference is available at https://github.com/sottorivalab/
MCMC-MutationalDistances-.

Mutational signature analysis. For each sample we found the set of signatures
(among those signatures reported in CRC) that best explained the totality of
mutations in the sample. We did a non-negative regression of the sample’s
mutations against all the CRC signatures?? and found those signatures with
non-zero coefficients. We took these as the candidate signatures for each
sample.

For each mutation in each sample, we determined the likelihood of the
mutation under each of the candidate signatures. We assigned a mutation to a
candidate signature where the likelihood under that signature was at least twice
that under any other. If there was no such signature, we assigned the mutation to
“Other”. The method was originally developed in“? and is based on the R-package
“SomaticSignatures™*!. We did not adjust for differences in nucleotide composition
when calculating differences between coding and non-coding regions as we wanted
to infer the overall point mutation rate in these regions. Nucleotide dependent
mutation rate estimates are shown in Supplementary Figs. 10 and 15. Nucleotide
composition was adjusted for to calculate the mutation rates of mutational
signatures using standard tools?!.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Sequencing data from healthy haematopoiesis is available from Lee-Six et al.!3, brain data
during early development from Bae et al.!2, colorectal cancer data from Cross et al.*2 and
Roerink et al.#3, renal cell carcinoma data from Gerlinger et al.*. and lung carcinoma
data from Jamal-Hanjani et al.45.

Code availability

The code for stochastic simulations of tumour growth is available at https://github.com/
sottorivalab/CHESS.cpp. The code for the MCMC inference is available at https://github.
com/sottorivalab/MCMC-MutationalDistances-.
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