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Abstract

Background: In mass spectrometry-based proteomics, protein identification is an essential task. Evaluating the
statistical significance of the protein identification result is critical to the success of proteomics studies. Controlling the
false discovery rate (FDR) is the most common method for assuring the overall quality of the set of identifications.
Existing FDR estimation methods either rely on specific assumptions or rely on the two-stage calculation process of first
estimating the error rates at the peptide-level, and then combining them somehow at the protein-level. We propose
to estimate the FDR in a non-parametric way with less assumptions and to avoid the two-stage calculation process.

Results: We propose a new protein-level FDR estimation framework. The framework contains two major components:
the Permutation+BH (Benjamini–Hochberg) FDR estimation method and the logistic regression-based null inference
method. In Permutation+BH, the null distribution of a sample is generated by searching data against a large number
of permuted random protein database and therefore does not rely on specific assumptions. Then, p-values of proteins
are calculated from the null distribution and the BH procedure is applied to the p-values to achieve the relationship of
the FDR and the number of protein identifications. The Permutation+BH method generates the null distribution by the
permutation method, which is inefficient for online identification. The logistic regression model is proposed to infer
the null distribution of a new sample based on existing null distributions obtained from the Permutation+BH method.

Conclusions: In our experiment based on three public available datasets, our Permutation+BH method achieves
consistently better performance than MAYU, which is chosen as the benchmark FDR calculation method for this
study. The null distribution inference result shows that the logistic regression model achieves a reasonable result both
in the shape of the null distribution and the corresponding FDR estimation result.
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Background
In shotgun proteomics, the identification of proteins
is a two-stage process: peptide identification and pro-
tein inference [1]. In peptide identification, experimental
MS/MS spectra are searched against a sequence database
to obtain a set of peptide-spectrum matches (PSMs)
[2–4]. In protein inference, individual PSMs are assem-
bled to infer the identity of proteins present in the sample
[5–7].
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Inferred proteins are the most biologically relevant
outcome of a shotgun experiment. Therefore, the abil-
ity of accurately inferring proteins and directly assessing
such inference results is critical to the success of pro-
teomics studies. To date, many effective protein inference
algorithms have been developed such as ProteinProphet,
ComByne and MSBayesPro. However, the problem of
accurate assessment of statistical significance of pro-
tein identifications remains an open question [8, 9]. Past
research efforts towards this direction can be classified
into p-value based approaches and false discovery rate
(FDR) approaches:
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• p-value based approaches provide a single
protein-level p-value for each reported protein.

• FDR approaches apply a single threshold to all
proteins identified from the data rather than generate
individual significance values for each protein.

Both p-value based approaches and FDR approaches
aim at controlling the quality of identified proteins,
though they consider this problem from different per-
spectives. Unfortunately, available methods still deserve
certain drawbacks, as summarized below:

1 Reliance on specific assumptions. Most methods
depend on particular assumptions regarding the
model or the distribution of false positive matches.
For instance, the p-value based PROT_PROBE
approach [10] assumes that protein identification by
a collection of spectra follows a binomial model.
Similarly, the representative of FDR approaches,
MAYU [11] is based on the assumption that false
positive PSMs are equally likely to map to either the
target or decoy database and the number of false
positive protein identifications is assumed to be
hypergeometrically distributed.

2 Reliance on the two-stage calculation process.
Generally, the protein-level confidence measure is
obtained by combining peptide-level p-values (e.g.,
[8]). Such process may propagate errors at the
peptide-level to the protein-level in a non-trivial
manner [12].

Based on above observations, we propose a new frame-
work for the protein-level FDR estimation that can avoid
above-mentioned shortcomings. In this framework, we
are permuting protein sequences and performing search-
ing against these fake sequences on a dataset to get the
corresponding null distribution at the protein-level before
p-value and FDR calculation. Therefore, our calculation
does not rely on the two-stage calculation process. In
addition, we do not need to make any assumption on
the distribution of protein identification scores since the
permutation procedure is non-parametric. More impor-
tantly, once the null/permutation distribution is available,
we can calculate p-values and the FDR without search-
ing a decoy database. Experimental results on several real
proteomics datasets show that our framework is effective
in p-value and FDR calculation and outperforms MAYU
consistently.

Although this framework is very appealing, the time
required to perform the permutation procedure renders it
infeasible to generate the null in an on-line manner before
we have a fast permutation algorithm. To alleviate this
problem, we suggest to do the permutation in an off-line
manner and then store the null distributions for future
use. When null distributions built on existing samples are

not applicable in analyzing new-coming data with differ-
ent features, we propose to use logistic regression to infer
the null distribution from existing null distributions.

The rest of paper is organized as follows: “Methods”
section illustrates the details of our methods. “Results
and discussion” section presents the experiment results.
“Discussion” section concludes the paper.

Methods
Overview of the methods
Proteins that are present in an experimental sample are
true positives; others are false positives. Each protein is
associated with a score measuring its confidence. The
higher the score, more confident we are that the protein
is in the sample. If we treat the protein score as a test
statistic, the distribution formed by scores of false pos-
itives is the null distribution. Given N proteins, we can
determine the p-value of each protein from the null distri-
bution. For a certain FDR α, we can determine how many
proteins are accepted based on their p-values according to
the Benjamini-Hochberg (BH) method:

Algorithm 1 The Benjamini—Hochberg (BH) procedure
[13]

1. Suppose p1, p2, ..., pN are ordered p-values associated
with N proteins.
2. Fix the FDR α and let p1 ≤ p2 ≤ ... ≤ pN .
3. Define

L = max
{

c : pc < α
c
N

}
. (1)

4. Accept all proteins l for which pl ≤ pL.

Given a subset of proteins obtained by setting a protein
score threshold, we can also determine the FDR according
to the BH procedure.

In the method, the p-value calculation method and
the BH procedure are well-established statistical rou-
tines. The major source of errors in estimating the FDR
may come from the null distribution estimation. Gener-
ally, the more data we have, the more accurate the null
distribution. Thus, we estimate the null distribution by
using a permutation method, which can generate plenty
of data for robust data analysis. However, the permuta-
tion method is inefficient. This method becomes com-
putational expensive when handing large datasets. This
motivates us to develop a method that can infer the null
distribution of a new dataset from null distributions of
known datasets. We can store the previous estimated null
distributions and conduct the protein-level FDR estima-
tion in an off-line mode. In this way, both accuracy and
efficiency can be achieved. Details are provided in the
following sections.
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The permutation method
We employ the target-decoy technique to determine null
distributions. In the permutation step, each sequence in
the original protein database is randomly shuffled [14].
The shuffled proteins are appended into the original pro-
tein database to form a concatenated database. Then,
proteins are identified from the concatenated target-
decoy database. Protein identifications mapping to decoy
sequences are false positives, whose scores are used to
form the null distribution. When the sample size is small,
we may not have enough false positives to form a reliable
null distribution. Thus, the shuffling step and the pro-
tein inference step are repeated multiple times (e.g. 20
repeats). In each iteration, decoy protein scores are stored.

Suppose we obtain M decoy proteins in the above step.
Let Z = {z1, z2, ..., zl, ..., zM} be the set of decoy protein
scores. We partition the range of zl values into K bins of
equal length:

Z =
K⋃

k=1
Zk . (2)

Here, Zk contains protein scores belonging to the k-th bin.
Define yk as the count in the k-th bin:

yk = #{zs ∈ Zk}. (3)

and let xk be the center point of Zk . Note that∑K
i=1 yk = M. Then, the set of points H =

{(x1, y1/M), ..., (xK , yK/M)} describes the probability den-
sity function of the null distribution.

When a protein belongs to Zk̂ , k̂ = 1, 2, ...K . Then, its
p-value can be approximated as:

pl,zl∈Zk̂
=

∑K
k=k̂ yk

M
. (4)

Given N proteins, we can estimate their p-values. The
determination of the relationship of the FDR and the num-
ber of proteins is straightforward by applying the BH
procedure mentioned in the previous section.

In the permutation method, we need to shuffle and
identify proteins multiple times. Thus, the notable lim-
itation of the permutation method is its low efficiency.
Null distributions of different samples can be stored in the
protein database for future use in an off-line mode.

A general null distribution inference model
The protein identification result can be affected by various
reasons such as the tandem MS peak count and the sample
complexity. Null distributions built on existing samples
may not be applicable in analyzing data with different tan-
dem MS peak counts and a different sample complexity.
Determining the null distribution of new data is time con-
suming by applying the permutation method. Thus, we

design a way to infer the null distribution from existing
null distributions in the case that high efficiency is desired.

A raw data can be described by many features. For
instance, tandem MS peak counts and tandem MS spec-
tral quality measured by the mean noise level. Suppose
we have I existing samples and each sample can be
described by J features. Denote features of the i-th sam-
ple as (ri,1, ri,2, ..., ri,J ) and let Hi(x) be the null probability
density function associated with the sample. The feature
of a new sample is denoted as (r0,1, r0,2, ..., r0,J ) and our
objective is to infer its null density function H0(x).

For a protein score belonging to the k-th bin x̃ ∈ Zk ,
we collect the following information from existing sam-
ples: Then, the relationship of the probability Pri,k(x ≤
x̃|x̃ ∈ Zk) and J features can be described by the following
logistic regression model:

log
(

Pri,k
1 − Pri,k

)
= βk,0 +

J∑
j=1

βk,jri,j, i = 1, 2, ..., I. (5)

After fitting the logistic regression model, we estimate the
the probability Pr0(x ≤ x̃|x̃ ∈ Zk) of the new sample as:

Pr0(x ≤ x̃|x̃ ∈ Zk) = 1

1 + e−
(
βk,0+∑J

j=1 βk,jr0,j
) . (6)

For bins Z1,Z2,... and ZK−1, we collect information as
shown in Table 1, conduct logistic regression by model
(5) and obtain the fitting coefficients βk,j(k = 1, 2, ...K −
1; j = 0, 1, 2, ..., J) as shown in Table 2. It is unnecessary
to perform logistic regression on the last bin ZK because
Pri(x ≤ x̃| ∈ ZK ) = 1, i = 0, 1, 2, ..., I. We use a coefficient
table to store the information:

Then, the density function H0(x) can be approximated
as:

H0(x ∈ Zk) = Pr0(x ≤ x̃|x̃ ∈ Zk)−Pr0(x ≤ x̃|x̃ ∈ Zk−1).
(7)

When k = 1, H0(x ∈ Zk) becomes ill-posed because Z0
is undefined. In this case, let Pr0(x ≤ x̃|x̃ ∈ Z0) = 0. By
using the coefficient table and equation (7), we obtain the
null density function H0.

Table 1 The probability Pri,k(x ≤ x̃|x̃ ∈ Zk) can be calculated
from the null probability density function Hi(x)

Sample feature 1 ... feature j ... feature J Pri(x ≤ x̃|x̃ ∈ Zk)

Sample 1 r1,1 ... r1,j ... r1,J P1,k

... ... ... ... ... ... ...

Sample i ri,1 ... ri,j ... ri,J Pi,k

... ... ... ... ... ... ...

Sample I rI,1 ... rI,j ... rI,J PI,k
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Table 2 The coefficient table for null distribution inference

Intercept feature 1 feature 2 ... feature J

1-th bin β1,0 β1,1 β1,2 ... β1,J

... ... ... ... ... ...

k-th bin βk,0 βk,1 βk,2 ... βk,J

... ... ... ... ... ...

(K − 1)-th bin βK−1,0 βK−1,1 βK−1,2 ... βK−1,J

The feature protein database
We can use a feature table to organize our data. A fea-
ture database is shown in Fig. 1. The feature database
contains a protein database, which is used to perform
protein inference. The null distributions in the feature
database are obtained by the permutation method based
on existing samples. For each existing sample, its features
are extracted and stored in the feature table. The logistic
regression coefficients are obtained by fitting the model
(5) on the existing samples. The off-line strategy means
that: To obtain the null distribution of a new sample, we
neither need to apply the permutation method nor have to
perform logistic regression fitting.

When a new raw data is input, protein inference and fea-
ture extraction are performed. We can use existing protein
inference algorithms such as ProteinProphet to identify
proteins from the protein database in the feature database.

Then, we can compare the new sample with samples in the
feature database based on their features. We can measure
the similarity of two samples by calculating the correla-
tion of their feature vectors. Similar samples are often
encountered when we analyze replicate samples. If the
similarity between the new sample and an existing sample
i is high (e.g. the correlation of features is above 0.9), we
use Hi(x) as the null distribution to calculate the protein-
level FDR. If we cannot find any similar sample in the
feature database, we can plug the coefficients in the coef-
ficient table into function (6) and use Eq. (7) to infer a new
null distribution for the new sample.

The permutation method takes lots of time. When the
number of bins in the null distribution and the number
of features are large, the logistic regression fitting may
also take a great amount of time. The off-line information
(i.e. the feature table and the coefficient table) is used to
achieve a new null distribution without the permutation
step and the logistic regression fitting step. Thus, it makes
the protein-level FDR estimation efficient.

Our current implementation of the framework
When applying the proposed protein-level FDR estima-
tion framework, two key points are: features and similarity
measurement. A sample can be described by features.
When a novel sample is similar to an existing sam-
ple by comparing their features, the null distribution of

Fig. 1 A feature database contains null distributions, a feature table and a coefficient table. When features of a new sample exist in the feature table,
the corresponding null distribution is chosen. Otherwise, a null distribution is inferred with information in the coefficient table. Then the null
distribution is used to perform the protein-level FDR estimation
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the existing sample will be used. Otherwise, a new null
distribution is inferred by applying the logistic model
based on sample features.

The error propagation from the peptide-level to the
protein-level is non-trivial. Features of raw data such as
tandem MS peak counts are faraway from the final pro-
tein inference result. Thus, these kinds of features may not
have a clear connection with protein scores. In our current
implementation, we determine to directly select features
from protein scores.

First, we partition the range of protein scores of sample
i into 10 bins of equal length. The probabilities of protein
scores falling in 10 bins are denoted as Pi,1, Pi,2, ..., Pi,10.
Then, we choose sample j as a reference sample. The sim-
ilarity of protein identification results of sample i and
sample j is measured by their Kullback-Leibler (KL) diver-
gence:

Di,j =
10∑

k=1
Pri,k log

Pri,k
Prj,k

. (8)

The smaller the value of Di,j, the more similar sample i and
sample j. We choose the KL divergence from each sample
to the reference sample as a feature, which is used to infer
the null distribution and measure the sample similarity.

Overview of the experiments
The whole framework consists of two parts: The first
part employs the permutation method and the BH pro-
cedure to estimate the FDR (Permutation+BH); the sec-
ond part provides a logistic regression model to infer
the null distribution of a new sample based on exist-
ing null distributions. We first conduct the experiment
to verify Permutation+BH in FDR estimation. The per-
formance of our method is compared to MAYU based
on three datasets with groundtruth. Then, we conduct
another experiment to illustrate the performance of our
null distribution inference method. In the last part of our
experiments, we discuss the reference dataset issue in our
current implementation of our framework.

The whole framework is implemented in Ruby
(v1.9.2p290). Target-decoy concatenated databases are
generated from UniProtKB/Swiss-Prot (Release 2011_01)

by appending shuffled protein sequences into the original
protein database. Peptides are identified by X!Tandem
(v2010.10.01.1) [4]. Then, ProteinProphet (Embedded
in the Trans-Proteomic Pipeline v4.5 RAPTURE rev 0,
Build 201109211427) is employed to perform peptide
probability calculation and protein inference, respectively
[5, 15].

In our experiments, we use six public available datasets:
ISB, ABRF, Yeast, Yeast_Train, Human and Human_Test.
The ISB dataset was achieved from a 18 standard
protein mixture [16]. The sample was analyzed on a
Waters/Micromass Q-TOF using an electrospray source.
The ABRF sPRG2006 dataset contains 49 standard pro-
teins. The Yeast and the Yeast_Train dataset were
obtained by analyzing cell lysate on both LCQ and ORBI
mass spectrometers from wild-type yeast grown in rich
medium [17, 18]. The dataset contains a protein reference
set which is used as the groundtruth. The Human dataset
was obtained from human HEK293T cell lines and ana-
lyzed on the ORBI mass spectrometer. The Human_Test
dataset was obtained by analyzing human serum samples
with Thermo LTQ-FT. In our experiments, “.RAW” files
are converted to “.mzXML” files by TPP. The addresses to
access these datasets are shown in Table 3:

Results and discussion
FDR estimation
In this experiment, the first three datasets are used:
ISB, ABRF and Yeast. For the ISB dataset, the 18 stan-
dard proteins together with 15 contaminants are marked
as the groundtruth [16]. For the ABRF dataset, the 49
standard proteins and 78 contaminants are used as the
groundtruth. Readers can refer to the supplementary doc-
ument for more information [19]. For the Yeast dataset,
all proteins in the protein reference set are treated as true
proteins.

The permutation method includes two steps to obtain a
null distribution: a shuffling step and a protein inference
step. In the shuffling step, each protein sequence is shuf-
fled and appended into the original protein database. In
the protein inference step, proteins are identified from the
target-decoy concatenated database with TPP. The shuf-
fling step and the protein inference step repeat for 20

Table 3 Names and URLs of data files

Dataset name File name URL

ISB QT20051230_S_18mix_04.mzXML http://regis-web.systemsbiology.net/PublicDatasets/

ABRF Lane/060121Yrasprg051025ct5.RAW https://proteomecommons.org/dataset.jsp?i=71610

Yeast YPD_ORBI/061220.zl.mudpit0.1.1/raw/000.RAW http://aug.csres.utexas.edu/msnet/

Yeast_Train YPD_ORBI/070119-zl-mudpit07-1/raw/000.RAW http://aug.csres.utexas.edu/msnet/

Human YPD_LCQ/060b.RAW http://aug.csres.utexas.edu/msnet/

Human_Test PAe000281_mzXML_200909301914/B06-7017_c.mzXML http://www.peptideatlas.org/repository/

http://regis-web.systemsbiology.net/PublicDatasets/
https://proteomecommons.org/dataset.jsp?i=71610
http://aug.csres.utexas.edu/msnet/
http://aug.csres.utexas.edu/msnet/
http://aug.csres.utexas.edu/msnet/
http://www.peptideatlas.org/repository/
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times. The protein mapping to a decoy sequence is con-
sidered to be a false positive. The protein probabilities of
all false positives from the 20 protein identification results
are collected. Then, the histogram of the protein prob-
abilities is built and used as the null probability density
function. In general, the smaller the bin size, the more
detail the null distribution contains and more data points
are desired to build the null distribution. In our experi-
ments, the length of each bin is empirically chosen to be
0.003.

After the null distribution has been built, the p-value of
each protein is calculated according to Eq. (4). Next, p-
values of all proteins are sorted in the ascending order.
Then, the BH procedure is conducted on p-values to
obtain the relationship of the number of proteins and the
FDR.

We apply our method and MAYU to the three protein
datasets to estimate the FDR. The true FDR is calculated
as the ratio of the number of proteins belonging to the
groundtruth set and the total number of protein iden-
tifications. The performances of different methods are
validated by comparing the absolution difference between

the estimation and the groundtruth. The results based on
three datasets are shown in Fig. 2.

According to our experimental results, our method and
MAYU are comparable in performance on the ISB dataset.
For the ABRF dataset, our method is better than MAYU
on average. Our method is dominantly better than MAYU
on the Yeast dataset.

Null distribution inference
In this dataset, the first five datasets listed in Table 3
are used to fit the logistic regression model (5) and the
Human_Test dataset is used to validate the null distribu-
tion inference result.

In this experiment, we choose the ISB dataset as a refer-
ence dataset and calculate the KL divergence from other
samples to the ISB dataset by using Eq. (8). The feature
table for six datasets is shown in Table 4.

The null distributions of six samples are obtained
by the permutation method. The first five null dis-
tributions are used to infer the null distribution of
Human_Test. The last null distribution will be used as a
reference.
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Fig. 2 a, b and c show the absolute differences between FDRs estimated and true FDRs. The smaller the difference, the better the performance. In
(a), our method is comparable with MAYU. In (b), our method is better than MAYU on average. In (c), our method is dominantly better than MAYU
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Table 4 The feature table for five datasets and one test set

Sample KL divergence

ISB 0.000

ABRF 0.0301

Yeast 0.3697

Human 0.2206

Yeast_Train 0.2781

Human_Test 0.4159

Let the first five samples be sample 1,2,3,4 and 5, respec-
tively. Human_Test is denoted as sample 0. The KL diver-
gence from sample i to the reference sample is denoted
as ri,1. Since the bin length 0.003, the number of bins is
K = 334. The probability Pri(x ≤ x̃|x̃ ∈ Zk) is calculated
from the null distribution of sample i for bin k. The logis-
tic regression coefficients for bin k are obtained through
the following model:

min
βk,0,βk,1

5∑
i=1

L
(

log
(

Pri,k
1 − Pri,k

)
− βk,0 − βk,1ri,1

)
. (9)

Here, βk,0 is the intercept coefficient; βk,1 is the sample
KL divergence coefficient, respectively;L is a loss function
measuring the error in estimation. In our experiment, we
choose L = ∣∣∣∣ · ∣∣∣∣2. In our Ruby program, we implement a
R (v2.13.1) interface from which users can call any robust
loss function such as the Huber loss. We partially show the
coefficient table in Table 5.

The feature table and the coefficient table are stored in
the feature database. When analyzing the new sample (i.e.
Human_Test), we just plug coefficients in the coefficient
table in Eq. (6) and use Eq. (7) to get the null probability
density function of Human_Test. The result is shown in
Fig. 3.

Figure 3a shows the probability density functions of the
inferred null and the null obtained by the permutation
method. The peak height of the inferred null is overes-
timated compared with that of the permutation null. In
Fig. 3b, Permutation+BH and InferredNull+BH estimate
the FDR by applying the BH procedure to the null dis-
tribution generated by the permutation method and the
inferred null distribution, respectively. According to the

Table 5 Coefficient table. Note that we only need to conduct
logistic regression on the first K − 1 bins

Bins Intercept coefficients KL divergence coefficients

1-th bin -6.0539 -18.6072

... ... ...

333-th bin 5.1731 3.3703

result shown in Fig. 3b, the performance of Inferred-
Null+BH is closer to Permutation+BH than that of MAYU.
The correlation of the inferred null distribution and the
permutation generated null distribution is 0.9052.

The reference dataset
In our current implementation of our framework, we
need to reference dataset. The reference dataset is cho-
sen to calculate the KL divergence of each sample to the
reference dataset. Then, the KL divergence is used as a
feature in both similarity measurement and null distribu-
tion inference. In the previous experiment, we take the
ISB dataset as the reference dataset. The KL divergence is
a non-symmetric measure of the difference between two
probabilities. Thus, a different reference dataset may lead
to a different null distribution inference result. In the fol-
lowing experiment, we take the ISB dataset, the ABRF
dataset and the Yeast dataset as the reference dataset,
respectively. The result is shown in Fig. 4. The correlations
of the inferred null distribution and the permutation gen-
erated null distribution when using the ISB dataset, the
ABRF dataset and the Yeast dataset as a reference dataset
are 0.9052, 0.6779 and 0.3317, respectively. According to
the experimental result, the best performance in null dis-
tribution estimation is achieved when the ISB dataset,
which contains 18 proteins, is taken as the reference
dataset. The performance is worst when the Yeast dataset
containing hundreds of proteins is used as the reference
dataset.

Readers may be interested in the results of infer-
ring the null distributions of other samples (other than
Human_Test) by using the ISB dataset as the reference
dataset. In the following experiment, we conduct two
extra experiments to inferring the null distributions of
the ABRF dataset and the Yeast dataset. In each of the
two experiments, we treat either the ABRF dataset or the
Yeast dataset as test data and using remaining datasets as
training data. The result is shown in Fig. 5.

The difference between the inferred null distribution
and the empirical null distribution obtained by the per-
mutation method may be caused by the following reasons:

• The data used in fitting the logistic regression model
may be neither typical nor enough. Data
representative to different conditions are desired to
obtain a robust regression model. When information
of some typical conditions are missing, it is may be
hard to make it up by using mathematical models.

• In our experiment, we only consider one feature in
our logistic model. The single feature may not explain
all kinds of variation in the protein inference process.
A more accurate model can be achieved by using
more features and plenty of data in building the
feature database.
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Fig. 3 a shows the probability density functions of the inferred null distribution and the null distribution obtained by the permutation method. The
correlation between the inferred null distribution and the generated null distribution using permutation is 0.9052. b shows the FDR estimation
results of Permutation+BH, InferredNull+BH and MAYU
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Fig. 4 a, b and c show null distribution inference results by using the ISB dataset, the ABRF dataset and the Yeast dataset as a reference dataset,
respectively. The correlations between the inferred null distribution and the permutation generated null distribution in (a), (b) and (c) are 0.9052,
0.6779 and 0.3317, respectively
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Fig. 5 In (a), the ABRF dataset is used as the test data and other datasets are the training data; in (b), the Yeast dataset is used as the test data and
the other datasets are training data; in (c), the Human_Test dataset is used as test data and other datasets are the training data. The correlations
between the inferred null distribution and the permutation generated null distribution in (a), (b) and (c) are 0.4259, 0.8116 and 0.9052, respectively

• Even if we obtain an ideal logistical model with
perfect coefficients, it is not guaranteed that the new
data is not an outlier. It is often the case that the new
data locates at a point that has a certain distance to
the ideal model.

The biggest advantage of the null inference method is its
efficiency. Once the coefficient table is obtained before-
hand, the inference of the null distribution is just the
calculation of deterministic functions (6) and (7). The
whole process of the FDR estimation just takes a few
seconds. This should benefit the large-scale data analysis.

Discussion
In the Permutation+BH method, we use the permutation
method to generate the null distribution and apply the
BH procedure to estimate the FDR. The method does
not relies on specific assumptions and works directly at
the protein-level. Thus, the problems related to improper
assumption and error propagation are avoided. The flex-
ibility of our method also implies that it can be used
with any search method or protein inference method of
the user’s choice. According to our experimental results
based on three datasets, our method performs better than
MAYU. We believe that this is partly due to a more

accurate estimation of the null distribution through the
increased sampling by our permutation method, than in a
typical 1:1 target-decoy approach as used in MAYU.

In the Permutation+BH method, the efficiency is low
because we need to shuffle protein sequences and conduct
protein inference multiple times. We propose an off-line
strategy to handle this issue. In the off-line strategy, a
feature protein database is built beforehand with null dis-
tributions obtained from existing samples, a feature table
and a coefficient table. When a new sample cannot find
a match in the feature table, a new null distribution is
inferred by directly plugging the coefficients in the coeffi-
cient table into the logistic model. The logistic regression
model provides an efficient way to infer the null distribu-
tion. Our model is currently trained only on a few samples
and including only 1 feature, limiting its accuracy. We will
seek to improve this model by adding many more features
and training the model on more datasets, as part of our
future work.

Conclusions
In this paper, we propose a protein-level FDR estimation
framework. The framework includes two major compo-
nents: the Permutation+BH FDR estimation method and
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the logistic regression-based null distribution inference
method. The Permutation+BH method first applies the
permutation to generate the null distribution and then
uses the BH procedure to estimate the FDR. However, this
method is inefficient for online identification. Therefore,
we propose the logistic regression-based null distribution
inference method to handle this issue. In our experi-
ment based on three public available datasets, our Per-
mutation+BH method achieves consistently better perfor-
mance than MAYU, which is chosen as the benchmark
FDR calculation method for this study. The null distri-
bution inference result shows that the logistic regression
model achieves a reasonable result both in the shape of the
null distribution and the corresponding FDR estimation
result.
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