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Development of a CT ima
ging phantom of
anthromorphic lung using fused deposition
modeling 3D printing
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Abstract
Development of patient-specific CT imaging phantoms with randomly incorporated lesions of various shapes and sizes for calibrating
image intensity and validating quantitative measurement software is very challenging. In this investigation, a physical phantom that
accurately represents a patient’s specific anatomy and the intensity of lung CT images at the voxel level will be fabricated using fused
deposition modeling (FDM) 3D printing. Segmentation and modeling of a patient’s CT data were performed by an expert and the
results were confirmed by a thoracic radiologist with more than 20 years of experience. This facilitated the extraction of the details of
the patient’s anatomy; various kinds of nodules with different shapes and sizes were randomly added to the modeled lung for
evaluating the size-accuracy of the quantification software. To achieve these Hounsfield Units (HU) ranges for the corresponding
voxels in acquired CT scans, the infill ratios of FDM 3D printing were controlled. Based on CT scans of the 3D printed phantoms, the
measured HU for normal pulmonary parenchyma, ground glass opacity (GGO), and solid nodules were determined to be within target
HU ranges. The accuracy of the mean absolute difference and the mean relative difference of nodules were less than 0.55±0.30mm
and 3.72±1.64% (mean difference±95 CI), respectively. Patient-specific CT imaging phantoms were designed and manufactured
using an FDM printer, which could be applied for the precise calibration of CT intensity and the validation of image quantification
software.

Abbreviations: 3D = three dimensions, ABS = acrylonitrile butadiene styrene, CJP = color-jet printing, CT = computed
tomography, FDM = fused deposition modeling, GGO = ground glass opacity, HU = Hounsfield Units, PLA = polylactic acid, PVC =
polyvinyl chloride, ROI = regions of interest, STL = Stereolithography, TPU = thermoplastic polyurethane.
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1. Introduction

The manufacturing of patient-specific computed tomography
(CT) imaging phantoms for calibrating CT image intensity,
validating quantitative measurement software, etc, is very
challenging.
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Although various types of patient-specific chest phantoms have
been developed, an appropriate measurement method for
standard imaging phantoms that is capable of determining the
measurement accuracy of software and patient-specific imaging
phantoms has not been developed using 3Dprinting technology.[1]
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Chest CT scans show diverse anatomic structures with a wide
variety of CT intensities ranging from -1024 to 3072 Hounsfield
Units (HU) including the airway, pulmonary parenchyma,
diseased imaging patterns, fat, soft tissue, and bone.[2] These
structures can be used to identify the early onset of lung diseases
such as lung cancer, emphysema, and diffuse infiltrative diseases.
In addition, due to the high dependence of diagnosis on imaging,
better reliability of pulmonary CT is necessary.[3] In addition, the
development of CT phantoms that can be used to evaluate the
accuracy and reliability of pulmonary CT quantification software
is also a challenge.[4] Although many patient-specific chest
phantoms can now be created due to recent advances in 3D
printing technology, the ability to simulate sections of the
phantoms is limited because of the limitations associated with the
available printing materials.[5,6]

The purpose of this study is to simulate the shape and CT
values of pulmonary parenchyma and lesions of various sizes
using 3D printing technology and to verify the accuracy of CT
software. Lungs, in particular, have a wide range of HU (-1024 to
400 HU) because of the presence of air, water, fat, and nodules.
We investigated the HU of various 3D printing materials with
various infill ratios with the goal of reproducing the HU range of
chest CT images obtained from human subjects. In addition, a
section of the lung from a patient’s CT data was used to extract
the details of their anatomy and lesions of different shapes and
sizes were randomly incorporated into the modeled lung to
evaluate the size-accuracy of the quantification software.
2. Methods

This study was approved by the Asan Medical Center
Institutional Review Board with a waiver of a written informed
consent to a patient due to a retrospective study without any
additional harm.
Figure 1. Flowchart of the procedure f
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To confirm the HU of a 3D printed phantom, samples with a
specific size (radius 20mm and height 30mm) and different
amounts of infill were outputted for various kinds of FDM
materials including acrylonitrile butadiene styrene (ABS),
thermoplastic polyurethane (TPU), and polylactic acid (PLA).
For each sample, CT scans were performed[7,8] to evaluate HU.
Chest CT data of a patient were acquired and segmentation

and 3Dmodeling were performed. Data for the regions of interest
(ROI) including lung parenchyma and pulmonary vessels were
converted to stereolithography (STL) files. FDM 3D printing was
used to fabricate phantoms for the parenchyma and lesions.
Then, the final phantoms and STL files were compared (Fig. 1).

2.1. Subject CT scan protocols

An anonymous patient, various kinds of material samples for
fabricating phantoms, and 3D printed lung phantoms were
scanned using a dual-source CT (SOMATOM Definition Flash,
Siemens Healthcare) with a standard protocol of 120 kVp and
1.0mm slice thickness. In addition, these scan data were
reconstructed to 0.6mm in the axial section using software
(Syngo CT 2012B).[9]
2.2. A study on 3D printing material

We investigated the applicability of various kinds of printing
materials for 3D printers (Table 1) and modeled the phantoms to
a specific size (20 � 50 � 5) mm3 using 3-matic software
(Materialise Inc., Leuven, Belgium).[10–12] For CT scanning, the
model was fixed to a self-manufactured plate so that each model
could maintain a constant alignment. The HU for each model
with various kinds of materials including ABS, TPU, and PLA,
clear resin (Form lab.), white resin (Form lab.), general resin
(Carima), general resin (Projet), Acryl resin, PXL clear powder
or producing 3D printed phantoms.



Table 1

Summary of the various materials used by 3D printers.

Printing type Printer (model) Material

FDM DP200, Shindoh Co. ABS (acrylonitrile butadiene styrene)
PLA (polylactic acid)

Ultimaker 3, Ultimaker BV TPU (thermoplastic polyurethane)
SLA Form2, Formlabs Inc. Acryl resin (Clear)

Acryl resin (White)
DLP DP110, Carima Co. Acryl resin (Carima 3DK83G)
MJP Projet3510, 3D systems co. Acryl resin (VisiJet M3 Crystal)
DLP Morpheus, OWL WORKS 3D, LLC Acryl resin (MDART)
CJP Projet 460 plus, 3D systems Co. Gypsum based powder (PXL clear)

CJP= color-jet printing, DLP=digital lighting process, FDM= fused deposition modelling, MJP=
multi-jet printing, SLA= stereolithography.

Figure 2. The Hounsfield Units (HU) of various 3D printing materials including
polylactic acid (PLA), clear resin (Form lab.), white resin (Form lab.), general resin (C

Figure 3. HU for the FDM materials including ABS, TPU and PLA with different a
acquired CT data (D) HU for each printing material with different amounts of infill
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was then confirmed with a CT scan (Fig. 2). For evaluating the
various infill ratios of FDM printers with different materials
including ABS, TPU, and PLA, circular cylinders with a radius of
20mm and a height of 30mm (Fig. 3A–C) were designed. The
percentage of the infill was controlled using Ultimaker Cura,
which is a 3D printing slicer software for FDM. To determine the
HU of materials with different infill ratios, a MDCT scan was
also performed.

2.3. The design of a patient-specific lung phantom

The right lung lobe, airway, and lesions from anonymous patient
chest CT images were manually segmented using Mimics
software (Materialise Inc., Louvain, Belgium). The obtained
acrylonitrile butadiene styrene (ABS), thermoplastic polyurethane (TPU), and
arima), general resin (Projet), Acryl resin, PXL clear powder with 100% infill ratio.

mounts of infill. (A) ABS acquired CT data (B) TPU acquired CT data (C) PLA
.
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chest areas were exported to the 3-matic software (Materialise
Inc., Leuven, Belgium) for post-processing. The various well-
known shapes and sizes of lung diseases including ground glass
opacity (GGO) and solid nodules were artificially modeled and
inserted in the images. Each phantom was designed and
manufactured by one type of material and printer without need
of assembly. Based on the HU measurements in Figures 2 and 3,
abnormality lesions including GGO and solid nodules was set
with 80 and 100 percent infill ratios, respectively. The lesions
were set with appropriate infill ratios using the Ultimaker Cura.
The final model file was converted into an STL file format for
printing using the FDM printers.
2.4. Statistical evaluation

To evaluate the HU range and to compare the sizes of the
designed STL model and the actual model, the 3D printed
phantom was scanned using the same dual-source CT equipment
and scan protocol used for the initial study. Several ROIs of the
designed STL model including normal parenchyma, GGO, and
solid nodules were selected for size measurements. In CT images
of the 3D printed phantom, the HU and size of each
corresponding ROI were measured five times using a RadiAnt
DICOM viewer (Medixant Inc., Poznan, Poland). The measure-
ment error of HU between reference and scanned CT values of
GGO and solid nodule were evaluated by applying median and
lower bound values as �350 and �100 HU, respectively. The
absolute value means, and standard deviation were listed in
Table 3. The size measurement results were then analyzed using a
Bland-Altman method.[13,14]
3. Results

3.1. Baseline HU evaluation with different kinds of 3D
printing materials

We evaluated the HU from sample CT images for various types of
3D printers andmaterials at 100 percent infill ratio (Fig. 2). These
Figure 4. Fabrication of lung phantom using a single 3D printing technology. (A),
phantoms using 3D printing. (C), (G) are printed final CT phantoms. (D), (H) are v

4

wide ranges of HU for the different types of printers andmaterials
could be used to develop a lung phantom with different values of
internal infill ratios, which could result in lower HU phantom
values than the aforementioned at 100 percent infill ratio.
3.2. HU evaluation with different infill ratios of ABS, TPU,
and PLA materials

CT scans were obtained for the ABS, TPU, and PLA samples with
various amounts of infill ratios from 10% to 100% in 10%
increments. The averageHU for the same size ROI along the axial
section of each sample were evaluated. 3D printed models with
lower infill ratios have higher porosity and gradually less HU
(Fig. 3).
3.3. Patient-specific lung imaging phantom for CT

Based on the aforementioned results on the infill ratios of
materials,
To fabricate a patient-specific lung imaging phantom, a section

in the right lobe of the lung from the patient CT images was
selected to model the lung lobe, fissure, and airway. The lung
phantom was fabricated using a single printer and material by
controlling the HU using different amounts of infill ratios (Fig. 4).
TheHU of lung parenchyma and various lesions in the CT scan of
the phantom were analyzed (Fig. 5). The HU for normal
pulmonary parenchyma, which is mainly composed of air, is
between�600 and�900 and the ABS and TPU phantom hadHU
that were similar to those of human patients. In addition, for a
pattern of typical lung disease, GGO achieved HU that were
similar to the actual values �300 to �400 (Tables 2 and 3).
The size measurement of each lesion was evaluated using the

Bland–Altman analysis. The measurement accuracies of the
phantoms were examined and compared depending on the type
of 3D printing material. The accuracies (mean difference±95
CI) of ABS and TPU are GGO: 0.55±0.30mm, solid nodule:
0.33±0.08mm and GGO: 0.19±0.18mm, solid nodule:
0.22±0.21mm, respectively (Fig. 6 and Table 4).
(E) represent 3D modeling of the lung CT phantom. (B), (F) are fabricated CT
olume-rendered images of 3D printed CT phantoms.



Figure 5. Based on the patient’s CT data, the parenchyma and shape of the lung lesion were reproduced. The HU and size of eachmodeled lesion weremeasured.
(A) measured CT value for the region of interest (ROI) of lung parenchyma from patient data. (B) measured CT value and length of lesions from modeled ABS
phantom data. (C) measured CT value and length of lesions from modeled TPU phantom data.
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4. Discussion

Up to now, phantoms are primarily used for the evaluation and
maintenance of medical devices.[15] However, there are several
Table 3

Comparison of the reference CT value and 2 types of materials of
3D printed lung phantoms.

Reference CT value – Lung phantom Materials of 3D printed lung phantom

ABS TPU

Mean absolute difference
GGO 27.5±2.45 112.80±2.90
Solid nodule 30.8±0.85 85.65±41.01

Mean relative difference
GGO 7.87±0.70 32.23±0.35
Solid nodule 30.83±0.85 55.50±0.35

ABS=acrylonitrile butadiene styrene, GGO=ground glass opacity nodule, TPU= thermoplastic
polyurethane.

Table 2

Comparison of CT-based 3D modeling measurements with soft-
ware analysis of printouts.

Parenchyma GGO Solid nodule

Standard
HU –600 ∼ –900 –300 ∼ –400 ∼ –100
Length (mm) – 10.0, 15.0, 20.0 5.0, 10.0, 15.0

ABS
HU –705.0±107.5 –325.0±16.4 –68.3±16.0
Length (mm) – 10.0, 14.7, 20.0 4.8, 9.9, 15.0

TPU
HU –628.28±61.99 –234.65±32.88 –14.73±17.86
Length (mm) – 10.0, 15.0, 19.8 5.1,10.0, 15.2

ABS=acrylonitrile butadiene styrene, GGO=ground glass opacity nodule, HU=Hounsfield unit,
TPU= thermoplastic polyurethane.
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notable studies based on the application of 3D printing for the
fabrication of CT imaging phantoms. For example, Hernandez-
Giron et al used multi-jet 3D printing technology to fabricate an
anthropomorphic lung phantom.[16] However, this method is
very expensive. Zhang et al, fabricated a lung phantom using 3D
printing technology and tissue equivalent materials.[17] This
phantom has a realistic human anatomy and radiation attenua-
tion property. Abdullah et al developed an organ-specific insert
phantom using a 3D printer to investigate cardiac CT protocols.
This phantom exhibited human-like chest and Hounsfield Unit
(HU) characteristics that were comparable to that of a human
subject, but the cardiac structure was non-anthropomorphic.[18]

On the other hand, in this study, we developed patient-specific
CT imaging phantoms with randomly incorporated lesions with
various shapes and sizes for calibrating image intensity and
validating quantitative measurement software. This physical
phantom was scanned using CT to evaluate HU using different
materials including ABS, TPU, and PLA for FDM 3D printing,
which yields a range of HU between 0 and 200. To overcome this
limitation, we attempted to achieve a lower HU range of �1000
to 0 HU by controlling the infill ratios, which can be one of the
setting values of 3D printing via FDM. The emphysema, normal
parenchyma, and nodules have HUs of less than �950, �800 to
�600, and more than �200, respectively. The measured HU for
normal pulmonary parenchyma, GGO, and solid nodules were
within target HU ranges of a normal chest CT. The error of the
measurement accuracy was determined to be submillimeter using
quantitative measurement software.
The advantage of the method proposed in this paper is that it

would implement realistic morphology, and it shows that the
application of 3d printing technology in various medical fields
could help overcome the limits of current physical phantom by
making imaging phantom. In line with our study, several 3D
printed imaging phantoms have been developed with different
methods, for example, Altermatt et al, by using agar gel doped

http://www.md-journal.com


Figure 6. Each lesion was measured a total of 5 times (GGO, solid nodule) for the 3D phantom models and CT data (reference measurement) for the final printed
phantom. (A) measured value of each disease model in the ABS phantom. (B) measured value of each disease model in the TPU phantom.
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with contrast agent polyvinyl chloride (PVC) and 3D printing[19]

or Yaoyao et al, using PVC and 3D printing.[20] Additionally,
Aldosari et al, produced a 3D-printed pulmonary artery model
for simulating peripheral pulmonary embolism and confirmed
that the shape is very similar to the patient anatomy.[21,22]

However, this model was limited in the choice of materials for the
pulmonary embolism simulation and used an anonymous
6

elastoplastic material with flexible features. Therefore, the CT
imaging phantom was produced but did not reflect the HU well.
To overcome the limitation, they proposed soaking the phantom
to the contrast agent.[23] Unlike previous other studies, we could
use only one FDM printer to fabricate the lung imaging phantom
without assembly. This 3D printing technology was able to
implement a wide range of HU. Moreover, FDM printers are the



Table 4

Comparison of the reference measurement and 2 types of
materials of 3D printed lung phantoms.

Reference measurement –
Lung phantom

Materials of 3D printed
lung phantom

ABS TPU

Mean absolute difference (mm)
GGO 0.55±0.30 0.19±0.18
Solid nodule 0.33±0.81 0.22±0.21

Mean relative difference (%)
GGO 3.72±1.64 1.41±0.84
Solid nodule 3.71±1.11 1.52±0.84

ABS=acrylonitrile butadiene styrene, GGO=ground glass opacity nodule, TPU= thermoplastic
polyurethane.
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most economical 3D printers, which is advantageous for future
clinical application.
There could be various kinds of clinical applications of this

patient-specific imaging phantom. One important application is
the validation of quantification software. Various kinds of
measurements on airway dimension and tumor diameter using
different software with the various algorithms are well-known
issues need to be overcome.[24,25] The performance of software in
difficult setting such as a complex anatomic lesion, that is
branching area of the airway, cannot be evaluated corrected
using the commercial phantom with the typical anatomic model.
Generating the phantom with similar complex anatomy of the
human body and similar CT density profile would be useful to
validate software because the real dimension of the physical
phantom can be controlled easily. The second potential
application is for the education, having realistic physical
phantom along with CT images would enhance the efficiency
of training image interpretation skills to medical students and
radiology residents. Finally, this patient-specific model will be
useful to the clinician to communicate with the patient explaining
the specific disease condition and discussing the treatment plan
and so on.
There are several limitations in our current prototype phantom

study. The proposed method has a limitation to print bone
structures. Most commercially available chest phantoms include
the chest wall and bones such as ribs and the spine. To
incorporate spine and bony structures using 3D printing, the CT
value of bone can be replicated using color-jet printing (CJP)
materials, which have HUs of 1000 or more, by assembling with
an FDM lung model. For further investigation, a higher range up
to +1000HU can be obtained using contrast agents with different
concentrations by injecting them into voids inside 3D printed
parts.[26] The other limitation includes that the texture of the lung
parenchyma is unnatural. CT image of the phantom showed the
regular infill pattern of walls in the parenchyma, which are
characteristic of FDM 3D printing. It is very difficult to remove
these walls. We think that this limitation can be overcome by
using the characteristics, which were generally regarded as
disadvantages of FDM technology.[27,28] FDM 3D printing is a
method of squeezing filaments made of polymer material from a
printing head, and laminating layer by layer. As the temperature
of the printing head is high and the moving speed is slow, string-
like structures appear on the surface.[29] This could be used to
implement the form of alveoli. Another method is to use foamed
silicone, where the degree of foaming depends on negative
pressure.[30,31]
7

In summary, the CT values of different 3D printed materials
were evaluated and CT imaging lung phantoms were fabricated
using FDM 3D printing based on a patient’s CT data, to include
anatomical details. The generation of patient-specific lung
imaging phantom using only 3D printing is difficult. However,
this study demonstrates that a wide range of CT values can be
achieved by controlling the internal filling of the 3D printing
material. In addition, a variety of lesions of different shapes and
sizes were randomly incorporated into the lung phantom to
evaluate the size-accuracy of quantification software.
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