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Abstract: Intracellular signaling is controlled to a large extent by the phosphorylation status
of proteins. To determine how human breast cells can be reprogrammed during tumorigenic
progression, we profiled cell lines in the MCF10A lineage by phosphoproteomic analyses. A large
cluster of proteins involved in RNA splicing were hypophosphorylated as cells progressed to a
hyperplastic state, and then hyperphosphorylated after progression to a fully metastatic phenotype.
A comprehensive transcriptomic approach was used to determine whether alterations in splicing
factor phosphorylation status would be reflected in changes in mRNA splicing. Results indicated
that the degree of mRNA splicing trended with the degree of tumorigenicity of the 4 cell lines tested.
That is, highly metastatic cell cultures had the greatest number of genes with splice variants, and
these genes had greater fluctuations in expression intensities. Genes with high splicing indices
were mapped against gene ontology terms to determine whether they have known roles in cancer.
This group showed highly significant associations for angiogenesis, cytokine-mediated signaling,
cell migration, programmed cell death and epithelial cell differentiation. In summary, data from
global profiling of a human model of breast cancer development suggest that therapeutics should be
developed which target signaling pathways that regulate RNA splicing.
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1. Introduction

Phosphorylation is the most common post-translational modification and plays a crucial role in
regulating protein function [1]. Enzyme activity, protein:protein interaction, subcellular localization
and protein stability are among the outcomes regulated by phosphorylation. These functions are
controlled by the dynamic equilibrium between phosphorylation by kinases and dephosphorylation
by phosphatases. Mass spectrometry after phosphopeptide enrichment yields a global snapshot
of the phosphoproteome and gives insight into the status of signaling pathways of cells under
varying conditions. To date, over 86,000 phosphosites have been identified in about 10,500 proteins,
or about half the human proteome [2]. Thus, most phosphoproteins contain multiple phosphosites.
We and others have shown that individual phosphosites can change in response to external stimuli
independently and can control different functions within a protein [3,4]. Furthermore, phosphosites
can occur in clustered regions within a protein, and different sites can have either stimulatory or
inhibitory effects on function.
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To determine how cell signaling becomes rewired during malignant transformation of human
breast cells, we analyzed the MCF10A cell lineage (reviewed in Table S1). MCF10A cells (10A) are
a spontaneously immortalized non-tumorigenic epithelial cell line obtained from a woman with
fibrocystic breast disease [5]. This line displays characteristics of luminal ductal cells by electron
microscopy but not myoepithelial cells. MCF10AT cells (AT) are a T24-HRAS-transformed derivate of
10A [6]. When implanted subcutaneously into nude mice, some of the animals develop a heterogeneous
spectrum of histological changes which range from mild to moderate hyperplasia, to atypical ductal
hyperplasia, to carcinomas in about 25% of animals. MCF10ATG3B cells (TG3B) were generated
by serial transplantation of AT cells into nude/beige mice [7]. These premalignant cells progress to
highly proliferative lesions (atypical hyperplasia, ductal carcinoma in situ, and invasive carcinoma) in
greater than 50% of test animals. MCF10CA1a cells (CA1a) are also derived from AT cultures and were
generated by serially growing a trocar transplantation [8]. This fully malignant cell line gives rise to
rapidly growing tumors with 100% efficacy in nude mice.

Cellular models are a powerful tool for signaling research. Compared to clinical specimens,
isogenic models have greatly reduced “noise” associated with individual and tumor genetic variability,
and allow for multiple testing on a single cell type including treatment with drugs and/or inhibitors.
Since malignant CA1a cultures are a derivative of non-tumorigenic 10A cells, researchers can directly
probe the question of what biological features were gained or lost which have contributed to
transformation. We have used the 10A lineage in the past to investigate alterations in signaling
during tumorigenic progression via proteomic profiling of lipid rafts [9]. Results showed a relative
decrease in G-protein and filamin A content in lipid rafts isolated from malignant cells, and increased
levels of several intermediate filament proteins such as vimentin and keratins 5, 17 and 18.

In the current study, we have extended these findings by profiling phosphorylation alterations
in the 10A lineage. Based on pathway analysis of the phosphoproteomic results we hypothesized
that greater differences in mRNA splicing would be observed in malignant CA1a cultures relative to
pre-malignant AT. To address this question we performed microarray analyses using a comprehensive
probe set that quantifies relative mRNA expression at the exon level.

2. Results

To identify signaling pathways that may be associated with tumorigenic progression,
phosphopeptides from 4 cell lines of the MCF10A lineage were enriched and analyzed by liquid
chromatography/mass spectrometry (LC/MS). In total, 63,037 MS/MS phosphopeptide spectral
identifications mapped to 1610 proteins, 58% of which had multiple phosphosite identifications.
Neuroblast differentiation-associated protein AHNAK (AHNAK) had the highest number of individual
phosphosite identifications with 36, followed by serine/arginine repetitive matrix protein 2 (SRRM2)
with 35. In total, 4113 protein phosphosites were relatively quantified by spectral counting (Table S2).
The first approach we used to identify significant pathways associated with tumorigenic progression
in the MCF10A model was to group phosphoproteins with the greatest differences in spectral counts
(Table 1). From these data it was determined that proteins associated with signaling, keratinization,
lipid metabolism and mRNA splicing were highly represented.
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Table 1. Spectral count profiling of phosphoproteins in the MCF10A lineage.

Protein Name Uniprot Accession
Number 10A AT TG3B CA1a Grouping

Chromodomain-helicase-DNA-binding protein 3* CHD3_HUMAN 13 2 8 0 Chromatin
Histone H1.3 H13_HUMAN 18 8 10 0 Chromatin
Histone H1.5 H15_HUMAN 46 55 49 0 Chromatin

Epidermal growth factor receptor EGFR_HUMAN 0 12 1 13 EGFR signaling
Integrin beta-4 ITB4_HUMAN 0 0 0 19 EGFR signaling

SH3 domain-containing kinase-binding protein 1 SH3K1_HUMAN 0 5 1 11 EGFR signaling
Ras-assoc. & pleckstrin homology domains-containing prot. 1 RAPH1_HUMAN 0 2 0 10 EGFR signaling

Phosphatidylinositol 3-kinase regulatory subunit beta P85B_HUMAN 0 0 0 9 EGFR signaling
Mitogen-activated protein kinase 3 MK03_HUMAN 0 0 2 8 EGFR signaling

Protein diaphanous homolog 1 DIAP1_HUMAN 0 2 3 8 EGFR signaling
Epiplakin EPIPL_HUMAN 1 7 6 27 keratinization

Keratin, type II cytoskeletal 6A K2C6A_HUMAN 4 19 7 81 keratinization
Keratin, type II cytoskeletal 8 K2C8_HUMAN 0 0 1 52 keratinization
Keratin, type I cytoskeletal 15 K1C15_HUMAN 0 2 20 129 keratinization
Keratin, type I cytoskeletal 17 K1C17_HUMAN 0 11 0 35 keratinization

Acetyl-coenzyme A synthetase, cytoplasmic ACSA_HUMAN 3 6 2 92 lipid metabolism
ATP-citrate synthase ACLY_HUMAN 0 0 0 60 lipid metabolism
Fatty acid synthase FAS_HUMAN 10 6 9 87 lipid metabolism

Hydroxymethylglutaryl-CoA synthase, cytoplasmic HMCS1_HUMAN 41 51 31 290 lipid metabolism
E3 ubiquitin-protein ligase rififylin RFFL_HUMAN 2 3 2 21 protein degradation

LIM domain only protein 7 LMO7_HUMAN 1 0 0 20 protein degradation
Proteasome subunit alpha type-5 PSA5_HUMAN 0 0 0 13 protein degradation

C-Jun-amino-terminal kinase-interacting protein 4 JIP4_HUMAN 2 2 0 15 signaling
Ephrin type-A receptor 2 EPHA2_HUMAN 0 1 1 33 signaling

Interleukin-1 alpha IL1A_HUMAN 0 2 0 13 signaling
Major vault protein MVP_HUMAN 0 0 2 34 signaling

PDZ and LIM domain protein 4 PDLI4_HUMAN 66 39 50 0 signaling
Proline-rich AKT1 substrate 1 AKTS1_HUMAN 12 0 0 0 signaling

Protein phosphatase 1 regulatory subunit 1B PPR1B_HUMAN 0 0 0 18 signaling
Protein phosphatase 1 regulatory subunit 14B PP14B_HUMAN 0 3 1 10 signaling

Rho GTPase-activating protein 29 RHG29_HUMAN 0 0 2 83 signaling
Rho GTPase-activating protein 32 RHG32_HUMAN 0 0 1 12 signaling

ADP-ribosylation factor-like protein 6-interacting protein 4 AR6P4_HUMAN 12 2 5 0 mRNA splicing
BUD13 homolog BUD13_HUMAN 1 0 0 8 mRNA splicing

Heterogeneous nuclear ribonucleoproteins C1/C2 HNRPC_HUMAN 10 4 7 0 mRNA splicing
Protein PRRC2A PRC2A_HUMAN 0 4 2 12 mRNA splicing

Putative RNA-binding protein 15 RBM15_HUMAN 1 1 0 9 mRNA splicing
Serine/arginine-rich splicing factor 11 SRS11_HUMAN 0 1 1 18 mRNA splicing

YTH domain-containing protein 1 YTDC1_HUMAN 1 0 0 8 mRNA splicing

* Proteins with increased and decreased phosphorylation during tumorigenic progression are shown in black and red fonts, respectively.
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Our next approach was to analyze phosphorylation on a per site basis. Since AT cells were derived
from 10A, and TG3B and CA1a were derived from AT, the 3 comparisons used in this study were AT
versus 10A; TG3B versus AT; and CA1a versus AT. For these comparisons, phosphosites were included
in the pathway analyses if there were ≥3-fold differences in spectral counts. 512 phosphoproteins
that met this criterion were mapped to protein:protein interaction networks, and clusters with a
minimum of 3 nodes were visualized (Figure 1). Proto-oncogene tyrosine-protein kinase Src (SRC)
and mitogen-activated protein kinase 1 (MAPK1) signaling networks were the keynodes (i.e., most
interconnected) proteins in the largest 2 clusters, which is consistent with the prominence of these
pathways in cell and oncogenic signaling. The gene ontology (GO) biological process with the highest
degree of significance was “RNA splicing” found in cluster 3 (p = 3.63 × 10−32). RNA processing
proteins were also a major component of clusters 6 and 9. These data suggest that alternative splicing
may have a key role in the transformation of MCF10A cells to a fully metastatic phenotype.
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Figure 1. Pathway analysis of phosphoproteins involved in tumorigenic progression of the MCF10A
lineage. Proteins with phosphosite differences of 3-fold or greater by spectral counting were analyzed
by protein:protein interaction networking. Proteins are shown as nodes and interactions between
proteins as edges. Protein names can be found in Table S3. Proteins are color-coded according to a
network clustering algorithm. The most relevant gene ontology (GO) biological process terms for each
cluster are listed, along with the keynode proteins (listed as gene names).

Most phosphoproteins are phosphorylated on multiple sites. For perspective on the overall
phosphorylation status per protein, a phosphosite was scored as a −1 if there was a 3-fold decrease in
spectral counts between cell line A and B, and a +1 if a 3-fold increase was observed. The phosphosite
changes were then summed for each protein in order to determine how phosphorylation of clusters
change with tumorigenic progression (Table 2). For the largest 3 clusters, results show that expression
of oncogenic GTPase HRas (HRAS) in AT cells led to on overall hypophosphorylation compared
to 10A, there was a slight reversal as AT cells transition to TG3B, whereas CA1a cells are highly
hyperphosphorylated relative to AT. There are cluster-specific differences, but the overall trend suggests
a net increase in global phosphorylation in malignant CA1a cells.
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Table 2. Phosphorylation profiling of protein:protein interaction clusters.

Cluster GO Term: Biological Process
10A→AT AT→TG3B AT→CA1a

a b c a b c a b c

1 Signal Transduction −9 −0.17 51.9 2 0.04 38.9 45 0.83 75.9
2 Regulation of Metabolic Process −7 −0.16 44.4 2 0.04 37.8 18 0.40 68.9
3 RNA Splicing −10 −0.36 35.7 4 0.14 25.0 14 0.50 75.0
4 Programmed Cell Death 9 0.32 42.9 −12 −0.43 50.0 13 0.46 75.0
5 Cell Cycle −9 −0.36 52.0 −2 −0.08 48.0 8 0.32 72.0
6 RNA Metabolic Process −2 −0.12 55.6 −2 −0.12 33.3 2 0.11 61.1
7 Ubiquitin-Dep. Protein Catabolic Process 1 0.09 36.4 −1 −0.09 27.3 11 1.00 81.8
8 Cytoskeleton Organization 2 0.22 44.4 −4 −0.44 66.7 3 0.33 66.7
9 Regulation of mRNA Processing −2 −0.50 50.0 −1 −0.33 25.0 −1 −0.25 50.0

10 Nucleosome Assembly 0 0 0 1 0.33 33.3 0 0 66.7

a = Sum of phosphosite changes; b = Phosphosite changes per node; c = % of nodes in cluster with phosphosite changes.
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Since RNA Splicing was the most significant GO association, the phosphorylation of cluster
3 was examined in more detail (Figure 2). Nodes were color-coded depending on their net
change in phosphosite status, as either red (hypophosphorylated), white (no net change), or green
(hyperphosphorylated). Most cluster 3 proteins had a net change and were hyperphosphorylated
when comparing CA1a cells to AT, including serine and arginine rich splicing factors (SRSFs) 2, 9 & 11;
heterogeneous nuclear ribonucleoproteins (HNRNPs) K, H1 & F; thyroid hormone receptor-associated
protein 3 (THRAP3); and keynode SRRM2.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 17 

 

Since RNA Splicing was the most significant GO association, the phosphorylation of cluster 3 
was examined in more detail (Figure 2). Nodes were color-coded depending on their net change in 
phosphosite status, as either red (hypophosphorylated), white (no net change), or green 
(hyperphosphorylated). Most cluster 3 proteins had a net change and were hyperphosphorylated 
when comparing CA1a cells to AT, including serine and arginine rich splicing factors (SRSFs) 2, 9 & 
11; heterogeneous nuclear ribonucleoproteins (HNRNPs) K, H1 & F; thyroid hormone receptor-
associated protein 3 (THRAP3); and keynode SRRM2. 

 
Figure 2. Phosphorylation status profiling of proteins involved in RNA splicing. Proteins (cluster #3 
of Figure 1; labeled by gene name) were color-coded according to site-specific phosphorylation or 
dephosphorylation: nodes with net hypophosphorylation are colored red; nodes with no net change 
are white; and hyperphosphorylated nodes are in green. For example, SRRM2 protein in the CA1a/AT 
comparison had 6 phosphosites with ≥3-fold change in spectral counts, 4 of which increased in CA1a 
and 2 of which decreased for a net change of +2 and a dark green color-code. 

Keynodes are the most interconnected network proteins and are useful for systems analysis since 
they reduce the complexity of large networks and highlight important pathways. Keynode analysis 
in the 3 cell line comparisons independent of clustering is shown in Figure 3. β-Catenin (CTNNB1) 
and epidermal growth factor receptor (EGFR) are the primary keynodes in the AT/10A comparison, 
followed by the SRRM1 splicing factor. EGFR and SRRM1 are also found as keynodes for TG3B/AT, 
along with 14-3-3 protein zeta (YWHAZ) and α-catenin (CTNNA1) proteins. Note there are fewer 
overall connections for this comparison. In contrast, there is a large increase in the number of nodes 
and protein:protein interactions for the CA1a/AT comparison. MAPK1, MAPK2 and SRC [10] are the 
major keynodes, followed by splicing factors SRSF2, SRSF9 and SRSF11. These data show that 
splicing factors are altered at each stage of tumorigenic progression, and there is greater volume of 
phosphorylation changes as cells progress to a fully metastatic phenotype. 

Based on pathway analyses of phosphoproteomic data, we hypothesized that gene splicing 
would be altered during tumorigenic progression of 10A cells. To test for changes in splicing events, 
mRNA was extracted from the cell lines and profiled using microarray analysis. The human Clariom 
D assay uses over 540,000 probes to compare expression levels of genes (exons and splice junctions) 
as well as non-coding RNAs. To estimate RNA processing heterogeneity on a global basis, the 
standard deviation (SD) was calculated for exon probe expression levels between cell lines on a per 
gene basis (described in Figure S1). For the 3 comparisons, the vast majority of genes showed little 
exon probe variability as >95.8% of genes had probe SDs less than 1 (log2 scale, Table 3). However, 
the number of genes with exon SD ≥ 1 and the level of SD was much greater for the progression from 
AT→CA1a compared to either 10A→AT or AT→TG3B (Wilcoxon rank sum test p < 2.2 × 10−16, Figure 
4A). The number of genes with exon SD ≥ 1 for each comparison were consistent with other measures 
of mRNA splice variation (Figure 4B). Taken together, these data suggest that CA1a cells have greater 
mRNA splice variation as predicted by signaling pathway analysis. 

Figure 2. Phosphorylation status profiling of proteins involved in RNA splicing. Proteins (cluster #3
of Figure 1; labeled by gene name) were color-coded according to site-specific phosphorylation or
dephosphorylation: nodes with net hypophosphorylation are colored red; nodes with no net change
are white; and hyperphosphorylated nodes are in green. For example, SRRM2 protein in the CA1a/AT
comparison had 6 phosphosites with ≥3-fold change in spectral counts, 4 of which increased in CA1a
and 2 of which decreased for a net change of +2 and a dark green color-code.

Keynodes are the most interconnected network proteins and are useful for systems analysis since
they reduce the complexity of large networks and highlight important pathways. Keynode analysis
in the 3 cell line comparisons independent of clustering is shown in Figure 3. β-Catenin (CTNNB1)
and epidermal growth factor receptor (EGFR) are the primary keynodes in the AT/10A comparison,
followed by the SRRM1 splicing factor. EGFR and SRRM1 are also found as keynodes for TG3B/AT,
along with 14-3-3 protein zeta (YWHAZ) and α-catenin (CTNNA1) proteins. Note there are fewer
overall connections for this comparison. In contrast, there is a large increase in the number of nodes
and protein:protein interactions for the CA1a/AT comparison. MAPK1, MAPK2 and SRC [10] are
the major keynodes, followed by splicing factors SRSF2, SRSF9 and SRSF11. These data show that
splicing factors are altered at each stage of tumorigenic progression, and there is greater volume of
phosphorylation changes as cells progress to a fully metastatic phenotype.
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Figure 3. Keynode analysis of phosphoproteins with changes in phosphorylation status. Proteins
with phosphosite differences of 3-fold or greater by spectral counting were mapped by protein:protein
interaction networking. Keynodes (pink) were determined as proteins with the highest number of
interactions among nodes with net phosphorylation status of ≤−1 or ≥+1. Primary keynodes have
partners shaded in blue, secondary with partners shaded in green, and tertiary with partners shaded in
orange. Proteins with connections to multiple keynodes are in yellow. Proteins are listed by gene name.

Based on pathway analyses of phosphoproteomic data, we hypothesized that gene splicing would
be altered during tumorigenic progression of 10A cells. To test for changes in splicing events, mRNA
was extracted from the cell lines and profiled using microarray analysis. The human Clariom D assay
uses over 540,000 probes to compare expression levels of genes (exons and splice junctions) as well as
non-coding RNAs. To estimate RNA processing heterogeneity on a global basis, the standard deviation
(SD) was calculated for exon probe expression levels between cell lines on a per gene basis (described
in Figure S1). For the 3 comparisons, the vast majority of genes showed little exon probe variability as
>95.8% of genes had probe SDs less than 1 (log2 scale, Table 3). However, the number of genes with
exon SD ≥ 1 and the level of SD was much greater for the progression from AT→CA1a compared to
either 10A→AT or AT→TG3B (Wilcoxon rank sum test p < 2.2 × 10−16, Figure 4A). The number of
genes with exon SD ≥ 1 for each comparison were consistent with other measures of mRNA splice
variation (Figure 4B). Taken together, these data suggest that CA1a cells have greater mRNA splice
variation as predicted by signaling pathway analysis.
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Table 3. Pairwise comparison of mRNA expression changes for different levels of alternative splicing in the 10A model of tumorigenic progression.

Exon SD Range
Average Fold Gene Expression (% of Total)

AT/10A TG3B/AT CA1a/AT

0–1 0.2 ± 1.3 (98.81) 0.1 ± 1.4 (97.88) 0.2 ± 1.5 (95.83)
1–2 1.8 ± 5.0 (1.13) −2.6 ± 8.1 (1.98) 0.1 ± 8.2 (3.65)
≥2 5.5 ± 19.6 (0.06) −11.7 ± 15.7 (0.14) −137.1 ± 993.6 (0.53)

Top 100 Genes with Highest Expression Changes
Proportion of Genes with Exon SD ≥ 1 67% * 87% * 98% *
Average Fold Gene Expression (±SD) 5.9 ± 13.2 −13.0 ± 17.1 −149.9 ± 1037.1

* Significant enrichment of genes with SD > 1, p < 2.2 × 10−16.
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Figure 4. Estimate of mRNA splice variation between cell lines of the MCF10A lineage. (A) To calculate
exon probe standard deviation (SD), microarray probe log2 intensities of cell line A were subtracted
from cell line B for each exon within a gene (for coding genes with ≥3 exons). The SD was then
calculated for each gene’s exon group as an estimate of mRNA splice variation. Genes with SD ≥ 1 are
shown. (B) Comparison of exon SD ≥ 1 with alternate measures of alternative splicing: cassette exon
(1 exon is spliced out along with its flanking introns); alternative splice site (an alternative 5′ donor or
3′ acceptor site is used); and intron retention.

There were specific trends observed when comparing exon probe intensities of genes with high
SD in CA1a versus AT cultures. For example, the rate of gene transcription tended to be very consistent
for the first exon or 5′-most probes, and then diverged by the midpoint of the mRNA (see Figure 5A for
representative gene probe intensities and Figure 5B for the average of the top 10 genes with highest SD
values). These data suggest that changes in phosphorylation of splicing factors may affect alternative
splicing as well as the overall rate of transcription.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 17 

 

There were specific trends observed when comparing exon probe intensities of genes with high 
SD in CA1a versus AT cultures. For example, the rate of gene transcription tended to be very 
consistent for the first exon or 5′-most probes, and then diverged by the midpoint of the mRNA (see 
Figure 5A for representative gene probe intensities and Figure 5B for the average of the top 10 genes 
with highest SD values). These data suggest that changes in phosphorylation of splicing factors may 
affect alternative splicing as well as the overall rate of transcription.  

 
Figure 5. Tumorigenic progression of CA1a cells leads to specific patterns of mRNA splice variation. 
(A) Relative probe intensities for 3 representative genes: filamin A (FLNA), insulin-like growth factor 
binding protein 6 (IGFBP) and transforming growth factor beta 2 (TGFB2). Individual exon probes, 
shown as points along the gene, are ordered from 5′ of the mRNA on the left to 3′ on the right (x-axis). 
Probe intensities (log2 expression level) are on the y-axis. 3 independent replicates are shown for each 
cell line. Individual cell lines are either colored green or red as indicated in the figure. (B) Probe 
intensities were averaged for the top 10 genes with the highest exon SD values within the CA1a/AT 
comparison. The first point along the gene on the left represents the average probe intensities of the 
5’-most probes, the last point on the right are the 3′-most probes, and the rest of the probes were 
grouped into thirds and averaged. Error bars represent standard deviation. Probe intensities’ 
distributions were different across the length of the gene (ANOVA, p = 0.0019). 

Our next query was to determine whether the genes with high degree of exon expression 
variability have known roles in tumorigenic progression and cancer. For this analysis, genes with 
exon SD of ≥1 were compared against GO biological process terms (Figure 6). Results showed highly 
significant correlations in CA1a/AT for tumorigenic processes such as angiogenesis, cytokine-
mediated signaling, cell migration, apoptosis and epithelial cell differentiation. Specific proteins in 
this group which have known roles in breast cancer include fibroblast growth factor receptor 2 
(FGFR2) [11], filamin A (FLNA) [12,13], forkhead box A1 (FOXA1) [14], integrin subunit α5 (ITGA5) 
[15], intercellular adhesion molecule 1 (ICAM1) [16], interleukin 1β (IL1B) [17], interleukin 8 (CXCL8) 
[18], protein tyrosine kinase 6 (PTK6) [19], transcription factor SOX-9 [20], transforming growth factor 
β1 (TGFB1) [21], and Wnt-5a [22]. Please note that all three comparisons have significant associations 
for epithelial cell differentiation, but only the malignant CA1a cells within the CA1a/AT comparison 

Figure 5. Tumorigenic progression of CA1a cells leads to specific patterns of mRNA splice variation.
(A) Relative probe intensities for 3 representative genes: filamin A (FLNA), insulin-like growth factor
binding protein 6 (IGFBP) and transforming growth factor beta 2 (TGFB2). Individual exon probes,
shown as points along the gene, are ordered from 5′ of the mRNA on the left to 3′ on the right (x-axis).
Probe intensities (log2 expression level) are on the y-axis. 3 independent replicates are shown for
each cell line. Individual cell lines are either colored green or red as indicated in the figure. (B) Probe
intensities were averaged for the top 10 genes with the highest exon SD values within the CA1a/AT
comparison. The first point along the gene on the left represents the average probe intensities of
the 5’-most probes, the last point on the right are the 3′-most probes, and the rest of the probes
were grouped into thirds and averaged. Error bars represent standard deviation. Probe intensities’
distributions were different across the length of the gene (ANOVA, p = 0.0019).
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Our next query was to determine whether the genes with high degree of exon expression
variability have known roles in tumorigenic progression and cancer. For this analysis, genes with
exon SD of ≥1 were compared against GO biological process terms (Figure 6). Results showed highly
significant correlations in CA1a/AT for tumorigenic processes such as angiogenesis, cytokine-mediated
signaling, cell migration, apoptosis and epithelial cell differentiation. Specific proteins in this group
which have known roles in breast cancer include fibroblast growth factor receptor 2 (FGFR2) [11],
filamin A (FLNA) [12,13], forkhead box A1 (FOXA1) [14], integrin subunit α5 (ITGA5) [15], intercellular
adhesion molecule 1 (ICAM1) [16], interleukin 1β (IL1B) [17], interleukin 8 (CXCL8) [18], protein
tyrosine kinase 6 (PTK6) [19], transcription factor SOX-9 [20], transforming growth factor β1
(TGFB1) [21], and Wnt-5a [22]. Please note that all three comparisons have significant associations for
epithelial cell differentiation, but only the malignant CA1a cells within the CA1a/AT comparison is
significantly associated with angiogenesis. These results indicate that mRNA processing variation
affects genes associated with breast cancer development in this model system.

Finally, we wanted to analyze the set of genes with low exon variation (SD < 1) and with high
expression differences (≥2-fold). To get a perspective on the functionality of members of this group,
genes were analyzed by keynode pathway analysis (Figure 7). Interestingly, HRAS was found to be
the most interconnected gene/protein. As mentioned earlier, oncogenic HRAS was transfected into
10A cells to construct the AT cell line. It is not possible to determine the contributions of endogenous
and oncogenic HRAS mRNAs with the Clariom D assay, but results showed a 2.7-fold increase in
HRAS gene expression in the 10A→AT progression, and further 2.3- and 4.0-fold increases in HRAS in
AT→TG32B and AT→CA1a, respectively.
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3. Discussion

In this study, a global systems approach was applied to determine cell signaling changes associated
with tumorigenic progression in human breast cells. For this purpose phosphorylation profiling was
performed in human model cell lines based on parental MCF10A. Deep proteomic analysis is exquisite
in its ability to simultaneously identify thousands of unique proteins. However, relative levels of
protein abundance span several orders of magnitude, and there is less confidence in quantitation of low
abundance signaling molecules. This limitation can be mostly overcome in phosphoproteomic studies
by (i) enrichment of phosphopeptides by selective chromatography; and (ii) use of pathway analysis to
determine clusters of proteins that are altered in tandem. For example, if there is an uncertain level of
confidence when looking for individual biomarkers of tumorigenic progression due to the stochastic
nature of mass spectrometric peak selection for low abundance ions, we can be more certain of results
when pathway analysis indicates that a group of proteins (either evolutionarily related, or in the same
biochemical pathway, or as interacting partners) behave similarly.

In phoshoproteomic analysis of the 10A lineage, pathway analysis on proteins with differential
phosphosite abundance showed 10 clustered regions with at least 3 nodes (Figure 1). Signaling
networks within the largest two clusters, with SRC and MAPK1 as keynodes, have well documented
roles in cancer but these signaling pathways control multiple intracellular processes including
transcriptional regulation, proliferation, development, as well as tumor invasion and angiogenesis.
Cluster 3 was of particular interest since most of the proteins had a role in a singular function: RNA
splicing. This cluster also had the highest degree of interconnectedness based on protein:protein
interaction mapping. Furthermore, alterations in RNA splicing factors had an early and persistent
presence during tumorigenic progression, with changes observed in progression from 10A→AT,
AT→TG3B, and most notably from AT→CA1a (Figure 3).

In recent years aberrant alternative RNA splicing has increasingly been recognized as a
driver of cancer development, including breast cancer (reviewed in [23–25]). Phosphorylation and
dephosphorylation of spliceosomal components regulates their subcellular distribution, protein:protein
interactions, and activity [26]. Activation of cell signaling networks have been shown to affect
alternative splicing of cancer-related genes. For example, hyperactivation of the RAC-alpha
serine/threonine-protein kinase (AKT) pathway through Ras signaling can promote pro-survival
splice variants of the KLF-6 and Caspase-9 genes [27,28]. The MAPK pathway, which is frequently
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hyperactivated in tumors, can enhance the invasiveness of tumor cells by modulating the alternative
splicing of CD44 [29,30]. Specific kinases are known to phosphorylate splicing proteins, and
upregulation of these proteins are often associated with cancer development. One such protein,
SR-protein kinase 1 (SRPK1), is overexpressed in various human cancers including breast [31] and
correlates with tumor progression and invasiveness [32]. Upregulation of SRPK1 has been shown to
promote splice variants of the MAP2K2 gene and enhance MAPK pathway signaling, and increase
production of a pro-angiogenic splice variant of the VEGFA gene [33].

The 10A model of tumorigenic progression allows for predictions to be tested across different
types of analyses, including proteomics and transcriptomics. Based on our preliminary results,
we hypothesized that there would be a greater degree of alternative RNA splicing in CA1a cells
compared to AT and TG3B cultures. Alternative splicing was investigated by microarray analysis using
a chip designed for exon-level profiling, and results showed greater numbers of genes with spliced exon
cassettes, alternative splice sites, and intron retention in the CA1a/AT comparison. Another measure
we used to gauge RNA processing was to determine the variability in exon expression levels within a
gene by determining the SD of the exon probe intensities between pairwise comparisons of cell lines.
By this approach, results showed a greater number of genes with exon expression variability, and that
these genes had a higher degree of SD, in the CA1a/AT comparison versus the AT/10A and TG3B/AT
comparisons as would be predicted by their respective levels of tumorigenicity. To determine whether
genes with high SD values had relevance to tumorigenic progression, we mapped these subgroups
against GO terms known to be involved in cancer. These results showed highly significant associations
for angiogenesis, cytokine-mediated signaling, cell migration, programmed cell death and epithelial
cell differentiation for the CA1a/AT comparison.

The outcomes of alternative splicing can be varied, including changes in protein stability and
expression level, alterations in protein function, and relocation to different subcellular areas [34].
We observed higher incidences of intron retention, alternative 5′ donor and 3′ acceptor sites, and
elimination of exon cassettes with tumorigenic progression. However, we also observed very specific
patterns in genes with the highest degrees of exon expression variability. Firstly, expression levels of
the 5′-most probes tended to be similar for AT and CA1a cells, whereas downstream exons trended
lower in CA1a. These data are consistent with previous reports showing that splicing is tightly
coupled with transcription and mRNA stability [35–37]. Secondly, the mRNA expression level of
genes with high splice variation (SD ≥ 2; Table 3) trended in synchronization with RNA Splicing
cluster phosphorylation (Table 2). That is, overall hyperphosphorylation of splicing factors in CA1a
versus AT led to a decrease in expression level of highly spliced mRNAs in CA1a (i.e., +14 sum of
phosphosite changes = −137.1-fold change in gene expression), whereas hypophosphorylation had
the opposite effect in AT versus 10A (−10 sum of phosphosite changes = 5.5-fold change in gene
expression). Genes with high exon SD constitute a majority of the top genes with fold expression
differences (Table 3), therefore qualitative differences in mRNA levels should be taken into careful
consideration when making quantitative estimates.

Previously, we investigated signaling in the 10A lineage by profiling protein abundance within
lipid rafts [9]. That study showed that filamin A, an actin cross-linking protein and scaffold for over
90 binding partners, had 10-fold lower abundance in lipid rafts of CA1a cells compared to parental
10A, and this decrease was found to correlate with reduced total cellular levels. Here we show that
the mechanism for decreased cellular content is likely the result of altered RNA processing of FNLA
(Figure 5A). In comparing CA1a mRNAs to 10A, the first 3 probes of FLNA overlap in expression,
which is followed by a steep drop in expression for subsequent probes, and a 572-fold decrease in
relative CA1a mRNA expression overall. Multiple splicing events (alternative splice sites; cassette
exon omissions; intron retentions) were observed for the CA1a/AT comparison. Down-regulation of
filamin A in breast and lung cancer cell models has been shown to stimulate proliferation, migration,
invasion and metastasis formation [38,39], and alternative splicing of filamin A has been reported to
have a role in differentiation and organogenesis [13,40]. It is plausible that altered phosphorylation of
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splicing factors during tumorigenic progression in the 10A model leads to alternative splicing of genes
such as FLNA that are associated with differentiation and metastasis, but further work is required to
directly link splicing factors with specific gene products.

Microarray analyses in the 10A model showed that genes with high exon expression variation
were associated with greater fold changes in expression level, and that many of these genes/proteins
have known roles in cancer. We also posed that question of whether the genes with high fold change
differences and low exon SD are also linked with tumorigenic progression. Keynode analysis on this
subset showed a network of genes associated with HRAS signaling. HRAS encodes a protein involved
in transducing growth and differentiation signals from the plasma membrane to intracellular signal
cascades such as the MAPK and AKT pathways [41]. AT cells were transfected with a constitutively
active HRAS gene, but these types of mutations are rare in human breast cancer, where specific genetic
polymorphisms [42,43] and higher expression levels [44,45] are more prevalent. For the 10A lineage,
in addition to an activating mutation, HRAS gene expression levels were found to continuously rise
with tumorigenic progression which underscores the importance of this signaling protein in the context
of this model. One of the limitations of this study was the use of a single in vitro model of human
tumorigenic progression. Future studies will focus on other models that are not driven by HRAS for
comparison of alternative splicing outcomes.

4. Materials and Methods

4.1. Cell Culture

Description of the MCF10A lineage (MCF10A, MCF10AT, MCF10ATG3B and MCF10CA1a) and
cell culture conditions are described elsewhere [9], and a summary of phenotypes can be found
in Table S1. Briefly, cells were cultured in Dulbecco’s Modified Eagle Medium/F-12 medium
(DMEM/F-12, Invitrogen, Waltham, MA, USA) supplemented with 10 µg/mL of human insulin
(Invitrogen), 20 ng/mL of epidermal growth factor (Invitrogen), 0.5 µg/mL of hydrocortisone (Sigma,
St. Louis, MO, USA), 5% horse serum (Invitrogen), 100 U/mL of penicillin (Invitrogen), and 100 µg/mL
of streptomycin (Invitrogen). Cells were maintained in a humidified environment of 5% CO2/95% air
at 37 ◦C.

4.2. Phosphopeptide Enrichment

Cell cultures growing in exponential phase growth on 100 mm plates were washed 3× with ice
cold HBSS buffer (Thermo Fisher, Waltham, MA, USA) and then lysed with 10 M urea (Invitrogen),
50 mM ammonium bicarbonate (J. T. Baker, Waltham, MA, USA), 0.5 mM EDTA (Gibco, Waltham,
MA, USA), 1 mM NaF (Sigma), 1 mM sodium orthovanadate (Sigma) and 2 mM β-glycerophosphate
(Sigma). Lysates were scraped and transferred to Eppendorf tubes, vortexed and pelleted. Protein
concentrations of the supernatants were estimated by BCA assay (Thermo Fisher) and stored at−80 ◦C
until further use. 1 mg of protein was reduced with 5 mM TCEP (Fluka, Waltham, MA, USA) in
0.025% ProteaseMax (Promega, Madison, WI, USA) for 30 min, followed by alkylation with 15 mM
iodoacetamide (Sigma) for 30 min. Samples were digested overnight at 37 ◦C with 7.5 mg trypsin
(Promega) in 10% acetonitrile (Sigma), 25 mM ammonium bicarbonate and 1 M urea. Peptides were
desalted with a Sep-Pak Plus C18 Cartridge (Waters Corporation, Milford, MA, USA) and dried.
Phosphopeptides were enriched using 4 mg of 5 µm Titansphere TiO2 beads (GL Sciences, Tokyo,
Japan) in 65% acetonitrile, 2% trifluoroacetic acid (Thermo Fisher) with glutamic acid saturation.
Phosphopeptides were washed, eluted from the beads and dried for long term storage.

4.3. LC/MS/MS

For each sample, 10% of peptides were separated by reverse phase C18 chromatography and
analyzed on a LTQ-XL mass spectrometer (Thermo Fisher) over a 70 min gradient. MS1 was performed
in enhanced mode over 400–1800 m/z. MS2 included fragmentation of the top 7 ions with CID (35%
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collision energy; 0.25 activation Q). MS3 was triggered if a neutral loss of phosphoric acid (98 Da) was
detected in the top 3 fragment ions. 3 technical replicates were run for each biological triplicate.

4.4. Data Analysis

Peak lists were generated with Proteome Discoverer (Thermo; v1.3). MS2 and MS3 spectra
were scored with Mascot (Matrix Science; v2.3) against a human protein database from Uniprot
(20,323 sequences). Search criteria included up to 1 missed tryptic cleavage, dynamic modifications
of oxidation (M), phosphorylation (S,T,Y), acetylation (protein N-terminal); and a static modification
of cysteine (carbamidomethylation). Data was imported in Scaffold (Proteome Software; v3.3),
filtered to 1.0% peptide FDR, and then imported into ScaffoldPTM (v1.1) for organization of
phosphosites by location and site probability. Relative quantitation was performed by spectral
counting, and counts were summed for each of the 9 runs per cell line. Pathway analysis was
performed by processing filtered data through the Reactome FI plugin for Cytoscape (v3.5) which
included a clustering algorithm, and through enrichment analysis against GO Biological Process
terms (available online: www.geneontology.org). Significance of GO search terms were calculated
as p-values using the Fisher’s exact test with FDR multiple test correction. The proteomics datasets
generated and/or analyzed during the current study are available in the Zenodo repository, http:
//doi.org/10.5281/zenodo.1308091.

4.5. Alternative Splicing and Relative Gene Expression

Cell cultures growing in exponential growth phase on 100 mm plates were washed 3× with
ice-cold HBSS, excess liquid removed, and total RNA was extracted using Trizol reagent (Invitrogen).
RNA splicing was assessed using the Clariom D Human assay (Applied Biosystems, Foster City, CA,
USA) using biological triplicate samples for each cell line. Data was analyzed using the Transcriptome
Analysis Console (Thermo Fisher; v4.01). Variations in global mRNA splicing were gauged, per
gene, by subtracting the average log2 exon probe expression level of cell line 1 versus cell line 2,
and then determining the standard deviation. This was performed for coding genes with at least 3
exon probes only, and junction probes were excluded. This is explained more clearly in Figure S1.
Comparative relative fold differences in mRNA expression levels and exon events (i.e., alternative
splice sites, exon cassettes and intron retention) were computed by the Transcriptome Analysis Console
(Applied Biosystems).

5. Conclusions

In summary, a systems approach identified RNA splicing as a significant intracellular signaling
pathway that is altered during tumorigenic progression of human breast cell cultures. Changes in
alternative mRNA splicing was validated using a transcriptomic approach which showed a large
increase in splicing changes when cells progressed from hyperplastic to metastatic in the context of this
model system. Splicing factor phosphorylation trended in synchronization with overall gene splicing
and mRNA expression levels of alternatively spliced genes. The MCF10A lineage and similar human
breast cancer models could be used to test novel cancer therapeutics which target reprogramming of
splicing factor networks [46–48].
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2847/s1.

Author Contributions: J.A.C. performed proteomic experiments and wrote the manuscript. N.J.C. contributed to
statistical and bioinformatic analysis of the microarray data and edited the manuscript. B.T. and T.J.G. performed
the microarray analyses. A.A.D. provided financial support and edited the manuscript. P.M.S. provided support
for mass spectrometry.

Funding: The Wayne State University Proteomics Core, and this work, are supported through the NIH Center
Grant P30 ES 020957, the NIH Cancer Center Support Grant P30 CA 022453 and the NIH Shared Instrumentation
Grant S10 OD 010700.

www.geneontology.org
http://doi.org/10.5281/zenodo.1308091
http://doi.org/10.5281/zenodo.1308091
http://www.mdpi.com/1422-0067/19/10/2847/s1
http://www.mdpi.com/1422-0067/19/10/2847/s1


Int. J. Mol. Sci. 2018, 19, 2847 15 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kruger, R.; Kubler, D.; Pallisse, R.; Burkovski, A.; Lehmann, W.D. Protein and proteome phosphorylation
stoichiometry analysis by element mass spectrometry. Anal. Chem. 2006, 78, 1987–1994. [CrossRef] [PubMed]

2. Vlastaridis, P.; Kyriakidou, P.; Chaliotis, A.; Van de Peer, Y.; Oliver, S.G.; Amoutzias, G.D. Estimating the
total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience 2017, 6,
1–11. [CrossRef] [PubMed]

3. Caruso, J.A.; Carruthers, N.; Shin, N.; Gill, R.; Stemmer, P.M.; Rosenspire, A. Mercury alters endogenous
phosphorylation profiles of syk in murine b cells. BMC Immunol. 2017, 18, 37. [CrossRef] [PubMed]

4. Caruso, J.A.; Stemmer, P.M.; Dombkowski, A.; Caruthers, N.J.; Gill, R.; Rosenspire, A.J. A systems toxicology
approach identifies lyn as a key signaling phosphoprotein modulated by mercury in a B lymphocyte cell
model. Toxicol. Appl. Pharmacol. 2014, 276, 47–54. [CrossRef] [PubMed]

5. Soule, H.D.; Maloney, T.M.; Wolman, S.R.; Peterson, W.D., Jr.; Brenz, R.; McGrath, C.M.; Russo, J.; Pauley, R.J.;
Jones, R.F.; Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast
epithelial cell line, MCF-10. Cancer Res. 1990, 50, 6075–6086. [PubMed]

6. Russo, J.; Tait, L.; Russo, I.H. Morphological expression of cell transformation induced by c-Ha-ras oncogene
in human breast epithelial cells. J. Cell Sci. 1991, 99, 453–463. [PubMed]

7. Dawson, P.J.; Wolman, S.R.; Tait, L.; Heppner, G.H.; Miller, F.R. MCF10AT: A model for the evolution of
cancer from proliferative breast disease. Am. J. Pathol. 1996, 148, 313–319. [PubMed]

8. Santner, S.J.; Dawson, P.J.; Tait, L.; Soule, H.D.; Eliason, J.; Mohamed, A.N.; Wolman, S.R.; Heppner, G.H.;
Miller, F.R. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT
cells. Breast Cancer Res. Treat. 2001, 65, 101–110. [CrossRef] [PubMed]

9. Caruso, J.A.; Stemmer, P.M. Proteomic profiling of lipid rafts in a human breast cancer model of tumorigenic
progression. Clin. Exp. Metastasis 2011, 28, 529–540. [CrossRef] [PubMed]

10. Elsberger, B. Translational evidence on the role of Src kinase and activated Src kinase in invasive breast
cancer. Crit. Rev. Oncol. Hematol. 2014, 89, 343–351. [CrossRef] [PubMed]

11. Lei, H.; Deng, C.X. Fibroblast growth factor receptor 2 signaling in breast cancer. Int. J. Biol. Sci. 2017, 13,
1163–1171. [CrossRef] [PubMed]

12. Tian, H.M.; Liu, X.H.; Han, W.; Zhao, L.L.; Yuan, B.; Yuan, C.J. Differential expression of filamin a and its
clinical significance in breast cancer. Oncol. Lett. 2013, 6, 681–686. [CrossRef] [PubMed]

13. Savoy, R.M.; Ghosh, P.M. The dual role of filamin a in cancer: Cannot live with (too much of) it, cannot live
without it. Endocr. Relat. Cancer 2013, 20, R341–R356. [CrossRef] [PubMed]

14. Bernardo, G.M.; Bebek, G.; Ginther, C.L.; Sizemore, S.T.; Lozada, K.L.; Miedler, J.D.; Anderson, L.A.;
Godwin, A.K.; Abdul-Karim, F.W.; Slamon, D.J.; et al. Foxa1 represses the molecular phenotype of basal
breast cancer cells. Oncogene 2013, 32, 554–563. [CrossRef] [PubMed]

15. Qin, L.; Chen, X.; Wu, Y.; Feng, Z.; He, T.; Wang, L.; Liao, L.; Xu, J. Steroid receptor coactivator-1 upregulates
integrin α(5) expression to promote breast cancer cell adhesion and migration. Cancer Res. 2011, 71, 1742–1751.
[CrossRef] [PubMed]

16. Haghi, A.R.; Vahedi, A.; Shekarchi, A.A.; Kamran, A. Correlation of serum intercellular adhesion molecule 1
and vascular endothelial growth factor with tumor grading and staging in breast cancer patients. J. Cancer
Res. Ther. 2017, 13, 257–261. [PubMed]

17. Lewis, A.M.; Varghese, S.; Xu, H.; Alexander, H.R. Interleukin-1 and cancer progression: The emerging role
of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 2006, 4,
48. [CrossRef] [PubMed]

18. Singh, J.K.; Simoes, B.M.; Howell, S.J.; Farnie, G.; Clarke, R.B. Recent advances reveal il-8 signaling as a
potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013, 15, 210. [CrossRef] [PubMed]

19. Ostrander, J.H.; Daniel, A.R.; Lange, C.A. Brk/ptk6 signaling in normal and cancer cell models.
Curr. Opin. Pharmacol. 2010, 10, 662–669. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ac051896z
http://www.ncbi.nlm.nih.gov/pubmed/16536437
http://dx.doi.org/10.1093/gigascience/giw015
http://www.ncbi.nlm.nih.gov/pubmed/28327990
http://dx.doi.org/10.1186/s12865-017-0221-0
http://www.ncbi.nlm.nih.gov/pubmed/28716125
http://dx.doi.org/10.1016/j.taap.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24440445
http://www.ncbi.nlm.nih.gov/pubmed/1975513
http://www.ncbi.nlm.nih.gov/pubmed/1885681
http://www.ncbi.nlm.nih.gov/pubmed/8546221
http://dx.doi.org/10.1023/A:1006461422273
http://www.ncbi.nlm.nih.gov/pubmed/11261825
http://dx.doi.org/10.1007/s10585-011-9389-5
http://www.ncbi.nlm.nih.gov/pubmed/21533873
http://dx.doi.org/10.1016/j.critrevonc.2013.12.009
http://www.ncbi.nlm.nih.gov/pubmed/24388104
http://dx.doi.org/10.7150/ijbs.20792
http://www.ncbi.nlm.nih.gov/pubmed/29104507
http://dx.doi.org/10.3892/ol.2013.1454
http://www.ncbi.nlm.nih.gov/pubmed/24137390
http://dx.doi.org/10.1530/ERC-13-0364
http://www.ncbi.nlm.nih.gov/pubmed/24108109
http://dx.doi.org/10.1038/onc.2012.62
http://www.ncbi.nlm.nih.gov/pubmed/22391567
http://dx.doi.org/10.1158/0008-5472.CAN-10-3453
http://www.ncbi.nlm.nih.gov/pubmed/21343398
http://www.ncbi.nlm.nih.gov/pubmed/28643744
http://dx.doi.org/10.1186/1479-5876-4-48
http://www.ncbi.nlm.nih.gov/pubmed/17096856
http://dx.doi.org/10.1186/bcr3436
http://www.ncbi.nlm.nih.gov/pubmed/24041156
http://dx.doi.org/10.1016/j.coph.2010.08.007
http://www.ncbi.nlm.nih.gov/pubmed/20832360


Int. J. Mol. Sci. 2018, 19, 2847 16 of 17

20. Richtig, G.; Aigelsreiter, A.; Schwarzenbacher, D.; Ress, A.L.; Adiprasito, J.B.; Stiegelbauer, V.; Hoefler, G.;
Schauer, S.; Kiesslich, T.; Kornprat, P.; et al. Sox9 is a proliferation and stem cell factor in hepatocellular
carcinoma and possess widespread prognostic significance in different cancer types. PLoS ONE 2017, 12,
e0187814. [CrossRef] [PubMed]

21. Zarzynska, J.M. Two faces of tgf-beta1 in breast cancer. Mediators Inflamm. 2014, 2014, 141747. [CrossRef]
[PubMed]

22. Kobayashi, Y.; Kadoya, T.; Amioka, A.; Hanaki, H.; Sasada, S.; Masumoto, N.; Yamamoto, H.; Arihiro, K.;
Kikuchi, A.; Okada, M. Wnt5a-induced cell migration is associated with the aggressiveness of estrogen
receptor-positive breast cancer. Oncotarget 2018, 9, 20979–20992. [CrossRef] [PubMed]

23. Silipo, M.; Gautrey, H.; Tyson-Capper, A. Deregulation of splicing factors and breast cancer development.
J. Mol. Cell Biol. 2015, 7, 388–401. [CrossRef] [PubMed]

24. Ladomery, M. Aberrant alternative splicing is another hallmark of cancer. Int. J. Cell Biol. 2013, 2013, 463786.
[CrossRef] [PubMed]

25. Climente-Gonzalez, H.; Porta-Pardo, E.; Godzik, A.; Eyras, E. The functional impact of alternative splicing in
cancer. Cell Rep. 2017, 20, 2215–2226. [CrossRef] [PubMed]

26. Sahebi, M.; Hanafi, M.M.; van Wijnen, A.J.; Azizi, P.; Abiri, R.; Ashkani, S.; Taheri, S. Towards understanding
pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016, 587, 107–119. [CrossRef] [PubMed]

27. Yea, S.; Narla, G.; Zhao, X.; Garg, R.; Tal-Kremer, S.; Hod, E.; Villanueva, A.; Loke, J.; Tarocchi, M.; Akita, K.;
et al. Ras promotes growth by alternative splicing-mediated inactivation of the klf6 tumor suppressor in
hepatocellular carcinoma. Gastroenterology 2008, 134, 1521–1531. [CrossRef] [PubMed]

28. Shultz, J.C.; Goehe, R.W.; Wijesinghe, D.S.; Murudkar, C.; Hawkins, A.J.; Shay, J.W.; Minna, J.D.; Chalfant, C.E.
Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via
phosphorylation of SRp30a. Cancer Res. 2010, 70, 9185–9196. [CrossRef] [PubMed]

29. Fang, X.J.; Jiang, H.; Zhao, X.P.; Jiang, W.M. The role of a new CD44st in increasing the invasion capability of
the human breast cancer cell line MCF-7. BMC Cancer 2011, 11, 290. [CrossRef] [PubMed]

30. Locatelli, A.; Lange, C.A. Met receptors induce sam68-dependent cell migration by activation of alternate
extracellular signal-regulated kinase family members. J. Biol. Chem. 2011, 286, 21062–21072. [CrossRef]
[PubMed]

31. Hayes, G.M.; Carrigan, P.E.; Miller, L.J. Serine-arginine protein kinase 1 overexpression is associated with
tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic
carcinomas. Cancer Res. 2007, 67, 2072–2080. [CrossRef] [PubMed]

32. Czubaty, A.; Piekielko-Witkowska, A. Protein kinases that phosphorylate splicing factors: Roles in cancer
development, progression and possible therapeutic options. Int. J. Biochem. Cell Biol. 2017, 91, 102–115.
[CrossRef] [PubMed]

33. Amin, E.M.; Oltean, S.; Hua, J.; Gammons, M.V.; Hamdollah-Zadeh, M.; Welsh, G.I.; Cheung, M.K.; Ni, L.;
Kase, S.; Rennel, E.S.; et al. Wt1 mutants reveal srpk1 to be a downstream angiogenesis target by altering
vegf splicing. Cancer Cell 2011, 20, 768–780. [CrossRef] [PubMed]

34. David, C.J.; Manley, J.L. Alternative pre-mrna splicing regulation in cancer: Pathways and programs
unhinged. Genes Dev. 2010, 24, 2343–2364. [CrossRef] [PubMed]

35. Maniatis, T.; Reed, R. An extensive network of coupling among gene expression machines. Nature 2002, 416,
499–506. [CrossRef] [PubMed]

36. Moore, M.J.; Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation.
Cell 2009, 136, 688–700. [CrossRef] [PubMed]

37. Pandit, S.; Wang, D.; Fu, X.D. Functional integration of transcriptional and RNA processing machineries.
Curr. Opin. Cell Biol. 2008, 20, 260–265. [CrossRef] [PubMed]

38. Xu, Y.; Bismar, T.A.; Su, J.; Xu, B.; Kristiansen, G.; Varga, Z.; Teng, L.; Ingber, D.E.; Mammoto, A.; Kumar, R.;
et al. Filamin a regulates focal adhesion disassembly and suppresses breast cancer cell migration and
invasion. J. Exp. Med. 2010, 207, 2421–2437. [CrossRef] [PubMed]

39. Zhang, Y.; Zhu, T.; Liu, J.; Liu, J.; Gao, D.; Su, T.; Zhao, R. FLNa negatively regulated proliferation and
metastasis in lung adenocarcinoma A549 cells via suppression of EGFR. Acta Biochim. Biophys. Sin. 2018, 50,
164–170. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0187814
http://www.ncbi.nlm.nih.gov/pubmed/29121666
http://dx.doi.org/10.1155/2014/141747
http://www.ncbi.nlm.nih.gov/pubmed/24891760
http://dx.doi.org/10.18632/oncotarget.24761
http://www.ncbi.nlm.nih.gov/pubmed/29765514
http://dx.doi.org/10.1093/jmcb/mjv027
http://www.ncbi.nlm.nih.gov/pubmed/25948865
http://dx.doi.org/10.1155/2013/463786
http://www.ncbi.nlm.nih.gov/pubmed/24101931
http://dx.doi.org/10.1016/j.celrep.2017.08.012
http://www.ncbi.nlm.nih.gov/pubmed/28854369
http://dx.doi.org/10.1016/j.gene.2016.04.057
http://www.ncbi.nlm.nih.gov/pubmed/27154819
http://dx.doi.org/10.1053/j.gastro.2008.02.015
http://www.ncbi.nlm.nih.gov/pubmed/18471523
http://dx.doi.org/10.1158/0008-5472.CAN-10-1545
http://www.ncbi.nlm.nih.gov/pubmed/21045158
http://dx.doi.org/10.1186/1471-2407-11-290
http://www.ncbi.nlm.nih.gov/pubmed/21749678
http://dx.doi.org/10.1074/jbc.M110.211409
http://www.ncbi.nlm.nih.gov/pubmed/21489997
http://dx.doi.org/10.1158/0008-5472.CAN-06-2969
http://www.ncbi.nlm.nih.gov/pubmed/17332336
http://dx.doi.org/10.1016/j.biocel.2017.05.024
http://www.ncbi.nlm.nih.gov/pubmed/28552434
http://dx.doi.org/10.1016/j.ccr.2011.10.016
http://www.ncbi.nlm.nih.gov/pubmed/22172722
http://dx.doi.org/10.1101/gad.1973010
http://www.ncbi.nlm.nih.gov/pubmed/21041405
http://dx.doi.org/10.1038/416499a
http://www.ncbi.nlm.nih.gov/pubmed/11932736
http://dx.doi.org/10.1016/j.cell.2009.02.001
http://www.ncbi.nlm.nih.gov/pubmed/19239889
http://dx.doi.org/10.1016/j.ceb.2008.03.001
http://www.ncbi.nlm.nih.gov/pubmed/18436438
http://dx.doi.org/10.1084/jem.20100433
http://www.ncbi.nlm.nih.gov/pubmed/20937704
http://dx.doi.org/10.1093/abbs/gmx135
http://www.ncbi.nlm.nih.gov/pubmed/29272322


Int. J. Mol. Sci. 2018, 19, 2847 17 of 17

40. Zhang, X.; Chen, M.H.; Wu, X.; Kodani, A.; Fan, J.; Doan, R.; Ozawa, M.; Ma, J.; Yoshida, N.; Reiter, J.F.;
et al. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 2016, 166,
1147–1162. [CrossRef] [PubMed]

41. Braun, B.S.; Shannon, K. Targeting Ras in myeloid leukemias. Clin. Cancer Res. 2008, 14, 2249–2252.
[CrossRef] [PubMed]

42. Peng, S.; Lu, B.; Ruan, W.; Zhu, Y.; Sheng, H.; Lai, M. Genetic polymorphisms and breast cancer risk: Evidence
from meta-analyses, pooled analyses, and genome-wide association studies. Breast Cancer Res. Treat. 2011,
127, 309–324. [CrossRef] [PubMed]

43. Zhang, C.; Lv, G.Q.; Yu, X.M.; Gu, Y.L.; Li, J.P.; Du, L.F.; Zhou, P. Current evidence on the relationship
between HRAS1 polymorphism and breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2011, 128,
467–472. [CrossRef] [PubMed]

44. Clair, T.; Miller, W.R.; Cho-Chung, Y.S. Prognostic significance of the expression of a Ras protein with
a molecular weight of 21,000 by human breast cancer. Cancer Res. 1987, 47, 5290–5293. [PubMed]

45. Clark, G.J.; Der, C.J. Aberrant function of the Ras signal transduction pathway in human breast cancer.
Breast Cancer Res. Treat. 1995, 35, 133–144. [CrossRef] [PubMed]

46. Martinez-Montiel, N.; Anaya-Ruiz, M.; Perez-Santos, M.; Martinez-Contreras, R.D. Alternative splicing in
breast cancer and the potential development of therapeutic tools. Genes 2017, 8, 217. [CrossRef] [PubMed]

47. Marzese, D.M.; Manughian-Peter, A.O.; Orozco, J.I.J.; Hoon, D.S.B. Alternative splicing and cancer metastasis:
Prognostic and therapeutic applications. Clin. Exp. Metastasis 2018. [CrossRef] [PubMed]

48. Lin, J.C. Therapeutic applications of targeted alternative splicing to cancer treatment. Int. J. Mol. Sci. 2017,
19, 75. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cell.2016.07.025
http://www.ncbi.nlm.nih.gov/pubmed/27565344
http://dx.doi.org/10.1158/1078-0432.CCR-07-1005
http://www.ncbi.nlm.nih.gov/pubmed/18413813
http://dx.doi.org/10.1007/s10549-011-1459-5
http://www.ncbi.nlm.nih.gov/pubmed/21445572
http://dx.doi.org/10.1007/s10549-011-1344-2
http://www.ncbi.nlm.nih.gov/pubmed/21221763
http://www.ncbi.nlm.nih.gov/pubmed/3308076
http://dx.doi.org/10.1007/BF00694753
http://www.ncbi.nlm.nih.gov/pubmed/7612899
http://dx.doi.org/10.3390/genes8100217
http://www.ncbi.nlm.nih.gov/pubmed/28981467
http://dx.doi.org/10.1007/s10585-018-9905-y
http://www.ncbi.nlm.nih.gov/pubmed/29845349
http://dx.doi.org/10.3390/ijms19010075
http://www.ncbi.nlm.nih.gov/pubmed/29283381
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Cell Culture 
	Phosphopeptide Enrichment 
	LC/MS/MS 
	Data Analysis 
	Alternative Splicing and Relative Gene Expression 

	Conclusions 
	References

