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Early diagnosis of pandemic diseases such as COVID-19 can prove beneficial in dealing with difficult situations and helping
radiologists and other experts manage staffing more effectively. The application of deep learning techniques for genetics, mi-
croscopy, and drug discovery has created a global impact. It can enhance and speed up the process of medical research and
development of vaccines, which is required for pandemics such as COVID-19. However, current drugs such as remdesivir and
clinical trials of other chemical compounds have not shown many impressive results. Therefore, it can take more time to provide
effective treatment or drugs. In this paper, a deep learning approach based on logistic regression, SVM, Random Forest, and QSAR
modeling is suggested. QSAR modeling is done to find the drug targets with protein interaction along with the calculation of
binding affinities. Then deep learning models were used for training the molecular descriptor dataset for the robust discovery of
drugs and feature extraction for combating COVID-19. Results have shown more significant binding affinities (greater than —18)
for many molecules that can be used to block the multiplication of SARS-CoV-2, responsible for COVID-19.

1. Introduction

The first case of COVID-19 was detected in December
2019, and from then, it has overgrown, affecting millions
of people around the globe. More than 2 million cases
have been confirmed, with over 0.15 million deaths
globally [1, 2]. Drug repurposing is defined as discovering
and identifying newer applications for existing drugs in
the treatment of various diseases [3]. Recent advance-
ments in drug discovery using deep learning have made it
possible to speed up identifying and developing new
pharmaceuticals [4]. Various drugs, such as Arbidol,

remdesivir, and favipiravir, have been tested to cure
COVID-19 patients and many others are in the testing
phase [4]. Biomedical researchers are investigating drugs
for treating the patients, with an attempt to develop a
vaccine for preventing the virus [5]. On the other hand,
computer scientists have developed early detection
models for COVID-19 from CT scans and X-ray images
[5]. These techniques are a subset of deep learning and
have been applied successfully in various fields [5]. Over
the past few years, a significant increase in the quantity of
biomedical data has resulted in the emergence of new
technologies such as parallel synthesis and HTS (high-
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throughput screening), to mining large-scale chemical
data [6]. Since COVID-19 is transmitted from person to
person, electronic devices based on artificial intelligence
may play a crucial role in preventing the spread of this
virus. With the expansion of the role of health epide-
miologists, the pervasiveness of electronic health data has
also increased [7]. The increasing availability of electronic
health data provides a massive opportunity for healthcare
to enhance healthcare for both discoveries and practical
applications [7]. For training machine learning algo-
rithms, these data can be used to improve their decision-
making in terms of disease prediction [7].

As the increase in the number of cases infected by
coronavirus rapidly outnumbered the medical services
available in hospitals, a significant burden on healthcare
systems was imposed [7]. Because of the limited supply of
hospital services and the delay in time for diagnostic test
results, it is common for health professionals to provide
patients with sufficient medical care. However, since the
number of cases tested for coronavirus is growing in-
creasingly day by day, testing is not feasible due to time and
cost factors [7]. This paper aims at suggesting a technique
based on deep learning which would be helpful in rapidly
finding the drugs for combating the pandemic. Deep
learning is currently an area that is quickly emerging and
constantly expanding. To optimize its performance, it
programs computers using data. Using the training data or
its previous encounters, it learns the parameters to optimize
the computer programs. It can also forecast the future using
the data. Deep learning also lets us operate the statistics of
the data to construct a mathematical model. The main goal
of deep learning is that it learns without any human in-
tervention from the feed data, and it automatically learns
from the data (experience) provided and gives us the desired
output where it searches the data trends/patterns [8]. Deep
learning techniques have achieved greater efficiency in
various tasks, including drug development, prediction of
properties, and drug target forecasting. As drug develop-
ment is a complex task, the deep learning approach makes
this process faster and cheaper.

The challenges with COVID-19 at present make it
necessary to look for some alternatives in medicine or drugs
to combat the rise of cases due to COVID-19 infection. One
of the significant challenges is the processing delay for the
finalization of the drugs for vaccine formulation. However,
many pharmaceuticals companies have achieved success to
some extent after passing through different trials. Hence,
predicting the most probable drugs for the vaccination
formulation can speed up vaccine formulation and thus save
many human lives. Another challenge is that most of the
testing for vaccine formulation is done on a clinical basis
where all the drug combinations are tried to get the desired
selection of drugs. Still, there is less utilization of compu-
tational techniques for the same at present. Thus, there is an
hour to look after some alternatives using some machine
intelligence techniques to provide some solutions with more
accuracy and at a faster note.

Based on the above challenges, the main contributions of
the paper are as follows:
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(1) Deep learning approach based on logistic regression,
SVM, and Random Forest along with QSAR mod-
eling is proposed to discover some drugs for the
treatment of COVID-19

(2) QSAR modeling is done to find the drug targets with
protein interaction along with the calculation of
binding affinities

(3) Deep learning models are used for training the
molecular descriptors dataset for the robust dis-

covery of drugs and feature extraction for combating
COVID-19

The rest of the article is organized as follows. Section 2
deals with the literature reviewed. Section 3 deals with the
significance of work. Section 4 deals with the suggested
methodology followed by Section 5, dealing with results, and
the paper is concluded in Section 6.

2. Literature Review

Artificial intelligence techniques have been utilized in var-
ious areas of drug and vaccine development [9]. This uti-
lization and further advancements are essential for
immediately discovering a cure for the current pandemic.
Many studies have been done previously, and many are
ongoing to find a less complex and easy-to-use technique
that would speed up the drug discovery process. In [10], the
authors have trained a model based on LSTM (long short-
term memory) for reading the SMILE fingerprints of a
molecule for predicting IC50, binding to RdRp. The authors
in [11] have suggested a B5G framework, which supports the
diagnosis of COVID-19 through low latency and 5G. Choi
et al. [12] proposed the MT-DTI model for predicting the
drugs approved by FDA having solid affinities for the ACE2
receptor with TMPRSS2. The authors in [13] have reviewed
all state-of-the-art research studies related to medical im-
aging and deep learning. Deep learning techniques and
feature engineering were compared in order to efficiently
diagnose COVID-19 from CT images [14]. Various neural
network architectures and generative models such as RNN,
autoencoders with adversarial learning, and reinforcement
learning are suggested for ligand-based drug discovery [15].
Classification performance of DNN on imbalance com-
pound datasets is explored by applying data balancing
techniques in [16]. A novel approach for deep docking large
numbers of molecular structures accurately is suggested in
[17]. The effects of deep learning in drug design and
complimentary tools were reviewed [18].

In [19], a systematic review of the application of deep
learning techniques for predicting drug response in cancer
cell lines has been done. A QSAR model (quantitative
structure-activity relationship) is developed [20], which
implements deep learning to predict antiplasmodial activity
and cytotoxicity of untested compounds for screening
malaria. In [21], the authors have built a multitask DNN
model and compared the results with a single-task DNN
model. In [22], various machine learning and deep learning
algorithms used for drug discovery are reviewed, and their
applications were discussed. However, various studies
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suggest deep learning for drug discovery or detecting
COVID-19 lacks proper practical implementation with re-
sults. Most studies have just reviewed different deep learning
techniques to be used for the development of drugs. This
paper will give a practical implementation on various
datasets available online with efficient results. Upon ana-
lyzing various studies, we found that various studies claim
HCS (high content screening) as an efficient technique for
screening chemical compounds for discovering drugs. At
present, deep learning techniques have been producing
faster and eflicient results.

The basic idea of the screening process is that the cells are
exposed to various compounds, and automated optical
microscopy is done to see what happens, creating thriving
images of cells. A quantitative and qualitative analysis of the
result can be done by using an automated HCS pipeline.
HCS branches out from microscopy, and Giuliano et al. first
coined the terminology in the 1990s [23]. HCS research can
cover several fields, such as discovering drugs that can be
defined as a form of cell phenotypic screen. It includes
methods of analysis that produce simultaneous readouts of
multiple parameters considering cells or cell compounds. In
this phase, the screening aspect is an early discovery stage in
a series of various steps needed to identify new drugs. It acts
as a filter to target potential applicants that can be used for
turther development. Small molecules classified as a low
molecular weight organic compound, e.g., proteins, pep-
tides, or antibodies, can be the substances used for this
purpose [24].

3. Significance of the Work

Hospitals are using trial and error techniques for COVID-
19 drug discovery [9]. It results in an emergence of virtual
screening to discover chemical compounds due to the
inefficiency of the lab-based HTS technique (high-
throughput screening) [9]. Also, drug discovery and de-
velopment is a complex and time-consuming process [25].
It is estimated that the preapproval cost of production of
new drugs has increased at the rate of 8.5% annually from
802 million USD to 2870 million USD [26, 27]. Finding
molecules with the required characteristics is one of the
significant challenges in drug discovery. A practical and
quality drug needs to be balanced regarding safety and
potency against its target and other properties such as
ADMET (Absorption, Distribution, Metabolism, Excre-
tion, and Toxicity) and physicochemical properties [25].
This paper aims to increase the speed of discovering new
molecules using deep learning, thereby reducing the cost of
producing new drugs. Deep learning techniques will help
us navigate large chemical spaces to find new chemical
compounds [25]. The significance of using deep learning
techniques for combating COVID-19 [1] is summarized in
Table 1.

4. Suggested Methodology

This section includes a description of the proposed
methodology.

4.1. Dataset Preparation and Preprocessing. We have used
the combination of the datasets from the sources [29-31].
Each of the datasets contains a set of chemical com-
pounds with respective binding activity to a target
protein calculated by pIC50=-log;((ICs9) [32]. Pre-
processing is done for removing the invalid and repli-
cated compounds. The entries with IC50 measurements
with filtered out compounds having suspicious measures
are depicted by the “DATA VALIDITY COMMENT”
column. For repeated records groups, if the standard
deviation (SD) of the activity is found more significant
than 1 log unit, then these datasets are deleted from the
dataset, and a single entry is kept with the median of the
activity [32]. Data preprocessing is one of the significant
phases in data mining as it helps in achieving data in-
tegrity. Before preprocessing, data cleaning needs to be
done as raw data contain abnormalities and errors af-
fecting the results [33]. After preprocessing, conversion
of SMILES [34] representations to molecular represen-
tations takes place. These are open datasets that contain
the binding, ADMET, and functional information for
various drugs like bioactive compounds [35]. The da-
tabase containing the datasets has over 5 million bio-
activity measurements for over 1 million compounds and
over 5000 target proteins [35].

A minor challenge may occur in data mining algo-
rithms due to variation in range and distribution of every
variable in the large datasets due to distance measure-
ments; also, these may contain noisy variables, which
makes the learning of the algorithms more difficult [33].
These challenges can be handled by min-max normali-
zation where the value of each variable is adjusted in a
uniform range of 0 to 1 [33]. It is given in the following
equation:

v Y, -Y

minimum ( 1 )

Y >

normalised Y

maximum ~ © minimum

where Y, . iiceq i the normalised value, Y, is the value of
interest, Y inimum 1S the minimum value, and Y,,ximum 1S the
maximum value.

Apart from the dataset, the system used for per-
forming the experiments has UBUNTU 20.04 LTS OS
installed with 16 GB RAM and Intel Core i7-8700 pro-
cessor. The language used for building the model is Python
3.7 with NumPy, pandas, TensorFlow, Bunch, tqdm,
Matplotlib, scikit-learn, NVIDIA GPU, CUDA 9.0,
Pytorch 0.4.1, Mordred, and RDkit. For evaluating the
binding affinities, PyRx is used. We have used the re-
gression model and QSAR techniques as regression
models help us define relationships between dependent
and independent variables and show the strength of the
impact of various independent variables on dependent
variables. QSAR helps in maintaining the quantitative
structural relationships in molecular predictions.

4.2. Model Development and Evaluation Parameters. As
mentioned above, developing a QSAR model can help us
in defining the relationship between the chemical
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TaBLE 1: Summary of applications of deep learning for combating COVID-19.
rsl;) Application Explanation
(i) Bidirectional GRU along with attentional techniques are used for analyzing patterns in
1 Pandemic tracking [1] respiratory images for mass scale screening of COVID-19
& (ii) Application of deep learning (DL) techniques for identification of geographical hazards and
spreading at the community level
(i) CNN, DNN, and deep ResNet architecture are utilized for the identification of characteristics of
) Predicting the structure of  proteins
proteins [2] (ii) Virus-host prediction and early prevention of virus infectivity can be done using DL
architectures
. (i) GAN and reinforcement learning techniques should be implemented for discovering the
> Drug discovery [25] chemical compounds inhibiting COVID-19
4 Medical imaging[28] (i) DL architecture should be used for extraction of features and prediction of possible cases of

COVID-19 from CT scan or chest X-ray images

structures and their endpoints by using various statistical
methods for the construction of predictive models for
revealing the origin of bioactivity [36]. Generally, a QSAR
model is depicted by the equation of the form X = m (X) +
Err that can be utilized or prediction of endpoints or new
compounds in terms of time-consuming and cost ap-
proaches. In order to derive the global molecular features
for the SMILES, some notations are there [36], which are
given in the following equation:

parstu—p+q+r+s+t+u(X,,),

pqrstu— pq +qr +rs + st + tu(XX,,), (2)
parst — pqr + qrs + rst + stu(XXX,,).

Also, these global descriptors are described as follows
[36]:

(1) BOND is defined as the presence or absence of
double (=), triple (#), and stereochemical (@) bond
in SMILES

(2) PAIR is defined as the coincidence of I, N, O, P, S, Br,
CL F #, @, and =

(3) NOSP is defined as the presence or absence of P, S, O,
and N

(4) HALO is defined as the presence and absence of
halogens

The optimal attributes for the SMILES are calculated by
the following equation [36]:

W (X gpoch Threshold) == " TW (Xm) + Y TW (XXm)
+ ) TW (XXXm) + ) TW (NOSP)
+ Y TW (BOND) + » TW (HALO)
- Y TW (PAIR).
(3)

The chemical endpoints [36] can be given in the fol-
lowing equation:

End = T + T} X W(Xpoeh» Threshold), (4)

where T) is the intercept and T} is the correlation coeflicient.

The development of the QSAR model consists of two
significant steps: (i) describing the molecular structure and
(ii) the multivariate analysis for correlation of molecular
descriptors with observable characteristics [33]. Successful
development of the model also includes data preprocessing
and statistical evaluations. For evaluating the performance of
the QSAR model, the statistical method suggested in [33] is
used in the following equation:

x> 0.5,

Y%>0.6,

(5)

0.85<z<1.15,

or0.85<z"a<1.15,

where x” is the cross-validated explained variance, Y is the
coefficient of determination, Y2 and Y * are the predicted vs.
observed activities and vice versa, respectively, and x> is
calculated by the following equation:
Zt'riaining P. _13' 2
x2 = &7 ( J J) (6)

S, P2

where P; are the measured values, ﬁj are the predicted

values, and P; is the mean value of the entire dataset. This
equation is also used for the calculation of external X, ie.,
the compounds that are not used in the QSAR model de-
velopment earlier and are given in the following equation:

training =~
- P.—P;)2
=1- 21*1 ( J ]) (7)

X 2 — .
external training D
(P - By

For measuring the internal chemical diversity [28], let x
and y be two molecules having Zy and Zy as their Morgan
fingerprints [28]. The number of common fingerprints is
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defined as Z, N Z, v and the total number of fingerprints is
defined as Z, U Z V. The Tanimoto similarity [28] between x
and y is defined in the following equation:

zZ.nz,
zZ.uz,

S(x,y) = . (8)

And the Tanimoto distance [28] is given by
Sy(x, ) =1-8(x, y). 9

We have used RDKit [28] for the implementation of
Tanimoto distance. In earlier studies, the QSAR models were
developed for small compounds that used limited quanti-
tative characteristics [32]. Various algorithms were sug-
gested for covering significant features, including hundreds
or thousands of molecular descriptors. We have used the
OPLRAreg algorithm suggested in [32] to illustrate the
flexibility of mathematical modeling and show how the
division of characteristics and regions helps enhance the
features of OSAR datasets. The OPLRAreg is given in
Algorithm 1.

Due to advancements in deep learning techniques, there
has been an increase in the use of neural networks in a
variety of applications including healthcare [25]. A neural
network can be defined as a group of layers consisting of
perceptrons called multilayer perceptron (MLP) or simply a
neuron [25]. The perceptrons are the main building blocks of
a perceptron and consist of three parts, weights, v =
vivyeoon.. »Vul,v; €R, biases, b € R, and an activation
function, f(n) [25]. Let the input vector given to a per-
ceptron be defined as, x = [x,, X,......, x,,]%. Then, the output
is given in the following equation:

flvx+b) = f. (10)

Both v and x should be in the same direction. Fur-
thermore, for enabling the matrix multiplication, b and x,;
should be appended to the weight and input vector, re-

spectively  [25] so that v=[vv,...v,b] and x=
[x,%, ...x,1]<
And the output is given by
fFx) = f(vix) +vyx, + -+ +v,x, + b). (11)

Due to an increase in the efficiency of computation,
matrix multiplication is required for training larger net-
works with forward passing and backpropagation for op-
timizing the network parameters [25]. The different types of
classification methods are given in the following sections.

4.2.1. Logistic Regression. Logistic regression is the most
used method of modeling for the prediction of risk [37]. A
logistic regression model uses a role to render the model
range output between zero and one and should therefore be
used for classification. The logistic function is defined in [37]
as follows:

1

Y(x=1)=————"——,
(x=1) 1+exp—(ar+s)

(12)

where 7 is the input and « and s are called as model pa-
rameters. The output given is the modeled probability of the
input belonging to a class [37]. For interpreting the meaning
of the weights, rearrange the above equation as follows [37]:

log)log) ar +s. (13)

Y (x = 1)/Y (x = 0) is called as the odds. The modeling of
odds is done through a linear equation [37]. Like most of the
ML (machine learning) models, optimization of the pa-
rameters is done w.r.t. loss function [37]. Consider a given
set of de}ta points {( P9 j)}j, whfre pjis defined as the input
and gq; is the true output. Let g; denote the output of the
logistic regressor. Then aAs are selected according to [37] in
the following equation:

o,
i _ (14)
s argmin,.

This is also known as the log-loss function. The problem
of minimization is solved iteratively until the convergence of
parameters, using a coordinate descent algorithm [37].

4.2.2. Random Forest. Random Forest is an ensemble ap-
proach that combines several decision trees to make pre-
dictions. More reliable and precise predictions can be made
by combining several poor learners. In addition, ensemble
techniques decrease variance and are less vulnerable to
overfitting [37]. The Random Forest algorithm [38] is given
in Algorithm 2.

As a sequence of questions, a decision tree is best defined.
The principle is that questions are asked, and new questions
are asked based on the responses, thus creating a tree. Data
points are identified using the leaf nodes in the tree [37] by
following the trajectory of the questions and answers. The tree
is designed by determining which question to ask at each node
and determined based on the information obtained from each
possible query or the degree to which the uncertainty in the
dataset [37] is reduced. The uncertainty in the dataset [37] is
defined in the following equation:

Entropy (X) = - ) y(X)log, y(X). (15)

[ XzX]|

The information is acquired by knowing the value of
certain feature F and is given in the following equation:
| Xz|

———Entropy (X,),

Gain (F) = Entropy (X) — Z [ X|

zevalues

(16)

where X, is defined as the subset where the feature F takes z
value. Therefore, during the construction of a decision tree, a
feature is to decide each node as explained in [37]. Here, the
construction is either terminated once the entropy of the
subset has reached zero or the tree has reached its maximum
depth [37]. Upon evaluation of a sample, the tree’s trajectory
is decided until the leaf node is reached. An approximate
probability can also be given as output by comparing the
class sizes found in the leaf node [37].
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Xx — currenterror
olderror — o
temperror — 00
Yiest —

P—2

(5) If k < temperror then

(6) k — temperror

(7) Ybest - f

(8) End if

(9) End for
olderror«-currenterror
temperror — currenterror

(10) Y* Yy

P+1P
(13)  olderror«<currenterror

(14)  k —> currenterror
(15) End While

(1) OPLRAreg is evaluated for P=1//linear regression

2) z— {Y € vaqu#O}//choosing implicit features

(3) Forj — 1;j — j+1; j<Z do//choose the best partition feature in the region
(4) Evaluate OPLRAreg having two regions and partition feature yy

(11) While currenterror < (1 — w)olderror do//increase the number of regions

(12)  Evaluate OPLRAreg with P regions and partition feature y,

(16) Return yj; Breakpoints as B y, and regression coefficients as F, y

ALGORITHM 1: OPLRAreg algorithm.

forj=1to X do
generation of random samples @
while stopping criteria # true do
select randomly f of all features
training of tree on f
end
fRF (1’1) = (1/X) Z');(:I fTree (I’IV(D)

ALGORITHM 2: Random Forest algorithm.

4.2.3. Support Vector Machine (SVM). The support vector
machine (SVM) is an algorithm for classification that in-
volves creating a hyperplane. A set of features is used in
order to classify an object. Thus, the hyperplane will lie in p-
dimensional space if there are p features [39]. The hyper-
plane is generated through SVM optimization, which in turn
maximizes the distance from the nearest points, also known
as support vectors [39]. Let y; = [y, ... ,y]-m]N be an ar-
bitrary observation feature vector in the training set, x;
corresponding label to y; with a weight vecfor
v=[v.e.. , vq]N with V»v? = 1 and T be the threshold.
The constraints defined for the classification problem [39]
are given in equations (17) to (20):

vNyj+T>0for x; = +1, (17)
vNyj+T<0f0r X; =-1. (18)

Let f(y;) = VNYj + T, then the output of the model x;
can be given as follows:

fj:{lforf(yj)20,{0forf(yj)<0. (19)

Instead of using IvI? =1, for margin maximization,
the lower bound on the margin along with the optimi-
zation problem can be defined for minimization of ||v|?
[39]. The constraints for the optimization problem can be
derived from equations (17) and (18), respectively, [39]
as follows:

XyNy;+T>1 (20)

In some of the cases, it is required to implement a soft
margin, allowing some points to lie on the wrong side of the
hyperplane [39] in order to provide an efficient model. A
cost parameter M is introduced, which plays a major role in
the assignment of penalties to errors, where M >0 [39].
Then, the minimized objective function [39] is defined as
follows:

VVV2+MZ[3]-, 21)
J

where 8, = slack variable. The constraints to the optimiza-
tion problems [39] are now modified in the following
equation:

ﬁNyj+T21—/3j, /3]-20. (22)

Most of the datasets are not linearly separable. But
through a nonlinear transformation into a high-dimensional
space, a dataset is more likely to be linearly separable [37].
Therefore, each sample is transformed using a nonlinear
function [37] so that



Journal of Healthcare Engineering
Molecule 1
0
oA
H,C
OH

RS

1011001100011010

Molecule n

Molecules

Molecular
descriptors

I | I (IO IV |V | VI|VI|VIIf IX

X1 | xun x| xiv] xv [xvi
ool ]1lo]1]o Active Datasets
0 1 1 0 1 0 Inactive

Modelling

Predicted value

Deep learning
model building

Predicted value
X)

CH,
1011001101011010
Molecule 2

Prediction

Feature
extraction

Feature
extraction

FiGure 1: Overall workflow of the suggested methodology.

f:RX — R, x>y (23)
And then the problem is considered using m; = f (y;)
[37]. Furthermore, using Lagrange optimization, the dual

problem of maximizing [37] is defined as follows:

1 :
Z 8- Z(Sj8iTjTi/1yi . A=yjt, (24)
j i
subject to the condition
Z8jTj =0, 8;20Vj. (25)
i

The overall structure of the workflow and QSAR
modeling [36, 40] is explained in Figure 1. First, we have
to select the number of molecules. It can be of any
number. Each molecule has its molecular descriptors that
describe the molecules’ physical and chemical properties
that help us differentiate between the molecules. Here, 1
and 0 are the binary descriptors that show the presence/
absence of the molecular descriptors. A collection of these
descriptors constitutes the dataset. Values of X (active/
inactive) show the biological activity we want to predict.
This dataset is now used for training the deep learning
model, which therefore gives our results. The working of
the proposed approach is represented in a flowchart, as
depicted in Figure 2.

5. Results

Our goal is to develop a deep learning model to suggest novel
and effective drugs for combating SARS-CoV-2 or com-
bating COVID-19. Our regression-based models and Ran-
dom Forest model were trained on a dataset of
approximately 1.5 million drug-like molecules from the data
sources [29-31]. The molecules were represented in Sim-
plified Molecular Input Line Entry System (SMILES) format
helping our model learn the required features for designing
novel drug-like molecules. SMILES are defined as the
character strings for representing drug molecules. For ex-
ample, an atom of carbon can be represented as C, oxygen
atom as O, double bond as =, and CO, molecule can be
represented as C(=0)=0. The maximum length of the string
can be taken as 25 [41]. SMILES grammar’s learning
problem and reproducing it for generating novel small
molecules is considered a classification problem [42]. The
SMILES strings should be considered a time series, where
every symbol is considered a time point. At a given point, the
model was trained for predicting the class of the next
symbols in the time series.

We will only retrieve the coronavirus proteinase during
preprocessing of the bioactivity data that can be reported as
IC50 values in nM (nanomolar) units [43]. The data for
bioactivity is in the IC50 unit. Compounds with less than
1000nM values will be considered active, whereas com-
pounds with values greater than 10,000 nM will be con-
sidered inactive. As for such values, the intermediate value is



8 Journal of Healthcare Engineering
Dataset
preprocessing
Applying mini-max normalization
y
SMILES representation to molecular
structure
Development of QSAR model
Molecular descriptor analysis using
OPLRAreg algorithm
Applying deep learning
models
Random forest Logistic regression
Support vector
machine
y
Molecular generation with binding
~ affinities values B
y
List of compounds for
COVID-19
FiGure 2: Flowchart depicting the complete working of the proposed approach.
TaBLE 2: Calculated values of Lipinski descriptors.
MW LogP NumH donors NumH acceptors
281.3 1.90 0.0 5.0
416.5 3.82 0.0 2.0
422.2 2.67 0.0 3.0
294.3 3.63 0.0 4.0
339.3 3.54 0.0 5.0
338.4 3.41 0.0 5.0
297.0 3.45 0.0 3.0
277.2 4.10 0.0 3.0
278.3 3.30 0.0 3.0
282.4 411 0.0 2.0

between 1,000 and 10,000 nM [43]. To evaluate the model,
Lipinski descriptors [43] were used as given in Table 2.

Upon analyzing the pIC50 values, the actives and inactives
have shown a significant difference, which is expected as the
values of IC < 1000nM = active, IC50 > 10000nM = inactive,
corresponding to pIC50 >6 = active and pIC50 <5 = inactive.
Out of the 4 Lipinski descriptors [43], only logP showed no
difference between the actives and inactives, while the other
three descriptors showed significant differences between the
actives and inactives. This can be better understood by
Figures 3-7 , respectively. A scatter plot has also been drawn
to show that the two bioactivity classes (active/inactive) are
spanning similar chemical spaces.

Figures 3-7 show that our model can explore the
chemical spaces that are further adapted for generating

the smaller molecules specific to a target of interest. The
SARS-CoV-2 contains the proteins responsible for the
cation and replication of the virus [44]. The functioning of
the proteins can be stopped by introducing the drug
molecules capable of blocking the protein. Therefore, we
have to find the molecules with a high binding affinity to
bind the protein effectively. Various drugs/compounds
have been tested for finding a high binding relationship,
but the results are not very good. We have created novel
molecules for binding with the coronavirus, using deep
learning and QSAR modeling. After the generation of the
molecules, PyRx was used for evaluating the binding
affinities. We have also build a regression model using a
Random Forest algorithm for acetylcholinesterase in-
hibitors, as shown in Figure 8. The binding affinities for
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FIGURE 3: Scatter plot of MW vs. logP.
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leading drugs for other diseases such as HIV inhibitors
range from -10 to —11. Also, the most recent drug
remdesivir, which is clinically tested, has the binding
affinity of —13. By convention, the more negative the
scores are, the more effective the drugs would be. QSAR
modeling, docking analysis, and use of regression model
generate a list of bioactive compounds from which top 100
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FIGURE 6: Box plot of NumH donors.

compounds were selected, which may have the potential
to be effective against SARS-CoV-2. The methodology
suggested in this paper is easy to use and can be a possible
technique for the discovery of anti-COVID-19 drugs and
also shortening the clinical development period required
for drug repositioning. Our proposed methodology can
give the binding affinity more than the present drugs being
tested, making our approach efficient. The proposed list of
top 100 chemical structures or molecules generated using
our proposed approach through SMILES software is
shown in Table 3.
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FIGURE 8: Scatter plot for experimental vs. predicted values of pIC50 for regression model developed for acetylcholinesterase inhibitors.

TaBLE 3: Top 100 compounds generated using the proposed approach.

Serial no. of the chemical structure

SMILES generated chemical structure generated through the proposed

Binding affinity

generated approach (kc\:ﬁiol)
1 Cclcec(C2CNCCN2C)ccl -23.1
2 CCOC(CO)clcceccl -15.2
3 CC(=0O)Nclenn(C)nl -24.6
4 CCC(C)NCclnccenl -21.5
5 CC(C)=C1CC(N)C1 -20.4
6 CN1CCCc2cc(CON)cee21 -18.9
7 CCI12CNCCICN(CC(N)=0)C2 -28.9
8 CCNC(C)C(C)clenceclC -19.5
9 CCN(Cclceeecl)C(C)CCCNC -18.1
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TaBLE 3: Continued.

11

Serial no. of the chemical structure

SMILES generated chemical structure generated through the proposed

Binding affinity

generated approach (kc:lalilrlrfol)
10 CCC(=0)clece(C)eenl -18.3
11 C=CC(0O)clcc(C)cenl -21.5
12 C#CCCOclcenceclC -16.8
13 Cnlnc2ccecc2¢1S(N)(=0)=0 -19.8
14 Cnlcnn(CC(N)=0)c1=0 -23.1
15 CC(NCCSclcceecl)cleenecl -21.6
16 Cclcescl-cleec(O)ncl -21.9
17 N#CclnccccIN1CC2CCI1CN2 -19.6
18 N#CclcnceclSCC(N)=0 -23.6
19 N#Cclcec(C2NCCCCC2=0)cnl -23.5
20 CC(C)C(C)Sclcec(C#N)enl -18.6
21 Ccleenc(C=CCCN)cl —24.2
22 CCOC(CC)C(=0)clcnecclC -15.9
23 CcleencclC(O)CNCC(C)C -22.2
24 CS(=0)(=0)clncc(N)cenl -21.1
25 OCC(0O)CCSCclcececl -19.8
26 COC(=0)CNCclce(C)cenl -19.5
27 CCOC(clcecccl)C(CC)NN -18.0
28 CclceneclC(=0)CCCN(C)C -19.3
29 C=CCCSCCNclce(C)cenl -21.2
30 CCNC(=S)NNC(=0)Cclcceecl -23.6
31 OC(CCCclcceccl)clecencl -20.4
32 CC(=0)CC(C)clenecclC -17.3
33 CNI1CCC(0)(c2ccoc2)CC1 —-18.1
34 Cclecenc(NC(=0)C#CCN)cl -24.1
35 N#CclcnceccINCCCO -21.0
36 CCSCclence(C#N)cl -19.4
37 NC1=CCOC1=0 -16.4
38 CNC(CSC1CCCCC1)Cclccencl -18.7
39 COC(=0)clcee(C(C)C=0)ccl -14.3
40 CC(=0)CC(O)clenceclC -21.0
41 CCCNCeclcceeclS(N)(=0)=0 -20.8
42 N#CclncencIN1CCCOCC1 -22.0
43 CCC(CC)Oclncceccl C#EN -16.8
44 CC(C)(C)C(C)(N)clcceccl -17.0
45 CN(C)NCclcececl -20.0
46 NCI12CCCCICNC2 -24.3
47 C(=Cclcececl)CNCelecencl -23.8
48 CCNCCNCclnceeclC#N -26.6
49 CC(C)OCclcec(C#N)enl -18.3
50 NC1Cc2csnc2Cl1 -26.5
51 CclcescCINCCCCC10 -21.3
52 N#CCCNCclenencl -20.8
53 COC(=0)clceecclC#CCO -15.5
54 N#CCICN(CCN)C(=0)01 -19.4
55 CC(CCO)Nclcec(C#N)enl -22.6
56 NC1CC2(CCNC2=0)C1 -21.8
57 C#CC(CO)NCclenecclC -22.6
58 CN1CCCc2cccc(OCC#N)c21 -16.2
59 NNC(clcenecl)C1CCCCC1 -23.8
60 C#CCCSclnccenl -17.2
61 CcleencclC(C)(N)C(C)C -22.6
62 NS(=0) (=0)clccec(SCCO)ccl -21.0
63 Ccleenc(CC(=0)C(=0)0)cl -18.8
64 CN1CC2CCN(CC(N)=0)C2Cl1 -25.9
65 O=C=NCclccnenl -20.9
66 CclcscclC1CC(O)CN1 -19.2
67 0O=C(CC1CCCCCI1)NC1CCCNCC1 -22.4
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Serial no. of the chemical structure

SMILES generated chemical structure generated through the proposed

Binding affinity

generated approach (kc:liilrlrfol)
68 CC(0O)Cclcnencl -20.8
69 CCC(CC)Oclcec(C#N)enl -16.1
70 Cclecenc(NN=CC(C)C)cl -19.7
71 COC(CNCCCOCclecceccl)OC -12.3
72 N#CclncceclC1CCCCC1 -18.3
73 NC1COC2COCC12 -19.9
74 COC(=0)clcccec1C=CCCO -18.6
75 CCCC(C)Sclnceenl -16.9
76 CC(C)CC(=0)NCCCclcceecl -16.8
77 CCC(CC#N)Nclcec(C#N)enl -21.8
78 CCCC(C)C(=0)clcc(C)eenl -19.0
79 CCOclcnencl —-18.6
80 NCCCCC(O)cleccecd -21.0
81 N#CCNclceneclC#N -21.6
82 N#CclcncccINCC=CCN -27.2
83 CCCOCC(NC)clee(C)eenl -18.6
84 Neclcee(S(N)(=0)=0)ccl -224
85 clencc(OCCNC2CCCCC2)cl -20.8
86 CSCC(C)CNclncccclC#EN -21.1
87 CC(N)CNclcnencl -26.8
88 CC(C)(N)CNC(=0)Cclcceecl -22.2
89 NC(CO)clcenenl -26.9
90 CC(=0)0OCSclnccenl -19.3
91 CNI1CCCc2cccc(C=0)c21 -16.4
92 CCNclce(NCC(C)(C)O)cenl -25.6
93 CCC(CC)CC(=0)COCcleccecd -13.0
94 C=CCCC(=0)OCclcceccl -13.9
95 CN(CCCO)C(=0)Oclcececl -18.8
96 CSCCC(=0)clcnencl -19.6
97 CC(C)CCCC(0)CCOCcleccceel -13.9
98 COclcencclC#N -18.1
99 CNclnc(N)ncclN -28.4
100 clccc(CONCCNc2cence2)cecl -254

6. Conclusion

Drug development is a time-consuming and expensive
process. Deep learning has achieved excellent performance
in alot of tasks. Drug discovery is one of the areas that can be
benefitted from this. The use of deep learning techniques has
made the process of drug development more manageable
and cheaper. Deep learning-based models can learn the
feature representations based on present drugs that can be
used to explore the chemical spaces in search of more drug-
like molecules. The available data for automating the pro-
cesses and better predictions are what deep learning tech-
niques promise for eflicient drug discovery. These
techniques have proven effective in scanning peptides or
detecting COVID-19 from the CT scan or X-ray images.
These techniques can speed up the drug development
process but require clinical testing for more validation and
accuracy [45].
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