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Abstract

Disruptions in frontoparietal networks supporting emotion regulation have been long implicated in 

maladaptive childhood aggression. However, the association of connectivity between large-scale 

functional networks with aggressive behavior has not been tested. The present study examined 

whether the functional organization of the connectome predicts severity of aggression in children. 

This cross-sectional study included a transdiagnostic sample of 100 children with aggressive 

behavior (27 females) and 29 healthy controls without aggression or psychiatric disorders (13 

females). Severity of aggression was indexed by the total score on the parent-rated Reactive-

Proactive Aggression Questionnaire. During fMRI, participants completed a face emotion 

perception task of fearful and calm faces. Connectome-based predictive modeling with internal 

cross-validation was conducted to identify brain networks that predicted aggression severity. 

The replication and generalizability of the aggression predictive model was then tested in an 

independent sample of children from the Adolescent Brain Cognitive Development (ABCD) study. 

Connectivity predictive of aggression was identified within and between networks implicated in 

cognitive control (medial frontal, frontoparietal), social functioning (default mode, salience), and 

emotion processing (subcortical, sensorimotor) (r=0.31, RMSE = 9.05, p=0.005). Out-of-sample 

replication (p<0.002) and generalization (p=0.007) of findings predicting aggression from the 
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functional connectome was demonstrated in an independent sample of children from the ABCD 

study (n=1,791; n=1,701). Individual differences in large-scale functional networks contribute 

to variability in maladaptive aggression in children with psychiatric disorders. Linking these 

individual differences in the connectome to variation in behavioral phenotypes will advance 

identification of neural biomarkers of maladaptive childhood aggression to inform targeted 

treatments.
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Introduction

Maladaptive aggression is among the most common reasons for referral to mental health 

services and spans across childhood psychiatric disorders, most notably disruptive behavior 

disorders, mood disorders, and autism spectrum disorder1. The term “aggression” refers to 

a broad category of behaviors that can result in harm to self or others2, and in children 

with psychiatric disorders these behaviors have also been referred to as affective, reactive, 

or impulsive aggression3. Maladaptive aggression can also be viewed as the behavioral 

component of anger outbursts4, which includes developmentally and socially inappropriate 

verbal behaviors, such as yelling and verbal threats, and physical behaviors, such as pushing, 

hitting or kicking. Aggressive behavior is most commonly associated with diagnoses of 

oppositional defiant disorder (as a behavioral manifestation of losing one’s temper) and 

conduct disorder in which aggression constitutes one of the main categories of symptoms5, 6. 

However, aggressive behavior has long been recognized as a transdiagnostic dimension that 

can be present in children with different psychiatric disorders7, 8 and dissociated from other 

forms of externalizing behaviors9, 10. In this study, we consider maladaptive aggression as a 

transdiagnostic phenomenon that can be indexed both categorically as absent or present and 

dimensionally as a degree of severity of aggressive behaviors.

Neuroimaging studies have identified neural dysfunction in ventral and lateral prefrontal 

regulatory regions in children with aggressive behavior11, 12. However, the search for 

brain-based predictors has not yielded reliable neural biomarkers of childhood aggression 

that could inform treatment, such as by refining existing interventions, providing neural 

targets for treatments, and/or guiding assignment to interventions based on patterns of neural 

function13. Here, we use predictive modeling (machine learning) to examine patterns of 

brain-wide connectivity for predicting aggression in a transdiagnostic sample of children.

The emotion dysregulation model of aggression implicates disruptions in frontoparietal 

circuitry involved in the cognitive control of emotion14. Consistent with this view, 

meta-analytic studies12, 15 identified under-activity in the ventromedial and ventrolateral 

prefrontal cortices (vmPFC and vlPFC, respectively), dorsolateral prefrontal cortex (dlPFC), 

and temporal-parietal regions during implicit emotion processing16–19. Neuroimaging 

studies of emotional processing also link childhood aggression with disruptions in functional 

connectivity between the amygdala and ventral prefrontal regions16, 19–21. For instance, 
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altered connectivity between the amygdala and ventral prefrontal cortex was reported during 

emotion perception tasks in children with aggressive behavior16, 19, 20. Recent functional 

MRI (fMRI) studies using emotional face perception tasks have also reported associations of 

irritability, an elevated propensity for anger and aggression, with reduced amygdala-vmPFC 

connectivity22 and reduced amygdala-dlPFC connectivity23 in children with aggressive 

behavior. In addition, we note that fMRI studies have consistently identified aberrant neural 

functioning within cognitive control circuitry implicated in emotion regulation and response 

inhibition12, 24–26, which can lead to aggressive behavior27, 28.

While a large body of neuroimaging work has elucidated key elements of the neural circuitry 

involved in aggression16, 19, 22, 23, it is poorly understood how functional interactions 

spanning multiple large-scale networks in the connectome (i.e., functional connectivity 

across the entire brain) are associated with aggressive behavior in children. Connectome 

modeling approaches, which leverage machine learning algorithms and include a cross-

validation step29, 30, have been increasingly used to predict behavioral phenotypes from 

large-scale functional networks30–33. Thus, these data-driven approaches may hold promise 

in identifying disruptions in the functional interactions among specific networks in the 

human connectome that are associated with aggressive behavior, potentially facilitating the 

discovery of brain-behavior associations and biomarkers. However, no study has examined 

whether the functional organization of the brain is predictive of aggression in children. The 

current study is the first to use a connectome predictive modeling approach to identify neural 

markers of childhood aggression.

To examine the association between the functional connectome and aggression severity, we 

used task-based connectivity and a previously-validated implicit emotion processing task for 

the following reasons. First, functional connectivity derived from task-based data may be 

well suited for investigating transdiagnostic properties of aggression. For instance, relative 

to resting-state fMRI data, there is recent evidence to suggest that using task-based fMRI 

data may improve the prediction of individual cognitive traits and enhance the delineation 

of brain–behavior associations34–36. Second, given that our a priori hypotheses focused on 

disruptions in frontoparietal networks implicated in childhood aggression during emotion 

processing12, we used a similar face emotion task to engage brain states relevant to 

emotion generation and regulation because these cognitive processes have been implicated 

in aggressive behavior12, 14, 15.

Here, we employed a machine learning connectivity approach (also known as connectome-

based predictive modeling, CPM)37, to identify brain networks predictive of aggression. 

CPM leverages whole-brain functional connectivity data (“connectomes”)32, 33 and enables 

cross-validation, which protects against overfitting13, 38. First, we applied CPM to fMRI data 

from an emotion processing task that was acquired in a well-characterized, transdiagnostic 

sample of 129 children with aggressive behavior and healthy control children without 

aggression. Connectome modeling29, 30 was used to identify brain-behavior associations 

between a continuous measure of aggression and functional connectivity between and 

within large-scale networks in a transdiagnostic sample of children. Based on previous work 

implicating abnormal prefrontal connectivity in aggression12, 15, 16, 20, we hypothesized that 

altered connectivity within and between ventral and lateral prefrontal networks would be 
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most predictive of individual differences in the severity of aggressive behavior. Then, we 

tested the replication and generalizability of the identified large-scale functional networks 

of aggression in an independent sample of children from the Adolescent Brain Cognitive 

Development (ABCD) study. The smaller, transdiagnostic sample (N = 129) served as the 

discovery dataset because it is enriched for the variable of interest (i.e., aggressive behavior). 

The larger ABCD cohort served as a replication dataset because it includes a heterogeneous 

sample of youths that is ideal for testing the replication and generalizability of brain 

biomarkers. To test the replication and generalization of the connectome predictive model to 

an external or novel dataset, we selected the stop signal task (SST) and emotional n-back 

task (EN-back) from the ABCD study for the following reasons. Both SST and EN-back 

tasks are conceptually similar to the implicit emotion processing task used in the discovery 

sample and engage frontoparietal and fronto-amygdala circuitry implicated in aggressive 

behavior39–41. The SST and EN-back tasks also involve executive functioning/response 

inhibition and emotion regulation processes, respectively, that represent subdomains of 

cognitive control that are consistently associated with deficits in the neural correlates of 

aggressive behavior12, 24, 26. Thus, we reasoned that both SST and EN-back tasks are 

relevant to our a priori hypotheses related to impairment in cognitive control networks in 

children with aggression.

Materials and Methods

Participants

This study included 100 children with aggressive behavior (27 females) and 29 typically 

developing healthy controls (HC group; 13 females). All participants were aged 8 to 16 

years. Sample characteristics are shown in Table 1. Children with aggressive behavior were 

recruited for a treatment study of cognitive-behavioral therapy for irritability/anger and 

aggression42. Cross-sectional, fMRI data was collected at baseline, prior to initiating the 

treatment. One of the inclusion criteria for the treatment study was a T-score of 65 or 

greater on the Aggressive Behavior Scale of the Child Behavior Checklist (CBCL)43, which 

is 1.5 standard deviations above the mean in the standardization sample and represents 

a cut-off for a clinically significant level of aggression. The Aggressive Behavior scale 

includes 16 items reflecting anger outbursts, verbal and physical aggression. HC participants 

were required to have no current or past history of psychiatric or neurological disorders 

and a CBCL Aggressive Behavior T-score below 55. Additional details regarding inclusion 

and exclusion criteria are provided in the Supplement. Consistent with an RDoC approach 

to investigating dimensions of psychopathology transdiagnostically, the sample included 

children with a range of psychiatric diagnoses (see Table 1). However, untreated PTSD 

and severe depression were exclusionary criteria because these disorders may present with 

pressing treatment needs, not targeted in the treatment study. Primary diagnosis reflected 

the chief symptoms for which youths sought treatment. All children also met criteria for 

Oppositional Defiant Disorder (ODD), Conduct Disorder, or Disruptive Mood Dysregulation 

Disorder (DMDD) based on a semi-structured diagnostic interview44. The sample included 

18 subjects with ASD and high levels of aggression; ASD diagnosis was confirmed by the 

Autism Diagnostic Interview-Revised45 and Autism Diagnostic Observation Schedule-2nd 

edition46. Children were recruited from the outpatient child psychiatry clinic at the Yale 
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University Child Study Center and from outreach to the local schools, pediatricians and 

mental health providers. Healthy control children were recruited from the community 

via advertisements. Each participant’s parent provided informed consent according to 

specifications by the institutional review board at the Yale University School of Medicine. 

Each child provided verbal and written assent. This study was reviewed and approved by 

the local ethical committee (institutional review board at the Yale University School of 

Medicine), and it was conducted in accordance with the declaration of Helsinki.

Measures

The Reactive-Proactive Aggression Questionnaire (RPQ) total score47 was used as the 

primary continuous measure of severity of aggressive behavior in CPM analyses. The RPQ 

is a 23-item parent-report scale that measures proactive and reactive aggression on a 3-point 

Likert scale. The RPQ Aggression Total score was used because it reflects the overall 

severity of maladaptive aggressive behavior in pediatric populations1, 48–50.

Children received a comprehensive diagnostic evaluation that included the Schedule for 
Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime 
Version (K-SADS-PL)44 that was conducted with the parent and child by an expert 

clinician to establish DSM-5 diagnoses of Disruptive Behavior Disorders and co-occurring 

psychopathology. Full scale IQ was evaluated with the Wechsler Abbreviated Scale of 
Intelligence (WASI)51. The CBCL Internalizing Behavior Problem score was used as a 

continuous measure of internalizing symptoms. The parent-rated Social Responsiveness 

Scale-Second Edition (SRS-2) Social Communication and Interaction subscale score (SCI; 

53 items)52 was used as a dimensional measure of severity of social impairments. The 

SRS-2 SCI subscale represents four dimensions of social behaviors including social 

awareness, motivation, communication, and cognition. The SRS was initially developed 

as a measure of social impairment in ASD, but was shown to capture social cognitive 

impairments in the general population as well as in children with aggressive behavior53. 

Thus, we reasoned that the SRS-2 SCI subscale would provide an approximation of 

impairments in social functioning related to maladaptive aggression in children54–56. 

Additional detail related to study measures is provided in the Supplement.

Task

Participants completed a previously-validated fMRI task of emotionally expressive faces 

from the NimStim Face Stimulus Set57. Task details are also reported elsewhere58. The task 

uses a pseudorandomized block design with 12 blocks that each contain two randomly 

selected faces exhibiting the same expression: 6 calm emotion and 6 fearful emotion 

blocks. The face-expression pair images are randomly selected throughout the blocks and 

no individual face-expression image is displayed more than once throughout the paradigm 

(Figure S1). Each block was 12 seconds in length and consisted of two faces displayed 

for 5.5 seconds each that were separated by a 1 second intertrial fixation cross. Blocks 

were separated by a jittered interblock interval between 8 and 12 seconds to optimize 

statistical efficiency. The interblock intervals were pseudorandomized such that the mean 

of all interblock intervals was 10 seconds. The first block was preceded by a 10 second 

initial fixation cross and the final block was succeeded by an identical 10 second fixation 
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cross. The total duration of the paradigm was 4.7 minutes. Participants were instructed to 

perform a gender identification task using a button press in their left or right hand to indicate 

male or female, respectively. We examined connectivity across both emotions (fearful and 

calm) to understand broader deficits in implicit emotion face processing associated with 

aggressive behavior and to ensure sufficient continuous voxel timecourse for CPM analyses. 

Prior to the fMRI session, a mock scanner was used to acclimate participants to the scanning 

environment (see Supplement). See Table S1 for fMRI task behavioral performance. During 

the mock scanner, children were taught to minimize head motion using motion tracker 

software (Polhemus FASTRAK head motion sensor) that provided real-time movement 

feedback to participants.

Data Acquisition and Preprocessing

Functional MRI data was collected using a Siemens MAGNETOM Tim Trio 3 Tesla 

scanner. Standard preprocessing and functional imaging statistical analyses were conducted 

(FSL Version 4.1.6)59, 60. More detail regarding data acquisition and preprocessing is 

provided in the Supplement. Motion was corrected using FSL MCFLIRT linear realignment 

tool61. Of 106 potential scans in the aggressive behavior group and 30 in the healthy control 

group, 6 children with aggressive behavior and one healthy control child were excluded 

from the final analysis owing to excessive motion and computer error during the scan, 

respectively. Thus, 129 scans were included in the final analysis (100 in the aggressive 

behavior group and 29 in the healthy control group). Several covariates of no interest were 

also regressed out from the data including the 12 motion parameters (six rigid body motion 

parameters and six temporal derivatives), mean white matter signal, mean cerebrospinal 

fluid signal, mean global signal, and the linear, quadratic, and cubic drifts. Global signal 

regression was performed as it strengthens the association between functional connectivity 

and behavior, leading to better performing and generalizing predictive models. No between-

group differences were observed in mean head motion detected during the functional scan 

(Table S2). There were also no significant correlations between RPQ aggression severity and 

motion (r=0.07, p=0.45) or CBCL aggression severity and motion (r=0.02, p=0.81).

Connectivity Matrices

Whole-brain functional connectivity analyses were conducted using BioImage Suite and 

previously described methods30, 35. Network nodes were defined using the Shen 268-

node brain atlas, which includes the cortex, subcortex, and cerebellum as described in 

prior work37, 62. The atlas was warped from MNI space into single-subject space. Task 

connectivity was calculated on the basis of the “raw” task time courses, with no regression 

of task-evoked activity, which emphasizes individual differences in connectivity32, 33. This 

approach is consistent with that used in prior CPM work33, 63–65 and approximates a 

continuous performance task63. This involved computation of the mean time courses for 

each of the 268 nodes (i.e., averaging the time courses of all constituent voxels). Node-by-

node pairwise correlations were computed, and Pearson correlation coefficients were Fisher 

z-transformed to yield symmetric 268×268 connectivity matrices, in which each element of 

the matrix represents the connectivity strength between two individual nodes (i.e., “edge”).
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Connectome-Based Predictive Modeling (CPM)

CPM was conducted to predict RPQ scores using published MATLAB scripts37. A 

schematic diagram is shown in Figure S2. CPM uses connectivity matrices and behavioral 

data (here, aggressive behavior severity) from individuals as input to generate a predictive 

model of the behavioral data from connectivity matrices. Edges and behavioral data from 

the training data set are correlated using regression analyses (here, Pearson’s correlation 

or—when controlling for other behavioral variables or covariates—partial correlation) to 

identify positive and negative predictive networks. Positive networks are networks for 

which increased edge weights (increased connectivity) are associated with the variable of 

interest, and negative networks are those for which decreased edge weights (decreased 

connectivity) are associated with the variable of interest. Single-subject summary statistics 

are then created as the sum of the significant edge weights in each network, entered 

into predictive models assuming linear relationships with behavioral data. The identified 

predictive networks and summary score model from the training data are then applied to the 

test data set to predict behavior.

Leave-one-out cross-validation was then conducted to test if aggression severity can be 

predicted based on the connectivity profile of a previously unseen individual. In the case 

of leave-one-out cross-validation used here, a single subject’s predicted value (i.e., the 

“left-out” participant) is created by using the data from all other participants (i.e., N-1) as 

the training dataset. That is, data from one subject is set aside as the test set, and data 

from the remaining N−1 subjects is used as the training set in an iterative manner until 

all subjects have a predicted value. Each iteration consisted of the following: (i) feature 

selection, in which edges with a significant relationship to aggression severity are identified 

in the training set and separated into two tails based on sign (positive or negative); (ii) 

model building, in which training data are used to fit linear regressions between aggression 

and connectivity strength in the positive- and negative-feature networks, respectively; and 

(iii) prediction, in which data from the excluded subject are input into every model to 

generate a predicted aggression score. Following all iterations, CPM model performance 

was then evaluated by correlating predicted and observed aggression values as described in 

Significance of CPM Performance.

Localization of Predictive Networks

Predictive networks were summarized at multiple levels of data reduction including at the 

edge, node, network level30. Overlap of nodes with macroscale brain regions (e.g., prefrontal 

cortex, cerebellum) were based on anatomical labels presented in Finn et al.31. Overlap of 

nodes with canonical functional network localizations (e.g., frontoparietal, sensorimotor) 

were based on the functional networks presented in Nobel et al.66 Additionally, for each 

node, the network theory measure degree was calculated as the sum of the number of 

edges for each node that belonged to the predictive networks. Additional details are also 

provided in the Supplemental Methods. Visualizations of predictive edges were created 

using BioImage Suite Web (https://bioimagesuiteweb.github.io/alphaapp/index.html). High 

degree nodes were operationalized as the top x% (top n) of nodes based on the largest 

number of edges or connections in all of the iterations of the predictive model. Here, we 
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used the top 10% (27 out of 268) of predictive nodes provided by the BioImage Suite Web 

software.

Significance of CPM Performance

For connectome analyses, the correspondence between predicted and actual values, or 

model performance, was assessed using Pearson’s correlation (r) and root mean square 

error defined as: RMSE predicted,actual = 1 n∑ i = 1
n actuali − predictedi

2 . Negative 

correlations were set to zero. When using cross-validation, analyses in the left-out folds are 

not independent, and the number of degrees of freedom is thus overestimated for parametric 

p values. Therefore, permutation testing was performed. To generate null distributions for 

significance testing, we randomly shuffled the correspondence between behavioral variables 

and connectivity matrices by permuting subject assignments for behavioral variables 1,000 

times and re-ran the CPM analysis with the shuffled data. Based on these null distributions, 

the p-values for predictions were calculated32. As we hypothesize a positive association 

between predicted and actual values, one-tailed p-values are reported.

Follow-up analyses

Additional analyses were conducted to test the robustness of highly predictive nodes to 

potential confounds (see Supplemental Methods). First, a virtual lesion analysis was used 

to test model performance after ‘lesioning’ or restricting CPM to high-degree nodes and 

their corresponding edges identified in the main model. Next, to test construct specificity 

of high-degree nodes in predicting aggression, we conducted post-hoc tests retaining the 

high-degree nodes and all edges connected to these nodes (i.e., removing all other edges), 

to evaluate the robustness of these networks in predicting aggression in subgroups with high 

severity of co-occurring behaviors (internalizing symptoms, ADHD symptoms, and social 

impairments). A cut-off T score of >65 was used on standardized continuous measures 

(CBCL Internalizing Behaviors and CBCL Attention Problems scores, SRS-2 SCI total) 

to form subgroups because this represents the cut-off for a clinically significant level of 

psychopathology.

External Replication and Validation

We tested the replication of findings and generalizability of the aggregate model from the 

transdiagnostic discovery dataset (i.e., edges present in >95% of cross-validation folds) 

in predicting aggressive behavior in an independent, open-access sample of youths from 

the Adolescent Brain Cognitive Development (ABCD) study39. We applied the CPM 

aggression network models to a sample from the ABCD study of task-based fMRI from 

1,701 children (920 females) using the stop signal task (SST) and from 1,791 children 

(958 females) using the emotional n-back task (EN-back) (age range 9–10 years). Table 

S3 shows characterization data for ABCD participants included in the CPM analysis. 

We selected these tasks for replication and validation purposes for the following reasons. 

First, the SST and EN-back tasks tap frontoparietal and fronto-amygdala circuitry that are 

relevant to aggressive behavior39–41. Second, similar to our study, the EN-back task stimuli 

included a set of happy, fearful, and neutral expressions drawn in part from the NimStim 

Stimulus Set57. Additionally, the SST taps the construct of response inhibition40 that is also 
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implicated in child aggressive behavior24. ABCD data was processed in a similar manner to 

the main dataset and is described in our previous work67. CPM was conducted as above with 

leave-one-out cross-validation. We computed Spearman’s correlations (rs) between predicted 

and observed CBCL aggressive behavior scores based on connectivity matrices. Spearman’s 

correlations were used for ABCD to address the comparability in connectome prediction 

using different but related aggression measures between the discovery and replication/

external datasets. We first tested the replication of findings and whether the functional 

organization of the connectome predicts aggressive behavior in ABCD. We then tested the 

generalizability of predictive models from the transdiagnostic, discovery dataset (N=129) to 

ABCD and vice versa.

Data and Code Availability

To promote data transparency, anonymized data that support the findings of this study are 

available from the corresponding authors upon reasonable request. Data from the studies 

reported in this paper (transdiagnostic sample from Yale and ABCD) have also been shared 

on the National Institute of Mental Health Data Archive (NDA) https://nda.nih.gov/. CPM 

code is available at: https://github.com/YaleMRRC/CPM.

Results

Prediction of Aggression

The overall CPM model revealed that patterns of brain-wide connectivity predicted severity 

of aggressive behavior (combined positive and negative networks: r=0.31, RMSE = 9.05, 

p=0.005 via permutation testing) (Figure 1). We then conducted follow-up comparisons to 

evaluate the effect of potential covariates on the CPM model predicting aggression. The 

models controlling for potential covariates also predicted severity of aggressive behavior and 

demonstrated similar prediction performances when controlling for age (r=0.25, RMSE = 

9.31, p=0.03), IQ (r=0.28, RMSE = 9.17, p=0.013), sex (r=0.27, RMSE = 9.19, p=0.016), 

motion (r=0.32, RMSE = 9.01, p=0.006), and psychiatric medication (r=0.31, RMSE = 

9.03, p=0.005). The main CPM model predicting aggressive behavior remained significant 

with similar prediction results after accounting for the potential impact of co-occurring 

internalizing symptoms (r=0.27, RMSE = 9.13, p=0.01). Similar model performance was 

also observed after accounting for ADHD diagnosis (r=0.22, RMSE = 9.30, p=0.05). The 

CPM model also remained significant after accounting for core ASD symptoms based on 

diagnosis (ASD vs. non-ASD) (r=0.28, RMSE = 9.16, p=0.01) as well as severity of ASD 

social behavior impairments (SRS-2 SCI total score as a continuous measure) (r=0.25, 

RMSE = 9.14, p=0.02). Analyses were also repeated using 10-fold cross-validation and 

similar results were observed although, as expected with 10-fold versus leave-one-out cross-

validation, the correlation coefficient was smaller (r=0.24, RMSE=9.30, p= 0.01).

Network Anatomy and Localization of Circuits

Figure 2 summarizes aggression networks. Highest-degree nodes (i.e., nodes with the most 

connections) for the positive network included a bilateral dlPFC node with connections 

to limbic, temporal-parietal, sensorimotor, and other prefrontal nodes (Figure 2A–B). 

Additional prefrontal nodes for the positive network included the bilateral vmPFC, right 
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vlPFC, and bilateral temporal poles. Highest-degree nodes for the negative network included 

a temporal-parietal node in the supramarginal gyrus. At the network level, Figure 2C 

summarizes connectivity within and between large-scale neural networks. Overall, between-

network connectivity was characterized by connections between frontoparietal and salience 

networks, which contributed the majority of edges to the positive network, and between the 

medial frontal, default mode, sensorimotor, subcortical, and salience networks (additional 

details are provided in the Supplemental Results). We also conducted post hoc analyses 

splitting the RPQ into its two dimensions (see Supplemental Results and Figure S3) and 

observed a highly correlated pattern of network connectivity for reactive and proactive 

aggression (r=0.56, p=1.3E-23, 85 overlapping edges) with a very similar pattern of high 

degree nodes emerging in dlPFC for both dimensions.

Sensitivity Analyses

Virtual Lesioning Analysis.—First, we retained only high-degree nodes and all edges 

connected to these nodes, performing CPM using only these edges. The CPM predictive 

model remained significant even when restricted to each of the following high-degree nodes 

and related edges: bilateral dlPFC (r=0.27, RMSE=9.0 p=0.002), bilateral temporal pole 

(r=0.22, RMSE=9.18, p=0.01), right vlPFC (r=0.21, RMSE=9.20, p=0.02), bilateral parietal 

cortex (r=0.23, RMSE=9.12, p=0.009), bilateral occipital cortex (r=0.24, RMSE=9.08, 

p=0.006), and the right cerebellum (r=0.25, RMSE=9.03, p=0.004) (Figure 3). Next, to 

check model robustness, we systematically removed or ‘lesioned’ each of the high-degree 

nodes (i.e., retaining all other edges). We found that the model predicting aggression 

remained significant across each of the high-degree nodes for the bilateral dlPFC (r=0.21, 

RMSE=9.18, p=0.03), bilateral temporal pole (r=0.30, RMSE= 9.06, p=0.0005), right vlPFC 

(r=0.30, RMSE= 9.05, p=0.0004), bilateral parietal cortex (r=0.29, RMSE= 9.12, p=0.0009), 

bilateral occipital cortex (r=0.29, RMSE= 9.07, p=0.0006), and the right cerebellum (r=0.28, 

RMSE= 9.12, p=0.0009).

Construct Specificity.—We then evaluated the specificity and robustness of high degree 

nodes (i.e., removing all other edges) in predicting aggression in subgroups with high 

severity of co-occurring behaviors (internalizing symptoms, ADHD symptoms, and social 

impairments). The CPM model predicting aggression from dlPFC and its associated nodes 

remained significant despite co-occurring symptoms in subgroups with high severity of 

internalizing (r=0.38, RMSE = 6.46, p=0.005), ADHD (r=0.27, RMSE = 6.54, p=0.03), and 

social impairments (r=0.26, RMSE = 6.76, p=0.05) (Figure 4A–C). Other high-degree nodes 

did not demonstrate similar performance as the dlPFC across each of the subgroups (all 

other Ps > 0.06) and are therefore less robust and not further discussed. However, for the 

interested reader, we present these findings for other high-degree nodes in Table S4.

To further assess construct specificity of the dlPFC nodes, we then tested whether 

the CPM model predicted internalizing and ADHD in the total sample (N=129). Even 

when dlPFC network connectivity predicted aggression (Figure 4), it did not predict 

internalizing behaviors (r=−0.015, RMSE=9.94, p=0.86) or ADHD (r=−0.29, RMSE=5.42, 

p=1), or social behavior impairments (r=−0.48, RMSE=27.1, p=1)—note that because we 

hypothesize a positive association between predicted and actual aggression values (i.e., 
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one tailed), negative correlations indicate CPM model failure. As a check on our main 

findings for model specificity to aggression, we also conducted a follow up post hoc 

analysis to test whether the CPM model predicts broader externalizing behaviors after 

accounting for the shared covariance with aggressive behavior. The CPM model did not 

predict externalizing behavior (indexed by the CBCL Externalizing Behavior scale) when 

restricted to the dlPFC nodes (r=−1, RMSE=12.23, p=1) or when tested across all 268 nodes 

(r=0.04, RMSE=12.78, p=0.5).

External Replication and Validation: Aggression Prediction

Out-of-Sample Replication.—We then tested the replication of findings from the 

transdiagnostic sample in an independent sample of children from the ABCD study39. For 

both ABCD tasks (EN-back, SST), the CPM model predicted aggressive behavior in the 

independent sample (EN-back: rs=0.10, RMSE=3.98, p<0.001; SST: rs=0.07, RMSE=4.01, 

p=0.002) (Figure 5A). Follow-up comparisons were also conducted that controlled for 

potential covariates including age, IQ, sex, ADHD and internalizing symptoms. For the SST 

task, the models controlling for potential covariates predicted severity of aggressive behavior 

and demonstrated similar prediction performances when controlling for age (rs=0.10, RMSE 

= 3.98, p=5.17E-5), IQ (rs=0.10, RMSE = 3.98, p=5.92E-6), and sex (rs=0.11, RMSE 

= 3.97, p=5.18E-6). The CPM model predicting aggressive behavior from the SST task 

remained significant with similar prediction results after accounting for the potential impact 

of co-occurring internalizing symptoms (rs=0.07, RMSE = 3.91, p=0.003) and ADHD 

diagnosis (rs=0.07, RMSE = 4.1, p=0.01). For the EN-back task, the models controlling 

for potential covariates also predicted severity of aggressive behavior with similar prediction 

performances when controlling for age (rs=0.10, RMSE = 3.98, p= 0.0004), IQ (rs=0.11, 

RMSE = 3.98, p=4.48E-5), and sex (rs=0.10, RMSE = 3.99, p=1.22E-5). The CPM model 

predicting aggressive behavior from the EN-back task also remained significant after 

accounting for the potential impact of co-occurring internalizing symptoms (rs=0.11, RMSE 

= 3.99, p=2.91E-6) and ADHD diagnosis (rs=0.09, RMSE = 3.99, p=5.23E-5).

Similar to the CPM model predicting aggression in the discovery sample (Figure 1), highly 

predictive features/nodes were observed in ventral and lateral prefrontal regions including 

the dlPFC as well as temporal-parietal regions (Figure 5B–D). At the network level, Figure 

5E summarizes connectivity within and between large-scale neural networks for the SST 

and EN-back tasks, which demonstrated similar patterns as the discovery sample, including 

connections between medial frontal, frontoparietal, sensorimotor, default mode, and salience 

networks.

Out-of-Sample Validation.—We also assessed the generalizability of findings by testing 

the ability of the identified networks in the transdiagnostic, discovery sample (Figure 1) to 

predict aggressive behavior in the independent sample from the ABCD study and vice versa. 

First, we found that aggression network strength in the transdiagnostic sample predicted 

aggression severity in the independent sample (ABCD) for the EN-back (rs=0.06, p=0.007), 

but not the SST (rs=−0.002, p=0.9) (see Supplemental Results Table S5). Next, we tested 

the generalization of the aggression model developed in the independent dataset (ABCD 

study) to the discovery sample. We found that models developed using the EN-back and SST 
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tasks both generalized to the discovery sample (EN-back: rs=0.18, p=0.03; SST: rs=0.24, 

p=0.005).

Discussion

This study is the first to apply a connectome-based predictive modeling approach to identify 

the functional connectomics underlying aggression in children. Two key findings from 

this study clarify associations between brain-wide functional connectivity and aggression 

in children. First, during implicit emotion processing of faces, brain-wide connectivity 

predicted severity of aggressive behavior. Specifically, dlPFC nodes emerged as highly 

predictive in the connectome models and were robust in sensitivity analyses. On a network 

level, connections within and between networks implicated in cognitive control (medial 

frontal, frontoparietal), social functioning (default mode, salience), and emotion generation/

reactivity (subcortical, sensorimotor) emerged as significant predictors of aggression. 

Second, we further demonstrated that the same networks can be used to predict aggression 

in an independent, heterogeneous sample using similar tasks that tap into cognitive control 

processes of response inhibition and working memory, often impaired in children with 

aggressive behavior. These results are also aligned with prior CPM studies using task-

based connectivity to predict behavior. For instance, task-based connectivity based on a 

frustration inducing cognitive flexibility task predicted irritability in youths68. Overall, 

our findings support the importance of examining the functional connectome during a 

phenotype-relevant brain state—in this case, emotion generation and regulation—to enhance 

individual differences to reveal patterns of brain activity predictive of aggression, which may 

facilitate the mapping from individual brains to behaviors and is a crucial step in developing 

brain-based biomarkers with real-world clinical utility69, 70.

The central role of the dlPFC in predicting aggression was consistent for models 

trained/tested in the discovery transdiagnostic sample of children and in the external 

validation dataset. These findings are consistent with prior work reporting disruptions in 

dlPFC connectivity in children with aggression and irritability during tasks of emotion 

regulation23, 71 and implicit emotion processing12, 16, 19, 20, spanning frontoparietal and 

fronto-amygdala circuitry. The dorsal and ventral prefrontal cortex connects to parietal and 

limbic regions, such as the amygdala, forming a frontoparietal and frontolimbic network 

tightly coupled with cognitive control systems involved in emotion regulation and executive 

functioning72. Therefore, projections between the dorsal and ventral prefrontal cortex and 

limbic regions are critical in dampening the acquisition and expression of negatively 

valenced emotions73, 74. Here, perturbed dlPFC connectivity during the processing of 

emotionally expressive faces could suggest disruptions in the modulation of emotion 

generation/reactivity systems in response to salient socioemotional stimuli associated with 

aggression in children.

It is important to note that the dlPFC nodes emerged as high-degree features—that is, 

the highest-ranking nodes that consistently contributed to models predicting aggression 

in all of the iterations—and remained robust predictors despite co-occurring symptoms 

of internalizing, ADHD and social impairments. While the dlPFC nodes alone predicted 

aggression severity in all of the follow up analyses, other nodes located in the salience, 
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limbic, and sensorimotor networks are noteworthy and showed predictive ability when the 

dlPFC nodes were left out. Although some studies showed distinct behavioral1, 55 and 

neural75, 76 correlates of reactive and proactive forms of aggression, our results showed a 

similar pattern of network connectivity for reactive and proactive aggression (see Figure 

S3), suggesting that dlPFC connectivity is a neural feature of maladaptive aggression 

regardless of subtype. Given that the dlPFC was observed as the highest-ranking feature, it is 

possible that disruption to the dlPFC—a central hub of the emotion regulation circuitry with 

reciprocal connections to temporal-parietal and other cortical regions73, 74—may progress 

from local or modular disruptions before fanning out to other network hubs that are 

globally connected to frontoparietal networks involved in emotion regulation77. Thus, the 

involvement of other seemingly disparate networks in predicting aggression could indicate 

compensatory effects (e.g., over-connectivity) in which other functionally connected nodes 

take over the role of perturbed nodes (i.e., dlPFC) to maintain an optimal level of overall 

function. This interpretation aligns with the ‘cascading network failure’ theory, which 

states that initial, local changes to the connectome are cascaded across the networks78, 79. 

Therefore, the diverse interconnectedness of the dlPFC may make this highly connected 

region a potential ‘vulnerability hot spot’ for disruptions in the functional connectome 

associated with aggression.

Several large-scale networks emerged in the CPM models of aggression including the 

salience and default mode networks—two neural circuits associated with attentional and 

social cognitive processes80–83 that share reciprocal functional connections84. Our findings 

are consistent with prior work implicating associations between disruptive behavior and 

aberrant connectivity and activity in salience19, 75, 85 and default mode75, 86–88 networks in 

children. For instance, reduced activation in social brain circuitry is associated with conduct 

problems in youths relative to controls during social cognitive tasks12, 89, 90. Behavioral 

studies also show that impairments in social behavior, including emotion recognition and 

higher-order social cognitive processes, such as theory of mind and empathy, are associated 

with childhood aggressive behavior91, 92. Given the overlap of neural networks supporting 

social cognitive and emotion regulation processes93, disruptions in salience, default mode, 

and frontoparietal networks in children with aggression suggest impairment in the ability 

to detect salient social cues or inhibit inappropriate social responses, leading to aggressive 

responding. Thus, the salience and default mode networks and their component subsystems 

represent plausible substrates for deficits in emotion perception94, empathy95, and moral 

reasoning96 that have been observed in children with disruptive behavior disorders.

Multiple large-scale networks were involved in predicting aggression, emphasizing the 

complexity of the functional connectome in predicting behavioral phenotypes32, 33, 62. 

Figure 6 shows a theoretical network model of maladaptive aggression, integrating the 

network-level connections we observed. Based on these findings, we propose that aggression 

is predicted by: 1) disruptions in coordination between a cognitive control network system 

implicated in emotion regulation and executive functioning involving hyper-connectivity 

between frontoparietal and medial prefrontal networks; 2) disruptions in the integration of 

an emotion generation/reactivity network involving hyper-connectivity between subcortical 

and sensorimotor networks; and 3) disruptions in coordination between a social functioning 

system involving hyper-connectivity between the salience and default mode networks, and 
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integration of a social functioning system with cognitive control and emotion generation 

networks. The current model builds on previous triadic model accounts of aggression by 

suggesting disruptions in limbic circuitry in response to emotional stimuli coupled with 

disruptions in prefrontal regulatory circuitry and dysconnectivity between these systems24. 

However, the current model also incorporates sensorimotor and salience networks to provide 

a theoretical framework for future research.

This connectome-based model of aggression was also replicable and generalizable to an 

out-of-sample dataset. First, replication of findings in ABCD indicated a similar pattern of 

functional organization across large-scale networks that predicted aggression severity (see 

Figure S4 for a visual depiction of the overlap of predictive edges and nodes between the 

discovery and external validation samples). Second, the model from the discovery dataset 

predicted aggression in the external ABCD dataset and vice versa. We also observed a 

similar pattern of results implicating frontal, temporal-parietal, and sensorimotor networks 

in aggression. In particular, dlPFC nodes were highly predictive for both EN-back and SST 

tasks. It is important to note that the connectome model was replicated and generalized 

to the independent ABCD sample, despite different measures of aggression. Here, the 

RPQ was used as the primary measure of maladaptive aggression because children were 

selected based on a criterion cut-off using the CBCL Aggressive Behavior scale as part 

of the RDoC framework to identify aggression transdiagnostically. In the ABCD sample, 

the CBCL was the most optimal measure of aggression and assessed a similar construct as 

the RPQ. Given that the connectome model demonstrated replication and generalization of 

findings to ABCD, this demonstrates potential robustness of brain-based models to predict 

aggression using different but related behavioral measures of aggression. This suggests that 

transdiagnostic, generalizable neural systems could be implicated in aggression.

The current study extends prior literature by investigating brain-wide connectivity of large-

scale functional networks predictive of aggression in children. However, findings from 

the current study should also be interpreted in the context of other studies examining 

externalizing behaviors using machine learning and/or big data analytic approaches. For 

example, recent work has leveraged large datasets using related network neuroscience 

approaches to understand neuroetiologic pathways in children with disruptive behavior 

disorders97, 98 as well as broader externalizing behaviors99–101, which point to aberrant 

connectivity in frontoparietal regions and a potential broad network dysfunction similar to 

that observed in the current study. In addition, a recent study reported that sensorimotor 

network connectivity was associated with irritability in youths during a frustrating 

cognitive flexibility task68. Therefore, in conjunction with data-driven, predictive modeling 

approaches, the use of large-scale imaging data offers a unique opportunity to advance 

individual-level clinical predictions69, 70.

Study Limitations

First, the present study is cross-sectional and future research is needed to understand 

how these findings relate to longitudinal trajectories of connectivity impairment implicated 

in aggression. Second, while models were robust to common co-occurring internalizing, 

ADHD, and ASD symptoms, the functional significance of the identified networks in 
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relation to other forms of developmental psychopathology associated with aggression 

remains to be tested in larger samples. Third, our models showed modest effect sizes, 

capturing approximately 10% of the variance, which was reduced to 1% to 5% in the 

replication analysis. The small effect sizes observed here for replication and external 

validation could in part be due to the use of data-driven, machine learning approaches, 

which are expected to have small effect size estimates when applied to large datasets102. 

Additionally, the effect sizes observed here are consistent with recent work examining brain-

wide associations with phenotypic data in the ABCD dataset103. It is possible that imaging-

derived metrics predicting modest amounts of variance in a complex phenotype may 

become a common finding with machine learning approaches applied to connectomics in 

large-scale samples. This could be partly due to the heterogeneity of complex neurocognitive 

traits and psychiatric disorders associated with brain-wide associations. Alternatively, given 

that psychopathology is supported by widely distributed circuitry104, machine learning 

approaches applied to brain-wide associations may pick up on generalizable features 

inherent in the connectome that can predict a complex phenotype, potentially reflecting 

more conservative effect size estimates102, 105. Future studies examining connectome 

predictive modeling approaches in large-scale samples will be important to assess the 

clinical utility of this method. Lastly, the task acquisition length was relatively short. 

Nonetheless, despite the shorter acquisition length, the generalization of large-scale 

networks—including the frontoparietal and medial frontal networks—emerged as predictive 

of aggression in the ABCD external validation sample. This may suggest greater reliability 

of network level prediction relative to node and/or edge level prediction66, which can 

have clinical implications for developing robust and reliable brain-based biomarkers with 

generalization to heterogeneous samples.

Conclusion

This study demonstrates that patterns of brain-wide connectivity predict severity of 

aggressive behavior in children, even when controlling for co-occurring psychiatric 

symptoms of ADHD, internalizing and social behavior deficits. Networks predictive of 

aggression included medial frontal, default mode, frontoparietal, salience, sensorimotor, and 

subcortical networks as well as complex patterns of integration among these networks. 

The predictive ability of these networks also generalized to an independent sample of 

children. These data demonstrate that individual differences in the functional connectome 

across large-scale networks implicated in cognitive control, social processing, and emotion 

generation/reactivity processes contribute to variability in aggression. These networks or 

“neural fingerprints” may be an appropriate target for development of biomarkers to inform 

targeted interventions for children with aggressive behavior.
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Figure 1. 
Brain-wide functional connectivity predicts severity of aggressive behavior. (A) Panel 

A illustrates the correspondence between observed (x-axis) and predicted (y-axis) 

severity of aggressive behavior generated using CPM. The Reactive-Proactive Aggression 

Questionnaire (RPQ) was used as a continuous measure of severity of aggressive behavior. 

Despite the clinical complexity of the population, CPM successfully predicted aggression 

(p=0.005, permutation testing). Predictions remained significant in follow-up analyses 

controlling for covariates including age, IQ, sex, medication use as well as co-occurring 

ADHD and internalizing symptoms. Histogram shows distribution of Pearson correlation 

(r) values from 1000 iterations of randomly-shuffled ratings of aggression severity used 

to nonparametrically determine P values. (B) Panel B shows positive (red) and negative 

(blue) networks predicting aggression. For positive networks, increased edge weights (i.e., 

increased functional connectivity) predict greater severity of aggression. For negative 

networks, decreased edge weights (i.e., decreased functional connectivity) predict greater 

severity of aggression. Larger spheres indicate nodes with more edges, and smaller spheres 

indicate fewer edges. Note: RMSE = Root Mean Square Error.
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Figure 2. 
Networks predicting aggression summarized by connectivity between macroscale brain 

regions and networks. (A) From the top, brain regions are presented in approximate 

anatomical order whereby longer-range connections are represented by longer lines. To 

visualize these complex networks and clarify edges that contributed the most to the CPM 

model, edges belonging to nodes with five or more edges (degree ≥5; left), 20 or more edges 

(degree ≥20; middle), and 40 or more edges (degree ≥40; right) are shown. (B) Visualization 

of node degree (i.e., the sum of predictive edges for a node) for the positive (left), negative 

networks (middle), and all networks (right). Darker colors indicate higher degree nodes (i.e., 

with more edges) contributing to CPM model. Several lateral and ventral prefrontal nodes 

emerged as high degree positive predictive nodes including bilateral dorsolateral prefrontal 

cortex (dlPFC), ventrolateral and ventromedial PFC (vlPFC and vmPFC, respectively). A 

negative predictive node emerged in the supramarginal gyrus (SMG) as well as sensorimotor 

regions. (C) Within- and between-network connectivity for the positive network (left), 

negative network (middle), and combined networks (right) are summarized using canonical 

networks. Cells represent the total number of edges connecting nodes within and between 

each network, with darker colors indicating a greater number of edges. By definition, 

positive and negative networks do not contain overlapping edges.
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Figure 3. 
Follow up analyses for high-degree nodes contributing to the connectome model in the 

discovery sample of 129 children. Follow up analyses tested the sensitivity of high-degree 

nodes (i.e., most predictive features) in predicting aggressive behavior. Regions emerging as 

highly predictive of aggression in the connectome model include the bilateral dorsolateral 

prefrontal cortex (dlPFC), right ventrolateral PFC (vlPFC), bilateral temporal pole, bilateral 

parietal cortex, bilateral occipital cortex, and right cerebellum. See Table S3 for MNI 

coordinates of high-degree nodes. Post-hoc tests retained the high-degree nodes and all 

edges connected to these nodes, while removing all other edges. For illustrative purposes, 

scatter plots depict the strength of node connectivity plotted on the y-axis and severity of 

aggressive behavior (Reactive-Proactive Aggression Questionnaire total) on the x-axis.
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Figure 4. 
Dorsolateral prefrontal cortex connectivity predicts aggressive behavior. Two nodes in the 

bilateral dorsolateral prefrontal cortex (dlPFC) emerged as the highest degree nodes (i.e., 

most predictive) in the CPM model predicting aggression (MNI coordinates: left dlPFC, 

x=−28, y=50, z=21; right dlPFC, x=37, y=35, z=31). Larger spheres indicate nodes with 

more edges, and smaller spheres indicate fewer edges. (A-C) Follow up analyses tested the 

sensitivity of these dlPFC networks in predicting aggressive behavior despite commonly co-

occurring behaviors with aggression. From the total sample, subgroups were formed to test 

the robustness of the dlPFC networks in predicting aggression based on cutpoints using a T 

score >65, which represents a clinical threshold on standardized measures (CBCL, SRS-2 

SCI): (A) high severity of internalizing symptoms (n=51); (B) high severity of ADHD 

symptoms (n=60); and (C) high severity of social behavior impairments (n=53). Post-hoc 

tests retained the bilateral dlPFC nodes and all edges connected to these nodes, while 

removing all other edges. For illustrative purposes, scatter plots depict the strength of dlPFC 

connectivity plotted on the y-axis and severity of aggressive behavior (Reactive-Proactive 

Aggression Questionnaire total) on the x-axis.
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Figure 5. 
Replication of findings using CPM prediction of aggression in an out-of-sample dataset. (A-
E) Using the Adolescent Brain Cognitive Development (ABCD) study dataset, we trained 

and tested a separate CPM model predicting aggressive behavior from 1701 children (920 

females) using the stop signal task (SST) and from 1791 children (958 females) using 

the emotional n-back task (EN-back) (age range 9–10 years). We selected these tasks for 

replication and external validation because the SST and EN-back tasks tap frontoparietal 

and fronto-amygdala circuitry relevant to aggressive behavior39–41, 106 and related constructs 

of emotion processing and response inhibition that are implicated in disruptive behavior 

disorders in children. ABCD data was processed in a similar manner to the main dataset67. 

(A) Panel A illustrates the correspondence between observed (x-axis) and predicted (y-axis) 

severity of aggressive behavior generated using CPM for the SST and EN-back tasks. The 

CBCL aggressive behavior total score was used as a continuous measure of aggression. 

(B) Brain regions are presented in approximate anatomical order whereby longer-range 

connections are represented by longer lines. To visualize these complex networks and clarify 

edges that contributed the most to the CPM model, edges belonging to nodes with five 

or more edges (degree ≥5; left), 10 or more edges (degree ≥10; middle), and 20 or more 

edges (degree ≥20; right) are shown. Warmer colors indicate positive networks and cooler 
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colors indicate negative networks. (C) Several prefrontal regions emerged as high degree 

predictive nodes, particularly in the lateral orbitofrontal PFC (OFC) (for the EN-back task: 

bilateral dlPFC, right temporal pole, right frontal eye fields, right vmPFC; for the SST task: 

bilateral dlPFC, left temporal pole, bilateral supramarginal gyrus, right vmPFC). Larger 

spheres indicate nodes with more edges, and smaller spheres indicate fewer edges. (D) 

Visualization of node degree (i.e., the sum of predictive edges for a node) for the positive 

versus negative networks. Darker colors indicate higher positive degree nodes (i.e., with 

more edges) contributing to CPM model. (E) Within- and between-network connectivity for 

the positive network (left), negative network (middle), and combined networks (right) are 

summarized using canonical networks for the SST and EN-back tasks. Cells represent the 

total number of edges connecting nodes within and between each network. Here, darker 

colors indicate a greater number of edges. Positive and negative networks do not contain 

overlapping edges. Note: RMSE = Root Mean Square Error.
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Figure 6. 
Network model of aggression. Large-scale patterns of between-network connectivity in 

aggression networks identified using connectome-based predictive modeling are summarized 

based on relative number of connections within networks. Disrupted connectivity (i.e., 

network coordination) between frontoparietal and medial-frontal networks (top), between 

salience and default mode (DMN) networks (middle), and between sensorimotor and 

subcortical networks (bottom) positively predicted severity of aggressive behavior in 

children. Disrupted long-range connectivity (i.e., network integration) between networks 

are indicated in red. To facilitate interpretation, predictive networks are described according 

to domains of impairments implicated in aggression: cognitive control, social behavior, and 

emotion generation/reactivity. As the negative network did not contribute to prediction in the 

discovery sample (Figure 2), only the positive network is shown. To visualize comparisons 

among large-scale networks, edge weights are shown for each network pair that contributed 

to the model depicted in Figure 2 and are normalized by network pair size (i.e., number of 

edges in each network).
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Table 1.

Participant Demographics and Clinical Characteristics

Variable Total Sample 
N=129

Aggressive Behavior n = 100 Healthy Controls 
n=29 p value

b

Age, years (SD) 11.9 (2.2) 11.7 (2.3) 12.8 (1.8)
0.02

c

Male, % 69 73 55.2 0.07

Mean IQ
a
 (SD)

107.8 (13.8) 106.4 (14.1) 112.5 (12.3)
0.04

c

Race, % 0.45

 White 76 78 69

 Black 13.2 12 17.2

 American Indian/Alaska native 1.6 2 0

 Asian/Pacific Islander 1.6 2 0

 Other/More than one race 7.8 6 13.8

Ethnicity 1

 Hispanic 15.5 16 13.8

 Non-Hispanic 84.5 84 86.2

Mean CBCL aggressive behavior T score (SD) 69.8 (12.2) 75.3 (7.6) 51 (2.7)
<0.001

d

Mean CBCL internalizing behavior T score (SD) 58.6 (13.1) 63.3 (10.3) 42.4 (7.3)
<0.001

d

Mean SRS-2 SCI total T score (SD) 60.7 (13.8) 65.5 (11.3) 44.1 (7.8)
<0.001

d

RPQ Aggression Total (SD) 15.7 (9.3) 19.4 (6.9) 2.8 (3.1)

DSM-5 diagnoses
e
, %

 Oppositional defiant disorder 76

 Conduct disorder 4

 DBD-NOS 3

 DMDD 18

 ASD 18

 ADHD 78

 Anxiety disorder 26

 Depression disorder 4

Type of medication, %

 Stimulants 31

 Antidepressant 13

 Neuroleptics 13

 Non-stimulants 20

 Mood stabilizers 4

 Benzodiazepines 2

Note: Diagnoses of disruptive behavior disorders and comorbid disorders were made using the Schedule for Affective Disorders and Schizophrenia 
for School-Age Children-Present and Lifetime Version (K-SADS-PL). Following DSM-5, oppositional defiant disorder diagnosis was not assigned 
to children who met criteria for DMDD.

Abbreviations: ASD, autism spectrum disorder; ADHD, Attention-deficit/hyperactivity disorder; CBCL, Child Behavior Checklist; DMDD, 
Disruptive mood dysregulation disorder; HC, healthy controls; RPQ, Reactive-Proactive Anger Questionnaire; SRS-2 SCI, Social Responsiveness 
Scale-Second Edition Social Communication and Interaction.
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a
Full-scale IQ measured by the Wechsler Abbreviated Scale of Intelligence51.

b
Significant group differences at p<0.05 using Chi-square test for categorical variables or independent samples T-test.

c
HC > Aggressive Behavior group

d
Aggressive Behavior group > HC

e
Following DSM-5, oppositional defiant disorder diagnosis was not assigned to children who met criteria for DMDD.
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