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Abstract

Background: To gain insight into the evolutionary features of the huntingtin (htt) gene in
Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona
intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking
advantage of the availability of genomic and EST sequences, the htt gene structure of a number of
chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and
Gallus was reconstructed.

Results: The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader
trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding
region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared
to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter
than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-
terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost
identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing
us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons.

Conclusion: During chordate diversification, events of gain/loss, sliding, phase changes, and
expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half
of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in
vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level
of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary
rate and/or an early divergence time is suggested by the absence of significant similarity between
UTRs, protein divergence comparable to that observed between mammals and fishes, and different
distribution of repetitive elements.

Background an amino-terminal polymorphic polyglutamine (polyQ)
Huntingtin is a large protein (> 3000 amino acids longin  tract whose aberrant expansion causes Huntington's Dis-
vertebrates), characterized in humans by the presence of = ease (HD), a progressive neurodegenerative disease
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accompanied by neuronal dysfunction and cell loss in the
brain [1]. HD is dominantly inherited, and this observa-
tion, together with a number of important experimental
results, point to the polyQ tract in the mutant protein as
disease-triggering [2]. More recently, it has been proposed
that aspects of the disease might be caused by reduced
activity of the normal huntingtin protein, indeed a
number of biological investigations point to individual
protective activities of huntingtin in brain cells [3]. The
protein is expressed ubiquitously in humans and rodents,
with the highest levels in the neurons of the CNS [4]. Its
widespread intracellular localisation does not facilitate
the definition of its physiological function. In addition,
the large dimension of the protein makes its purification
extremely problematic and its three dimensional structure
remains unsolved. Because of these difficulties, the study
of huntingtin function(s) has largely progressed through
gene deletion and gene addition studies that have demon-
strated that huntingtin is essential for embryonic develop-
ment [3]. In addition, huntingtin is important for the
survival of brain neurons where it also controls BDNF
(brain-derived neurotrophic factor) production and deliv-
ery [5-7], axonal transport [8,9] and neuronal gene tran-
scription [3].

The huntingtin gene or transcript has been characterized
in a number of vertebrate and invertebrate species [10-
17], and it seems to be absent in yeast and lower eukaryo-
tes [16]. Current data demonstrate that huntingtin is a sin-
gle copy gene - highly conserved in vertebrates but poorly
conserved or absent in invertebrates [16]. Indeed, in Dro-
sophila melanogaster huntingtin shows only five regions,
accounting for 36% of the whole protein, with high simi-
larity to vertebrate homologs [16], while the gene has not
been detected in the nematode Caenorhabditis elegans. In
invertebrate deuterostomes (the tunicate Halocynthia
roretzi and two echinodems), only ¢cDNA clones corre-
sponding approximately to the last three hundred amino
acids of the protein have been identified and used to
investigate the expression pattern, suggesting that neural
expression emerged as novel feature in the phylum of
chordates, and was absent in primitive deuterostomes
[17]. As further peculiarity, huntingtin does not present
regions of similarity to other proteins or genes. Only a
conserved secondary structure domain has been identified
as shared with other proteins, indeed huntingtin is nota-
ble for contributing to the definition of HEAT repeats
(Huntingtin, Elongation factor 3, protein phosphatase
2A, TOR1), a 37-43 amino acid motif consisting of two
alpha helices forming a helical hairpin [18-20]. The HEAT
repeats are normally present in tandem arrays or clusters
and are indicative of the ability of the protein to mediate
protein-protein interactions [21,22], however they pro-
vide only limited clues to the protein function.

http://www.biomedcentral.com/1471-2164/7/288

Current data thus provide little help in speculations as to
the origin and evolution of this large protein, as well as of
its Q-rich domain. All comparative studies carried out so
far have been focused on the protein, with few studies
analyzing the gene structure in single species. In the case
of a highly conserved protein such as huntingtin, a
detailed comparative study of the exon-intron structure of
the gene and its evolution could shed light on the evolu-
tion of this gene across chordates and help to identify the
regions of the gene (and consequently of the protein)
evolving under different functional constraints. The cur-
rent availability of complete genome sequences for a
number of organisms offers the possibility to identify and
annotate this large gene and to study its evolutionary
dynamics in a large taxonomic sample. In this study we
focus our attention on the basal chordate Ciona intestinalis
(Tunicata, Ascidiacea). This model organism is of funda-
mental importance in evolutionary studies, because it has
the advantage of being a chordate-invertebrate: as a chor-
date, this species shows a body plan (at least in the tad-
pole larval stage) and embryonic development very
similar to those of vertebrates [23] but, as an invertebrate,
it exhibits enough genetic divergence from vertebrates to
allow more incisive evolutionary and comparative analy-
ses at protein level. Thus, the large evolutionary distance
separating tunicates and vertebrates (about 520 million
years) [24] could allow the identification of a huntingtin
"signature" related to the ancestral chordate function of
the gene/protein.

In this study we report the characterization of the Ciona
intestinalis huntingtin full-length transcript, including the
5'and 3' untranslated regions (UTRs), and the definition
of its gene structure using available C. intestinalis genomic
sequences. We have thus carried out a comprehensive
comparative analysis of the exon-intron structure of the
huntingtin gene in chordates, that is between two coge-
neric ascidians Ciona intestinalis and Ciona savignyi and
eight vertebrate species, including Xenopus and Gallus -
whose gene structures were here accurately predicted from
genomic sequences.

Results

The Ciona huntingtin transcript

The full-length transcript of the C. intestinalis huntingtin
(htt) shows several peculiar features. It ranges from 8919
to 9957 nucleotides (nt) in length, depending on the
usage of an alternative splicing site in the coding region
and of the polyadenylation site.

The longest protein-coding region (CDS), from the first
AUG to the UGA stop codon, is 8841 bp long. A compet-
ing 5' splice site in exon 50 allows the synthesis of an alter-
native transcript lacking 57 nt (19 amino acids) in the C-
terminal portion of the encoded protein (Figure 1). In the
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first exon of C. intestinalis there are no in-frame upstream
or downstream AUG with respect to the inferred initiator,
whereas in exon 1 of vertebrates there are one or two addi-
tional Met codons, depending on the species: in position
4 in non-mammalian species, and in position 8 in all ver-
tebrates. The start codon of C. intestinalis htt is unambigu-
ously homologous to the Met at position 4, common only
to non-mammalian vertebrates (see Additional file 1).
The same situation is found in C. savignyi.

The complete 5' untranslated region (5'UTR) was deter-
mined by 5'RACE and is 98 bp long. As revealed by com-
parison with the genomic sequence, most of the sequence
is encoded by the exon that contains the translation start
codon. Surprisingly, the first bases of the 5'UTR were
found neither in the first exon, nor in the genomic region
10 kb upstream the first exon, excluding the existence of
an upstream micro-exon. On the contrary, this sequence
perfectly matches the 16-bp long sequence recognized as
spliced leader (SL) in C. intestinalis [25], pointing to an
event of trans-splicing in the htt mRNA maturation. The
presence of a SL sequence in the mature htt transcript of
Ciona prevents both the identification of the transcription
start site and the "in silico" characterization of the pro-
moter region.

Although quite short, the 5'UTR contains two upstream
ORFs (uORF) that are out-of frame with respect the to
translation start: the first uORF is located at position 49
and is immediately followed by a UGA stop codon; the
second uORF starts at position 68 and is 15 nt long
(amino acid sequence MLSFI, stop codon UAG). In C.
savignyi, no sequences with similarity to the C. intestinalis
5'UTR were found in the 10 kbp upstream of the first cod-
ing exon. Assuming that as in C. savignyi the sequence 98
bp-long immediately upstream the translation start codon
constitutes the 5'UTR, two out-of frame uORFs (60 and 27
nt long) were found in this putative 5'UTR. Moreover, all
uORFs exhibit a start codon context different from the
Kozak's consensus [26] and there is no similarity between
the uORFs of C. intestinalis and C. savignyi.

http://www.biomedcentral.com/1471-2164/7/288

The start codon context is aaacauaAUGgaa in C. intestina-
lis, and cauugcgAUGgaa in C. savignyi (assuming the
5'UTR as reported before), thus the purine 3 nt upstream
of the start codon, and the G immediately after the start
codon are conserved, suggesting a strong context of trans-
lation initiation [26].

Seven alternative polyadenylation (polyA) sites were
experimentally identified by 3'RACE, and an additional
site was found in two EST clones, making a total of eight
alternative polyA sites (Table 1). The possibility that some
of the identified polyA sites are artifactual mRNA 3' ends
due to internal priming was excluded by the absence of
long genomic adenine stretches (> 6 bp) adjacent to the
polyA cleavage site. Indeed, only the most represented
polyA site (5th in Table 1) starts just downstream of an
A;CA, sequence (data not shown). Most polyA sites are
associated with a polyA signal, defined as described in
Methods, except for two cases (2nd and 6th polyA sites in
Table 1). Moreover, the third polyA signal exhibits both
unusual sequence and position compared to the polyA
site (Table 1). The resulting alternative 3'UTRs range from
37 to 1018 bp, while the most common 3'UTR is 375 bp-
long (5th in Table 1). The longest 3'UTR contains a cyto-
plasmic polyadenylation element (CPE), a signal known
to be involved in the regulation of translational activation
of quiescent maternal mRNAs during early development
in animals [27].

All identified alternative 3'UTRs, together with the last
138 bp of the CDS of the C. intestinalis transcripts, are
encoded by the last coding exon (61th exon).

No significant similarity to the C. intestinalis 3'UTR was
found in the C. savignyi genomic scaffold containing the
htt CDS, nor in the remaining genomic sequences, pre-
venting the prediction of C. savignyi 3'UTR by similarity
criteria. Moreover, there are no significant similarities
between Ciona UTRs and the homologous regions of ver-
tebrates [11,15,28,29] and Drosophila melanogaster [16].

2662
2635
2637
2657
2636
2548
2632
2665
2664
2446
2448

Homo 2619
Rattus 2592 SIHSVWLGNNITPLREEEWH
Mus 2594 SIHSVWLGNNITPLREEEW[S
sus 2615 SIHSVWLGNFJITPLREEEW]
Gallus 2593 SIHSHWLGNNITPLREEEWH
Xenopus 2505 SIHSVWLGNNITPLR{JEEIAN
Danio 2589 SIHSVWLGNNITPLREEEW[
Tetraodon 2622 SIHSVWLGNNIJJPLREEEWN
Fugu 2621 SIHSVWLGNNITPLREEEWf
C_intestinalis 2376
C_savignyi 2383
Figure |

Amino acid alignment of the huntingtin region corresponding to exon 50-51 of Ciona. The red box indicates the
region absent in the alternatively spliced isoform. ldentical, similar and conserved positions are reported with different back-

grounds.
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Table I: Features of the huntingtin 3'UTRs of Ciona intestinalis mRNA and source supporting the data.

N° 3'UTR (nt) PolyA signal N° clones/total EST tissues
Sequence Position 3'RACE EST

| 37 AAUACA -15 1/23

2 118 - 1/23

3 283 AAUCAA -44 1/23

4 323 AcUAAA -15 2/23

5 370 AAUACA -17 15/23 4/6 h,g b, cl

6 496 - 0/23 2/6 eg, tb

7 744 AAgAAA -18 2/23

8 1018 AAUAAA -10 1/23

Lower case letters in the polyadenylation signal indicate differences from the canonical AAUAAA sequence. The position is the distance of the last
base of the hexamer from the polyA start site, indicated as position 0. Tissue abbreviations: b: blood cells; cl: cleavage stage embryo; eg: egg; g:
gonad; h: heart; tb: tailbud embryo. EST clones are detailed in Additional file 3.

As expected from the high level of polymorphism revealed
by C. intestinalis genomic sequences [30], a number of
positions with nucleotide differences were found in both
the CDS and UTR of the sequenced transcript. In the CDS
we identified a total of 76 polymorphic positions, with
nucleotide differences resulting in synonymous (72%)
and non-synonymous substitutions (28%, mostly con-
servative amino acid changes); in the UTRs both nucle-
otide substitutions and indels were found. Nucleotide
differences were also observed between our sequences
obtained by RT-PCR and data obtained by re-sequencing
of publicly available EST clones (see Additional file Table
S1), further confirming a high level of sequence polymor-
phism in this species. The observed pattern of nucleotide
differences is in accordance with the evolutionary dynam-
ics of coding and non-coding sequences, suggesting that
such nucleotide differences are genuine polymorphisms.

Protein analysis

The percentage of amino acid (aa) differences between all
pairs of the eleven analysed chordate proteins are reported
in Table 2. The sequence divergence between C. intestinalis
and C. savignyi is as high as 27.95%, although these spe-
cies belong to the same genus. This value is surprisingly
high, particularly compared to the pairwise aa differences
observed among vertebrates. Indeed, the divergence
between pufferfishes belonging to the same family of
Tetraodontidae (Tetraodon and Fugu) is only 4.97%, and
that between mammals of the same order (mouse and rat)
is as low as 2.86% (Table 2). On the contrary, the distance
observed between the two Ciona species is comparable to
that observed between mammals and fishes. The evolu-
tionary tree based on amino acid data confirms the high
divergence between the two Ciona species, and suggests
the existence of long branches for these species (Figure 2).

The huntingtin proteins of C. intestinalis and C. savignyi
are 2945 and 2946 aa long respectively, notably shorter
than their vertebrate homologs, which are 3130 aa long
on average. This length difference can be mostly ascribed
to insertions/deletions in the N-terminal region of the
protein (aa 1-1140 of the protein alignment, see Meth-
ods). Moreover, the N-terminal regions of both Ciona pro-
teins lack the polyQ domain, or any kind of simple repeat
(see Additional file 1). Even the proline-rich region typical
of mammalian huntingtin is absent. A single histidine (C.
intestinalis) or tyrosine (C. savignyi) residue is located at a
position corresponding to the vertebrate polyQ stretch,
suggesting low selective constraints acting on this region
in the ascidian protein.

A total of 8 HEAT repeats (Table 3) are present in both the
C. intestinalis and C. savignyi huntingtins. These are
located as tandem arrays or as single elements in the N-
terminal (4 repeats), central (2 repeats), and C-terminal
(2 repeats) protein regions (each defined as one-third of
the chordate protein alignment, see Methods). In human
huntingtin, a total of 15 HEAT repeats are present, mostly
clustered as tandem repeats in the N-terminal region (10
repeats, see Table 3). The analysis of htt protein alignment
shows that all four ascidian HEAT repeats located in the
N-terminal region and one repeat of the central region are
also conserved in the same positions in the human
homolog, whereas the HEAT repeats of the C-terminal
region appear to be lineage-specific (Table 3). Thus, the
presence of HEAT repeats at the N-terminal region seems
to be an ancestral chordate character, further expanded in
mammals. Finally, comparing the location of HEAT
repeats to the gene exon boundaries, we found no indica-
tions that HEAT-repeats are encoded by single exons in
either human or ascidians (data not shown). Thus, the
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Table 2: Uncorrected amino acid distances, calculated as average number of differences per 100 amino acids, for all pairwise
comparisons of aligned proteins.

Species 2 3 4 5 6 7 8 9 10 11
| Homo 9.10 8.74 11.47 15.56 20.61 26.21 26.80 26.86 63.17 63.98
2 Rattus - 2.86 13.05 17.21 21.78 27.26 27.96 28.19 63.31 63.93
3 Mus - 12.75 17.07 21.74 27.16 27.64 27.87 63.40 63.95
4 Sus - 18.46 23.75 27.90 28.19 28.23 63.15 63.56
5 Gallus - 19.21 24.59 25.39 25.11 63.00 63.83
6 Xenopus - 26.54 27.13 27.31 63.18 63.71
7 Danio - 18.13 17.81 62.55 63.60
8 Tetraodon - 497 63.64 64.23
9 Fugu - 63.48 64.17
10 C. intestinalis - 27.95
I C. savignyi -
Homo
100
Rattus
69
10
Mus
100
il L Sus
100
| Gallus
ea| L—— Xenopus
Danio
100
- Fugu
Tetraodon
Ciona intestinalis
100
Ciona savignyi
Figure 2

Bayesian phylogenetic tree of huntingtin, reconstructed from protein sequences. Branch lengths are proportional
to the number of substitutions per site. Numbers close to the nodes represent Bayesian posterior probabilities.
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protein domain structure does not correspond to the gene
structure, at least with respect to the HEAT domains.

Gene structure comparison

The structure and size of chordate huntingtin genes (only
CDS) are summarized in Table 4 and Figure 3. The coding
region of C. intestinalis htt gene consists of 61 coding
exons with length varying from 46 (exon 9) to 376 bp
(exon 8) and a mean of 145 + 55 bp (see Additional file
2). Introns account for 73% of the gene (Table 4). All
introns are flanked by the canonical GT-AG consensus
splice site and interrupt the coding sequence in all three
possible phases. Phase 0 introns are the most abundant,
with an approximate ratio of 3:1:1 for introns with phase
0, 1 and 2, respectively. The two alternative introns 50,
due to the presence of a competing 5' splice site in exon
50 (Figure 1), share the same phase (1), and both follow
the GT-AG rule. Such an alternative 5' splice site can be

http://www.biomedcentral.com/1471-2164/7/288

also predicted in C. savignyi (Figure 1), with the two alter-
native introns conserving phase 1 and canonical consen-
sus splicing sites as in C. intestinalis.

The gene structure of the two Ciona species is almost iden-
tical (Figure 3 and Additional file 2): introns interrupt the
CDS at identical amino acid positions and also in the
same phase (only introns 34 and 41 have slipped six
nucleotides). Similarly, orthologous exons are of consist-
ently similar size, with substantial length differences (A L
> 12 bp) found only in exon 8, and exon 50 (upper blue
boxes in gene structure of Figure 3). Interestingly, exon 8
covers the less conserved region of ascidian huntingtin
(57% local against a 72% overall amino acid similarity)
and exon 50 is involved in the alternative splicing event.

The htt gene structure is perfectly conserved in the eight
vertebrate species analysed, from fishes to amphibians

Table 3: Ascidian and human HEAT repeats mapped on the protein sequence of the corresponding species.

Species HEAT name REP E-value Httregion Location Sequence
C. intestinalis
Al 0.0005 N-term 58-96 PGLLAVSVETLLQSCADDNADVRLNANECLNRLIKGLYE
A2 5.96E-06 N-term 139-177 RPYILNLLPCLCRISQREEDGVQETLGLSLVKIFKILGP
A3 1.35E-06 N-term 181-219 ESEIQGLLASFLKNLSHKSATMRRTACVCLHSVILNCRK
B4 6.19E-06 N-term 682-720 QSLSHQALSIALKCLCDDDLRLRKTAAATIVTMPTSFPT
c 2.30E-06 Central 867-905 SQQQFGILPFVYMSLLHSAWLPLDVTAHSDALVLAGNLVA
El 1.26E-06 Central 1341-1378  QGSASHVIPAMQPIIHDLYVVRASSKNEPPEVTTQREV
gl 9.05E-06 C-term 2771-2809 ARVMSKVLPSMLDDFFPAQDIMNKIIAEFISTLQPFPAS
g2 1.46E-06 C-term 2864-2904  NRWISSMVPLIISRVHDPTLDVDWTCFCKAAVDFYTCQLSE
C. savignyi
Al 2.92E-07 N-term 58-96 PGLLAVSVETLLQSCADENADVRLNSNECLNRVIKGLYD
A2 0.0001 N-term 139-177 RPYILNLLPCLCRISQREEDAVQEVLSSSLAKIFIVLGA
A3 2.52E-06 N-term 181-219 ESEIQGLLASFLKNLSHKSPTVRRTACICLHSILTNSRK
B4 1.53E-06 N-term 692-730 KSIAQKALSIALECLCDEDTRLRKTSSAAIVSMATSYPT
[ 1.46E-06 Central 876-914 AQQQFGILPIVMSLLRSAWLPLDVTAHSDALVLAGNLIA
El - Central 13521389 QGSASHVIPAMQPITHDI.FVYVRGSLKNEPPEVTTQREV
gl 1.27E-06 C-term 2770-2808  ARVMSKILPSMLDDFFPAQEIMNKIAEFISTLQPFPGS
g2 - C-term 2864-2903 RWISSMVPLIISRSHDPSLDRNWTCFCKSAVDFYTCQLSE
Homo sapiens
Al 4.75E-07 N-term 124-162 QKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMD
A2 0.0001 N-term 205-243 RPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFGN
A3 5.48E-07 N-term 247-285 DNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRR
a4 * N-term 291-329 SWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYLVPLLQQ
a5 7.77E-06 N-term 318-362 LTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL
bl * N-term 745-783 EYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSILS
b2 1.04E-06 N-term 803-841 TFSLADCIPLLRKTLKDESSVTSKLACTAVRNCVMSLCS
b3 * N-term 842-880 SSYSELGLQLIDVLTLRNSSYWLVRTELLETLAEIDFR
B4 6.69E-08 N-term 904-942 KLQERVLNNVVIHLLGDEDPRVRHVAAASLIRLVPKLFY
b5 9.05E-06 N-term 984-1025 RIYRGYNLLPSITDVTMENNLSRVIAAVSHELITSTTRALTF
d 5.62E-06 Central 1425-1463 RLFEPLVIKALKQYTTTTCVQLQKQVLDLLAQLVQLRVN
El * Central 15341575 RKAVTHAIPALQPIVHDLFVLRGTNKADAGKELETQKEVVVS
e2 * Central 1610-1648 RQIADIILPMLAKQQMHIDSHEALGVLNTLFEILAPSSL
e3 * Central 1670-1710  TVQLWISGILAILRVLISQSTEDIVLSRIQELSFSPYLISC
f 3.51E-06 C-term 2798-2836 DDTAKQLIPVISDYLLSNLKGIAHCVNIHSQQHVLVMCA

HEAT repeats are named according to their relative position along the chordate aligned sequences, using the same letter for repeats closer than 45
amino acids. Orthologous HEAT repeats conserved in ascidians and human share the same name, and are reported in upper case. The Expectation
values (E-value) was calculated by the REP program [62]. Htt regions defined as in Methods. Absolute position of the HEAT repeats in the
corresponding protein sequence is reported in the "Location" column. Dash: REP E-value not statistically significant. Asterisk: HEAT repeats
originally described in Andrade and Bork [18] but not identified by the REP program as statistically significant [62].
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Table 4: Chordata huntingtin gene structure, coding region (CDS), and length percentage of repetitive elements (Rpt) in intronic

sequences.
Exon N° Length (bp) Intron L %
CDS Gene Introns Rpt Simple Interspers Retroel DNA el
Mammalia ~ Homo sapiens 67 9432 165202 155770 385 1.3 37.2 339 22
Mus musculus 67 9357 146932 137575 382 1.9 36.2 34.7 0.5
Rattus norvegicus 67 9351 145591 p 136240 p 354 2.6 329 31.3 0.9
Aves Gallus gallus 67 9351 73424 p 64073 p 55 0.6 4.9 4.9 0
Amphibia  Xenopus tropicalis 67 9066 p 79087 p 70021 p 1.0 0.9 10.0 0 9.3
Teleostei  Danio rerio 67 9363 79017 p 69654 p 29.9 53 24.6 4.3 20.3
Fugu rubripes 67 9444 21324 11880 I.1 1.1 0 0 0
Tetraodon 67 9435 22257 12822 24 1.8 0.5 0 0.5
nigridoviridis
Ascidiacea  Ciona savignyi 6l 8835 45085 36249 9.8 27 7.1 44 2.1
Ciona intestinalis 6l 8838 32283 23445 12.5 5.8 6.7 1.6 5.1

Simple: satellites, simple repeats, low complexity repeats and small RNAs. Interspers: interspersed repeats. Retroel: retroelements. DNA el: DNA
elements. p: partial sequence. Partial introns in Rattus: |, 8, 28. Partial introns in Gallus: 46, 47. Partial or unknown exons in Xenopus: 27, 37, 66.
Partial or unknown introns in Xenopus: 9, 26, 27, 36, 37, 65, 66. Partial introns in Danio: 1, 6, 8, |1, 13, 18, 25, 44, 49, 59. Intron 61 of Danio was

excluded from gene size calculation due to its length (about 254 kb).

and mammals, and consists of 67 exons (Table 4 and Fig-
ure 3). Introns are conserved in the same phase and iden-
tically positioned in all species, with few exceptions
(intron 27 has slipped 19 bp in Gallus, and intron 34 has
slipped 2 bp in Tetraodon. In both cases a phase change is
observed compared to the remaining vertebrate genes). As
in Ciona, phase 0 introns are the most abundant, with an
approximate ratio of 2:1:1 for introns with phase 0, 1 and
2, respectively. Exon size is also highly conserved between
vertebrates and ranges from 45-48 bp (exon 10) to 341~
392 bp (exon 12), with a mean value of 140 + 52 bp (see
Additional file 2). Therefore, orthologous exons have
almost identical size, and those with AL > 12 bp (lower
blue boxes in gene structure of Figure 3) can be classified
in three groups depending on the source of size variabil-

1ty:

¢ size differences between mammals and remaining verte-
brates: exons 1 and 24 (indicated with M in Figure 3);

e size differences among non-mammalian vertebrates:
exon 12 (indicated with NM in Figure 3);

e size differences between (one or more) fishes and
remaining vertebrates: exons 25, 26, 39, 51 and 63 (indi-
cated with F in Figure 3);

¢ intron sliding: the slippage of intron 27 in Gallus pro-
duces length variation of flanking exons in this species
compared to other vertebrates but the overall amino acid

length in this region is conserved (indicated with G in Fig-
ure 3).

In most cases, exon size variability reflects a propensity of
the corresponding encoded protein region to accept mul-
tiple amino acid insertions/deletions: the extreme situa-
tion is found in exon 1, with the presence/absence and the
length variability of the polyQ and polyP stretches. More
interesting is the case of exon 24, which contains an addi-
tional 3'end portion encoding for 15-18 amino acids
only in non-mammalian vertebrates. Similarly, length
variation in exon 63 is found only in Danio and is due to
6 additional amino acids encoded by the 3'end of this
exon.

Figure 3 reports the result of a comparison of the htt gene
structure between ascidians and vertebrates, using Ciona
and Homo as representative species. As many as 39 introns
are positionally conserved in all chordates, exactly in the
same position (30 introns, shown in black dashed lines in
Figure 3), or slipped by at most 18 bp (9 introns, shown
in red dashed lines in Figure 3). Moreover, 32 positionally
conserved introns share the same phase (27 exact posi-
tioned introns, and 5 slipped introns). Thus, most shared
chordate introns are conserved with respect to both posi-
tion and phase, with a prevalence of phase 0 introns (ratio
18:8:6 for shared introns with phase 0, 1 and 2, respec-
tively). The existence of common-chordate introns allows
us to define:
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Figure 3

Comparison of huntingtin gene structure between Ciona intestinalis (upper line) and Homo sapiens (lower line).
Only protein-coding regions are indicated. Exons are represented by boxes, with upper numbers indicating exon numbering
and inner number indicating exon length (in bp). Box size is unrelated to exon length. Square bracket: exon-block (see text).
Yellow box: equivalent exon (see text). Gray box: exon belonging to an exon-block (see text). Introns positionally conserved
in the two species are represented by dashed lines, in black for identical intron position, in red for slipped position (changes <
I8 bp). Intron phase is reported between dashed lines as a single number if common to the two species. Boxed phase number
indicates that intron phase is not conserved in one vertebrate species (see text). Blue boxes below or above the gene struc-
ture indicate exons with length differences > 12 bp in vertebrates (below) or in the Ciona genus (above). Letters inside blue
boxes indicates the species where the size difference is observed: M, difference between mammals and other-vertebrates; NM,
difference within non-mammalian vertebrates; F, difference between fishes and other-vertebrates; G, difference only in Gallus.
Arrows indicate the 5% longest introns in at least one vertebrate species (below), and in the Ciona genus (above). AS: alterna-
tive splicing experimentally identified in C. intestinalis. PuAS: putative alternative splicing identified "in silico” in Gallus, Xenopus
and pufferfishes. Sp: presence of lineage-specific sequences only in non-mammalian species (SpNM) or only in Ciona (SpC).

e 23 "equivalent" exons, as orthologous exons whose  exon in vertebrates corresponds to two exons in Ciona but
sequence can be perfectly aligned over their entire length  only one exon-block with the opposite pattern, suggesting

in all chordates (yellow exons in Figure 3); that intron gains and losses have occurred in both line-
ages. The distribution of shared-chordate introns along
e 17 exon-blocks, as groups of exons delimited by posi-  the gene indicates that the 5'-terminal region of the hunt-

tionally conserved introns and containing lineage-specific ~ ingtin was more prone to taxon-specific intron gain/loss
introns, differently located in vertebrates compared to  compared to the remaining regions. Indeed, there are only
Ciona (grey exons grouped by square brackets in Figure 3). 8 shared-chordate introns in the 5'-terminal region,

against 16 in the central region and 15 in the 3'-terminal
Thus, the equivalent exons represent 38% and 34% of the  region. Consequently, equivalent exons are quite limited
total htt exon number of Ciona and vertebrates, respec-  in the 5'-terminal compared to the remaining regions of
tively. Although the total number of exons is higherin ver-  the gene (number of equivalent exons in the three regions
tebrates than in Ciona, there are 5 exon-blocks where one  4:10:9) (see Figure 3).
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The comparison of Ciona and vertebrate gene structure
reveals the presence of two lineage-specific coding
regions:

¢ in exon-block B_50_51, the Ciona sequence including
the 3' end of exon 50 (long-isoform) plus the 5' end of
exon 51 is absent in the central region of the orthologous
vertebrate exon 58 (Figure 1), suggesting that the corre-
sponding encoded protein region was lost by vertebrates
or acquired by ascidians;

e exon 16 of Ciona encodes an amino acid sequence also
present in non-mammalian vertebrates, where it is
encoded by the end of exon 24 and the beginning of exon
25 (see Figure 3). Given its presence in Ciona and basal
vertebrates, this sequence was most likely lost in mam-
mals.

The existence of a possible correlation between gene struc-
ture conservation and protein conservation was examined
by calculating the percentage amino acid identity (% aa
id) for each gene structural element shared by all chor-
dates, that is equivalent exons and exon-blocks identified
in Figure 3. Figure 4 reports the % aa identity for equiva-
lent exons (E, in yellow) and exon-blocks (B, in gray)
along the protein alignment, together with the mean % aa
identity of the entire alignment (21.2 + 7.1, bold dashed
line in Figure 4). Equivalent exons are almost equally dis-
tributed above and below the mean % aa id, however the
less conserved elements correspond to exon-blocks
(B_8_9 and B_40_42), and the most conserved elements
are equivalent exons (E_27, E_28, E_46, E_58 and E_59).
Moreover, the most conserved equivalent exons belong to
clusters of consecutive equivalent exons, indicative of a
high conservation of gene structure, and are located in the
central and C-terminal protein regions (Figure 4).

With regard to sequence conservation, a significant
inverse correlation was found between % aa id and % gaps
calculated separately for each gene structural element (R2
= 0.416; data not shown), denoting that protein regions
with a higher tendency to accumulate amino acid substi-
tutions have also a higher tendency to accept insertions/
deletions.

Intron analysis

As shown in Table 5, intron length is highly variable
within species. Generally, intron size does not correlate
across species, and significant linear correlation between
length of orthologous introns is found only in the species
pairs Fugu-Tetraodon (R? = 0.65), Xenopus-Gallus (R? =
0.32) and within mammals (R2= 0.29-0.46) (values cal-
culated excluding partial intron sequences).

http://www.biomedcentral.com/1471-2164/7/288

The first intron is the longest intron in four of the eight
vertebrate species (Table 5). Using a threshold to define
unusually large introns (see Methods), the longest introns
are mostly clustered in three regions of the vertebrate
gene: two regions located at the 5' end of the gene (introns
1-3, and introns 9-12) and one region at the beginning
of the central portion (introns 24-29, excluding intron
27) (arrows in Figure 3). In each of these regions, at least
6 of the 8 analysed vertebrate species contain an unusually
large intron. On the contrary, there are no common gene
regions where long introns cluster in both Ciona species
(arrows indicated with "Ci" and "Cs" in Figure 3). Moreo-
ver, no correspondence between regions with longest
introns in ascidians and vertebrates is observed (Figure 3).

A search for sequence similarities in intronic regions does
not identify conserved sequence tags (CSTs) between the
two Ciona species, nor between vertebrates and ascidians.
On the contrary, intron 12 of vertebrates contains interest-
ing CSTs in more than one species pair (Figure 5). Indeed,
CSTs ranging from 102 to 177 bp were found in intron 12
in the species pairs Xenopus-Gallus, Tetraodon-Fugu, and
Mus-Rattus. The Xenopus-Gallus CST has a high coding
potential (CPS = 7.16) [31], whereas the Tetraodon-Fugu
CST exhibits a marginal coding potential (CPS = 6.77),
and the rodent CST is clearly non-coding, as indicated by
a low CPS value (5.89). Moreover, the Xenopus-Gallus CST
shows 34% amino acid sequence similarity to the CST of
pufferfishes but no similarity to the rodent CST. The pres-
ence of a coding sequence in intron 12 is further con-
firmed by the prediction of a competing 5' splice site in
exon 12 of Xenopus and Gallus, and of an internal cassette
exon (that we called exon 12bis) in the two pufferfish spe-
cies (SGP2 results), with all new putative introns follow-
ing the GT-AG rule. This coding region, present only in
some non-mammalian vertebrates and showing a low
amino acid similarity (Figure 5), suggests the existence of
an alternative splicing isoform due to a species-specific
additional or longer exon located in intron 12.

Gene size and repetitive elements

The variability of gene size between species is essentially
due to changes in intron size (Table 4), which in turn cor-
relate well with the overall nuclear genome size of the spe-
cies considered. The total intron size increases
proportionally with the overall percentage of repeated ele-
ments in introns (R2 = 0.92) but a linear correlation
between intron size and gene size still exists when intron
length without repetitive elements is considered (R? =
0.95).

As shown in Table 4, repetitive elements cover a high and
similar fraction of introns in all mammals, and a small
fraction of the two pufferfish introns. The two species of
Ciona show a similar fraction of repeated elements (9.8 -
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Percentage amino acid identity calculated for each Equivalent exon (E, in yellow) and exon-Block (B, in gray).
The percentage amino acid identity was calculated from the chordate protein alignment for each of the equivalent exons and
exon-blocks described in Figure I. Numbers refer to the Ciona exon numbering. Bold-dashed line represents the mean % iden-
tity (21.2%) calculated over the entire alignment length. Normal-dashed lines represent mean value +/- standard deviation (7.1).

12.5%), which is almost one-third of the mammalian
repetitive intron fraction. A strong prevalence of inter-
spersed is observed in all vertebrates, except for the puft-
erfish, whereas in the two ascidians interspersed repeats
represent almost the same or more than twice the percent-
age of simple repeats (in C. savignyi and C. intestinalis,
respectively) (Table 4). Among interspersed repeats, retro-
elements are more abundant than DNA elements in mam-
mals and C. savignyi, whereas the opposite situation is
observed in Xenopus, Danio and C. intestinalis.

Overall, the two Ciona species show a quite different dis-
tribution of repeats among classes, a situation rather sur-
prising when compared with the similar repeat
distribution observed between Fugu and Tetraodon and
even between human and rodents.

Table 5: Length variability of huntingtin introns.

No conservation of repetitive elements in orthologous
introns in all or most analysed species is observed (data
not shown). In Ciona, ten orthologous introns contain
short low complexity repeats in both species (length < 70
bp), but there are no orthologous introns containing an
interspersed repeat of the same class/family in both spe-
cies.

Discussion

Genomic data exclude the presence of paralogs of the
huntingtin gene in the genus Cionag, as in both species the
transcript sequence significantly matches only one
genomic scaffold (or several scaffolds match different
regions of the transcript, see Methods). The full-length
huntingtin transcript of C. intestinalis shows several inter-
esting features, such as SL trans-splicing, multiple polya-

Median Average Min Max First intron 95-th percentile

Homo sapiens 1549 2360 93 12251 11850 9949
Mus musculus 1164 2084 92 20632 20632 6828
Rattus norvegicus 1146 2064 92 14532 14532 5970
Gallus gallus 743 971 85 5285 5285 2569
Xenopus tropicalis 831 1096 77 7186 7186 2849
Danio rerio 538 1091 73 4946 4891 3962
Fugu rubripes 105 180 66 1274 537 528
Tetraodon 11 194 72 1264 781 736
nigridoviridis

Ciona savignyi 569 604 122 1933 331 1119
Ciona intestinalis 319 391 55 3038 257 616
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Amino acid alignment of CSTs found in intron 12. The Conserved Sequence Tag (CST) corresponds to an internal cas-
sette exon (12Bis) in non-mammalian tetrapods and to a longest splicing isoform of exon 12 (12L) in pufferfishes. Identical, sim-
ilar and conserved positions are indicated with different background.

denylation sites, and alternative splicing involving the
coding sequence.

The extent of SL trans-splicing has been recently investi-
gated in C. intestinalis, revealing the esistence of polycis-
tronic transcription units, and that about 50% of the total
number of expressed genes are trans-spliced in this species
[32]. A database search using the C. intestinalis SL
sequence as a probe reveals that several full-length
mRNAs and cDNA clones of C. savignyi also starts with the
same SL sequence (data not shown). Considering that the
trans-splicing status of individual genes is often evolu-
tionary conserved in related species [25,33,34], we can
speculate that the htt transcript is also SL trans-spliced in
C. savignyi and in the larvacean Oikopleura dioica, a tuni-
cate where about 12-24% of mRNAs are trans-spliced
[35]. The SL trans-splicing found in Ciona htt could be
responsible for specific mechanisms of post-transcrip-
tional gene regulation different from those observed in
vertebrates. Indeed, the 5'UTR of mammalian htt mRNA
contains a conserved uORF that inhibits the translation of
the downstream huntingtin ORF, at least in human [28].
uOREFs are also present in the 5'UTR of the two Ciona spe-
cies (only predicted in C. savignyi) but they are not con-
served in either position or in sequence, so their
functional significance is not obvious.

The htt transcript shows eight alternative polyA sites,
mostly associated with polyA signals located at the
expected position (10-30 nt upstream to the polyA tail),
and with a sequence corresponding to one of the ten iden-
tified single-base variants of the AAUAAA vertebrate polyA
signal [36] (Table 1). Moreover, the last polyA signal
shows exactly the canonical AAUAAA sequence, in accord-
ance with the observation that mRNAs with multiple
polyA sites tend to use variant signals in the region proxi-
mal to the CDS, and a canonical AAUAAA at the 3'-most
distal site [36]. The absence of and/or anomalies of three
polyA signals can be ascribed to the existence of species-
specific polyA signals, or to a radically different polyade-
nylation mechanism, as already suggested for human
transcripts [36].

An alternative splicing event involving the CDS was fortu-
itously identified as being expressed in ovarian tissue.
Since alternatively spliced isoforms were not specifically
sought by our experimental strategy, we cannot exclude
the existence of other transcript isoforms. EST data do not
help in the identification of alternatively spliced isoforms
but suggest an almost ubiquitous and low expression level
of the htt gene in C. intestinalis (see Additional file 3), sim-
ilar to observations in vertebrate and invertebrate species
[16,17].

Overall, the maturation of the huntingtin transcript in this
ancient chordate involves several processes, commonly
reported as mechanisms of fine regulation of gene expres-
sion at the post-transcriptional level. Some of these proc-
esses are conserved even in vertebrates, and would
indicate ancestral mechanisms of gene regulation. This is
true for the alternative polyadenylation [11-14,29], and
even for alternative splicing. Indeed, hints that alternative
splicing occurs in vertebrate huntingtin may be gleaned
from the literature [10,11], and our comparative analyses
have highlighted the possible existence of a species-spe-
cific alternative splicing in some vertebrate species (Figure
5).

The exon-intron organization of the huntingtin gene is
highly conserved in the two subphyla of Vertebrata and
Tunicata. Previous studies on the exon-intron structure of
small genes reported an almost invariant gene structure in
vertebrates [37-40], and a hypervariability of intron posi-
tion in the tunicate larvacean Oikopleura compared to
both vertebrates and other tunicates, suggesting also a var-
iability of gene structure within tunicates [40].

Here, we show that the exon-intron structure of a large
gene, huntingtin, is almost identical between the two
Ciona species and highly conserved between Ciona and
vertebrates, with about 36% of the exons exactly con-
served in both taxa. Assuming that introns in the same
positions of orthologous genes are ancestral, the htt gene
of the common ancestor of chordates should have con-
tained at least the 39 introns positionally conserved in
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both Ciona and vertebrates (Figure 3). However, a more
comprehensive reconstruction of the ancestral chordate
gene structure will require the analysis of additional spe-
cies, such as sea urchins, lancelet and other tunicates.

Splitting the gene into three regions, it appears that the 3'-
terminal region was highly conserved in all chordates at
level of gene structure, whereas the 5'-terminal was less
conserved during chordate diversification (Figure 3),
probably because of a relaxation or a modification of
selective constraints. Indeed, the 5'-terminal region
presents the lowest number of shared introns, and several
slipped exons and intron phase changes, suggesting mul-
tiple events of intron gain/loss (Figure 3). In vertebrates,
the longest introns are again concentrated in the 5'-termi-
nal and the beginning of the central region of the gene,
avoiding regions with high conservation of gene structure
(Figure 3). Thus, we can hypothesize that the 3'-terminal
gene region might have a low propensity to accept new
sequences or intron expansions, because of the con-
straints to preserve specific functional elements. Finally,
the 5'-terminal of the gene contains the less conserved
exon-block (B_8_9), characterized by high variability at
level of both structure (Figure 3) and sequence (Figure 4),
and by the presence of a possible lineage-specific alterna-
tive splicing (Figure 5). Another lineage-specific sequence,
lost in mammalian species, is located at the beginning of
the central region (exon 16 of Ciona, corresponding to
exons 24-25 of vertebrates), suggesting a trend to a line-
age-specific evolution in the first portion of the vertebrate
gene.

Introns are arranged independently of the predicted HEAT
domains of the protein in both vertebrates and ascidians.
According to the exon-shuffling theory [41], protein
domains should correlate with the borders of their coding
exons, particularly in protein categories functionally
linked to organism multicellularity, such as extracellular
and membrane proteins mediating cell-cell and cell-
matrix interactions [42]. Although in huntingtin there is
no indication of a correlation between the boundaries of
HEAT domains and their coding exons, we can not
exclude the existence of a correlation between the struc-
ture of the gene and the unknown domain structure of the
protein.

As shown in Figure 4, only a weak correlation was found
between sequence and gene structure conservation. This
observation is in accordance with the result of a recent
large-scale study on gene structure evolution in 11 deeply
diverging animals species, showing that changes in exon-
intron structure are gradual and largely, although not
completely, independent of protein sequence evolution
[43].

http://www.biomedcentral.com/1471-2164/7/288

The htts of the two Ciona species show several striking dif-
ferences: the amino acid divergence is similar to that
observed between mammals and fishes (Table 2); the
experimentally identified 5'- and 3'-UTRs of C. intestinalis
did not allow the determination of the homologous UTRs
C. savignyi by similarity criteria; a different distribution of
repetitive elements among classes is found between the
two species (Table 4); no orthologous introns contain
interspersed repeats of the same class/family. Finally,
there is no correlation between orthologous intron size of
the two Ciona species, whereas a statistically significant
correlation has been found between closely related species
showing low CDS sequence divergence. All such data are
in accordance with the considerable differences observed
between the two Ciona species in the mitochondrial
genome [44] and in nuclear coding and non-coding
sequences [45], and suggest a high evolutionary rate or a
ancient origin of the two Ciona species.

Conclusion

Our comparative analyses of the huntingtin gene suggest
that the 5'-terminal and the beginning of the central
region of the gene were exposed to lower functional con-
strains during chordate evolution and underwent major
changes at level of exon-intron organization, primary
sequence, and intron size, with probable modification of
the ancestral function or acquisition of new functions in
vertebrates compared to ascidians. Thus, it is likely that
the remaining central and 3'-terminal regions of the gene
are those encoding for domains playing the ancestral gene
function, shared by all chordates, and thus represent the
ancestral traits of the huntingtin gene. In addition, the htt
gene history suggests a high evolutionary rate of Ciona
species compared to vertebrates and/or an early diver-
gence time between the two Ciona species. These observa-
tions, derived from a single but highly informative gene,
should stimulate further evolutionary studies of the Ciona
genus.

Methods

Amplification and sequencing of huntingtin mRNA

A similarity search of the EST database by TBLASTN [46]
identified 9 Ciona intestinalis EST clones significantly sim-
ilar to the C-terminal region of human huntingtin (see
Additional file 3). Moreover, one EST clone of Ciona
savignyi matching to the N-terminal region of the protein
was identified in the final stage of our work (1). All clones
were kindly provided by Dr. N. Satoh and Y. Satou, and
were completely re-sequenced using universal and walk-
ing primers. In parallel, a first "in silico" gene prediction
using the C. intestinalis genome assembly v1.0 (the one
available at the time of the analyses), allowed the identi-
fication of five non-overlapping scaffolds partially con-
taining the gene. All the sequence data obtained were used
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to define the experimental strategy to amplify and
sequence the full-length cDNA sequence of C. intestinalis.

Total RNA was extracted from the ovary of two C. intesti-
nalis individuals from the Stazione Zoologica of Naples,
using the Trizol Reagent (Invitrogen) according to the
manufacturer's protocol. After treatment of the isolated
RNA with amplification grade DNase I, (Invitrogen), RT-
PCR was carried out using the SuperScript™ III First Strand
System (Invitrogen), and random hexamers to prime
cDNA synthesis. Gene-specific primers, available on
request, were all designed in different exons. The cDNA
amplification strategy is schematically reported in Addi-
tional file 4: the transcript was amplified in seven frag-
ments ranging in size from 1.1 kb to 1.9 kb, with
overlapping sequences of at least 188 bp. Depending on
yield and quality, the amplified fragments were directly
sequenced after purification using Microcon-PCR Filter
Centrifugal Devices (Amicon) or alternatively were cloned
into pCR 2.1-TOPO vector using TOPO TA Cloning Kit
(Invitrogen) and then sequenced (MWG Sequencing Serv-
ice). 5' and 3' RACE were performed using the First Choice
RLM-RACE kit (Ambion), following the manufacturer's
protocol. In the 5' RACE random decamers were used for
cDNA synthesis. An outer gene-specific reverse primer
located in exon 5 and a nested primer located in exon 4
were used for amplification, obtaining a fragment of
about 0.5 kb as product of the nested PCR. For the
3'RACE, the gene specific-outer primer (4 hF) was located
in exon 53, and the inner primer (3 hF) was located in
exon 54 obtaining multiple fragments ranging from about
1 to 1.8 kb. Products of 5' and 3'RACE were all cloned into
PCR 2.1-TOPO vector using TOPO TA Cloning Kit (Invit-
rogen). Four positive 5'RACE clones and 23 positive
3'RACE clones were completely sequenced.

The C. intestinalis full-length mRNA sequence was depos-
ited at the EMBL data bank under the accession number
AM162277.

Sequence analyses

The htt protein sequences of vertebrates extracted from
Swiss-Prot, TTEMBL and REFSEQ databases (see Addi-
tional file 5) were refined using genomic data, and simi-
larity criteria to experimentally well-characterized
huntingtin proteins. In particular, protein sequences
reported in the original database entry as "predicted”
(such as those of Gallus, Xenopus, and Tetraodon) were care-
fully checked and extensively modified merging the initial
sequence data to protein predictions obtained from Gen-
Scan [47,48] and GenomeScan [49,50] programs. The
GenomeScan program was carried out incorporating
information on htt proteins experimentally identified in
closely related species (i.e. Fugu protein information was
used for Tetraodon gene prediction). In addition, regions
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of original "predicted" entries with no significant similar-
ity to other proteins or to ESTs of the same species (as
defined by Blast analyses at [46]) were excluded from the
final version of the protein prediction. The SGP2 pro-
gram|[51] was also used to optimize gene prediction in
closely related species. SGP2 predicts genes by pairwise
comparisons of genomic sequences, combining the
tBlastx sequence similarity search and the Geneid "ab ini-
tio" gene prediction program [52].

The most recent genome assembly was used for the pre-
diction of htt gene structure and protein sequence in ver-
tebrates, except in the case of Danio rerio. For this species
the genome assembly v4 was preferred to the up-to-date
assembly v5 (May 2005), due to the presence in v5 of
three genomic regions repeated in tandem in chromo-
some 1, each matching partially or entirely the experimen-
tally determined transcript of this species [15]. On the
contrary, in the genome assembly v4, only one genomic
region, also located in chromosome 1, matches the hunt-
ingtin transcript of Danio.

All available genome assembly versions were used to reli-
ably predict the htt gene structure and protein sequence in
the two Ciona species (see Additional file 5), and an accu-
rate comparison of the obtained results was carried out.
The protein and gene structure prediction obtained from
v1 and v2 assemblies of C. savignyi were identical, except
for length and sequence of few introns. As regards Ciona
intestinalis, in the assembly v2.0 the sequence of chromo-
some 5 matching the experimental htt transcript shows
duplications and transpositions of some regions, whereas
in the assembly v1.95 almost the entire htt transcript
matches consistently the sequence of a single scaffold.
Taking into account only the reliable region of the htt
sequence identified in the v2.0 assembly, the gene struc-
ture obtained from the two assemblies of C. intestinalis
was identical, except for the length of few introns and the
lack of the last 400 nt of the longest 3'UTR in the v1.95
assembly.

In order to determine the exact exon-intron organization
of the genes, the Gmap program [53,54] was used for
mapping and aligning a given ¢DNA and/or coding
sequence to the corresponding genomic sequence.

Protein alignment was performed with CLUSTAL W ver.
1.82 [55], and manually revised in an effort to maximize
positional homology. The equivalent nucleotide (nt)
alignment "back-aligned" from the protein data was also
prepared (see Additional file 6). The chordate huntingtin
alignment is 3420 amino acid (aa) long. In most analyses
we considered the htt gene and protein split into three
regions, each corresponding to one/third of the total
alignment length, that is:
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e N-terminal or 5'-terminal: protein alignment region 1-
1140 (aa 1-839 and exons 1-15 of C. intestinalis, homol-
ogous to aa 1-1050 and exons 1-24 of human);

e central: protein alignment region 1141-2280 (aa 840-
1882 and exons 16-38 of C. intestinalis, homologous to aa
1051-2107 and exons 25-46 of human);

e C-terminal or 3'-terminal: protein alignment region
2281-3420 (aa 1883-2946 and exons 39-61 of C. intesti-
nalis, homologous to aa 2108-3144 and exons 47-67 of
human).

To compare gene structure among species, exon sequences
were mapped onto the nt alignment and the exact posi-
tion and phase of each intron was verified by manual
inspection.

The percentage of amino acid identity, the percentage of
gaps and the uncorrected amino acid distances, corre-
sponding to mean character differences per 100 aa
adjusted for missing data, were calculated on the opti-
mized protein alignment using PAUP* v4.0b10 [56].

The phylogenetic tree was reconstructed analysing the
Gblocks-purified [57] huntingtin protein alignment
(2148 sites, corresponding to 62% of the original posi-
tions), with the Bayesian method [58]. The JTT + gamma
model was selected as best model fitting to the data,
according to a ProtTest analysis [59] and following the
Akaike information criterion. In the Bayesian analysis,
one cold and three incrementally heated chains were run
for 1,000,000 generations, with trees sampled every 100
generations from the last 900,000 generated (well after
chain convergence).

Searches for protein domains were performed with Inter-
ProScan [60,61], and HEAT repeats were searched by the
REP program [62,63].

Analyses of interspersed repetitive elements were per-
formed using the RepeatMasker program ver. 3.1.2[64],
selecting for each species the proper species-specific Rep-
Base Update 10.4 library.

Intronic regions conserved across species (Conserved
Sequence Tags, CST) were detected comparing all introns
of a given species (previously masked from repetitive ele-
ments) against a database containing all intron sequences
of the remaining species, through Blastn and Tblastx (E
value < 0.01) [65]. CSTs shorter than 30 bp and/or identi-
fied only in orthologous introns of mammalian species or
only in the species pair Fugu-Tetraodon were not further
analysed. Assessment of the coding nature of detected
CSTs was done through the computation of a coding

http://www.biomedcentral.com/1471-2164/7/288

potential score (CPS) on the total CST and on CST sliding
windows and, using the CSTminer program [66,31]. CPS
values higher than 7.71 indicate a coding potential of the
related CST, and CPS values lower than 6.74 indicate non-
coding CSTs, with an estimated false positive rate < 1%
[31].

The 95th percentile of intron length of a given species was
used as threshold to identify the longest introns of each
species. Thus, introns scoring above the 95th percentile of
a species were considered unusually long introns.

In silico search for experimentally-known regulatory ele-
ments in the 5' and 3' untranslate regions (UTR) of Ciona
transcript was carried out using UTRScan [67,68].

The polyadenylation signals were searched in the 3'UTR
sequence using the PatSearch program [69], and looking
for a one-base variant of the canonical AAUAAA sequence
in the 50 bp segment upstream each experimentally iden-
tified polyadenylation site.
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determined in this study

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-288-S3.doc]|

Page 14 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-7-288-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2164-7-288-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-7-288-S3.doc

BMC Genomics 2006, 7:288

Additional file 4

Schematic map of the C. intestinalis huntingtin transcript amplification
strategy. Amplified fragments are reported as blue boxes; amplified and
cloned fragments are reported as shaded boxes. EST clones, listed in Addi-
tional file 3, are reported as white boxes. Arrows indicate the position of
inner RACE primers. The 5'- and 3'-UTR regions are shown as a thick
line.
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2164-7-288-54.jpeg]

Additional file 5

Protein sequence Accession Numbers (AC), genome assemblies and
genomic coordinates of the region used in huntingtin annotation.
Genomic coordinates refer to a sequence with about 10000 additional
nucleotides upstream and downstream the region of initial similarity to
the protein sequence
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Additional file 6

Huntingtin nucleotide alignment. Nucleotide alignment, in fasta format,
of the htt protein-coding sequences of chordates. The alignment was
obtained by "back-translation" of the amino acid alignment.

Click here for file
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