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Abstract: Here, we describe the preparation of copper nanoparticles that are stabilized on a chitosan
composite film (CP@Cu). This material could catalyze the 1,6-hydroboration reactions of p-quinone me-
thides with B2pin2 as a boron source under mild conditions. This reaction exhibited very good functional
group compatibility, and the organoboron compounds that were formed could easily be converted into
corresponding hydroxyl products with good to excellent yields. This newly developed methodology
provides an efficient and sequential pathway for the synthesis of gem-disubstituted methanols.

Keywords: copper nanoparticles; chitosan composite film; hydroboration reactions; p-quinone methides;
organoboron compounds

1. Introduction

Not only do organoboron compounds exist in a wide range of active molecules,
natural products, and materials [1–3], but they are also the key intermediates in the syn-
thesis of many functional chemicals [4,5]. For these reasons, in recent years, a series of
methodologies—especially transition metal catalysis—have been developed for the synthe-
sis of organoboron compounds [6–8], which have become more and more important [9–12].
Copper catalysts are increasingly favored by organic chemists due to their low cost, lower
toxicity, and solid performance [13,14]. In previous work, copper-catalyzed hydroboration
reactions of unsaturated compounds were widely studied, and this is also a common
method for constructing C-B bonds [15–18]. However, examples reported here involved the
use of strong bases and specifically designed ligands, which reduced the reaction economy.
Thus, it is necessary to explore alternative highly active and sustainable copper-catalyzed
hydroboration reactions of unsaturated compounds.

Metallic nanoparticles have been widely used in various reactions with the continuous
development of organic synthetic chemistry over recent decades [19–22]. However, to the
best of our knowledge, though they are some of the most widely used metallic nanopar-
ticles, copper nanoparticles are rarely used to catalyze the hydroboration of unsaturated
compounds [23,24]. In particular, with p-quinone methides, as a class of intermediates with
a wide range of applications in organic synthesis [25–28], the 1,6-hydroboration products
can be well transformed into gem-disubstituted methanols under certain conditions; they
are widely spread throughout nature and are the core skeletons of many biologically active
molecules and natural products [29–33]. So far, there have only been a few reports in the
literature on the copper-catalyzed 1,6-boron addition reaction of p-quinone methides, and
these reports were mainly focused on Cu(I)-catalyzed reactions [34,35]. In our previous
work, we used Cu(OH)2 as a catalyst to investigative the 1,6-hydroboration reaction of
p-quinone methides, and good functional group compatibilities and reaction yields were ob-
tained (Scheme 1a) [36]. Based on the results of our previous research, we found that when
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chitosan-supported copper nanoparticles were used as a heterogeneous catalyst, construct
C-B bonds [37] and C-Si bonds could be constructed with a high efficiency [38]. Therefore,
in this work, we hope to use chitosan-supported copper nanoparticles as a heterogeneous
catalyst and p-quinone methides as substrates to study the 1,6-hydroboration reactions. In
comparison with previous work, the biggest advantage of this work is the avoidance of
the participation of bases in the reactions and the recycling of the catalyst to increase its
utilization rate (Scheme 1b).
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2. Results and Discussion

The initial experiments commenced with p-quinone methide 1a as a model substrate.
CP@Cu (6 mol%) was used as a catalyst by using B2Pin2 (1.2 equiv.) as the boron source
in the reactions. Firstly, the various organic solvents were investigated, and considering
the role of protons, the whole reaction was started with ethanol (2.5 mL) as the solvent.
However, no reaction happened (Table 1, Entry 1). When DCM and THF were used as
solvents and MeOH (2 equiv.) was used as an additive, reactions were still not observed
(Table 1, Entries 2–3). To our delight, when MeCN was used as the solvent and MeOH
(2 equiv.) was used as an additive, the reaction was able to take place, and the desired
product 2a was smoothly obtained. It was confirmed that further oxidation of 2a gave
the corresponding gem-disubstituted methanol product 3a by using NaBO3·4H2O as an
oxidant. (Table 1, Entry 4). Continuing to use acetone as the solvent and MeOH (2 equiv.)
as an additive further promoted the occurrence of the reaction, and the target product 3a
could be obtained with 70% yield (Table 1, Entry 5). Since water was a green solvent in
this reaction, we added water (2 equiv.) to the reaction as an additive; unfortunately, the
reaction did not happen (Table 1, Entry 6). As far as we know, in organic synthesis reactions,
the use of mixed solvents could sometimes greatly improve the efficiency of the whole
reaction. Therefore, in order to further improve the yield, we considered using acetone
and H2O as mixed solvents to carry out the reaction, and the ratios of the solvents were
screened (Table 1, Entries 7–10). When the ratio of acetone to H2O was 4:1, the reaction had
the highest rate of conversion, and it occurred almost completely; the final target product
could be obtained with 98% yield (Table 1, Entry 7). When the weight of H2O in the mixed
solvents was continually increased, it was found that the conversion rate of the reaction
decreased as the proportion of water increased; even when the ratio of acetone to H2O was
reversed to 1:4, the reaction hardly occurred, and only trace amounts of product could be
detected (Table 1, Entry 10). In order to verify the importance of the CP@Cu in the reac-
tions, we performed a control experiment, and no reaction occurred without any CP@Cu,
which proved that the catalyst was indispensable in these reactions (Table 1, Entry 11).
Finally, the reaction time was also investigated. Even if the reaction time was shortened to
1 h, the reaction still occurred efficiently and produced the target product with 93% yield
(Table 1, Entry 12). Thus, through a series of optimizations of the conditions, the optimal
conditions in this research were found to be 6 mol% of CP@Cu as a catalyst and 1.2 equiv.
of B2Pin2 as a boron source, and the whole reaction was conducted in 2.5 mL of mixed
solvents (acetone:H2O = 4:1) at room temperature for 2 h (Table 1, Entry 7).
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Table 1. Reaction condition optimizations a.
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Reaction conditions: a 1a (0.15 mmol), B2Pin2 (0.18 mmol), CP@Cu (5.0 mg, 0.009 mmol), solvents (2.5 mL) at
room temperature. b Isolated yield. N.R. = No reaction.

With the optimal conditions in hand, we continued to examine the universality of the
reaction, and the results are summarized in Figure 1. Firstly, the effects of substituents at the
ortho-position of the benzene ring on the reaction were investigated. For electron-donating
substituents, such as methyl and methoxy, the desired target product could be obtained
with excellent reaction yields (3b–3c, 96–98% yields). The whole reaction could still proceed
smoothly and achieved the corresponding products with satisfactory yields when the more
conjugated 2-substituted naphthyl was selected as the substituent instead of phenyl (3d,
92% yield). Although the electron-withdrawing substituents at the ortho-position had a
certain effect on the reaction, the desired product was still obtained with a good yield (3e,
74% yield).

Next, we investigated the reactivity of the substituents at the meta-position of the
benzene ring. From the reaction results summarized in Figure 1, the electron-donating sub-
stituents had a good effect on the reaction, and the desired products could be obtained with
an almost equivalent yield (3f–3g, 96–97% yields). However, when an electron-withdrawing
substituent was used, such as fluorine, the reaction yield was reduced to some extent (3h,
77% yield). To our delight, when the benzene ring had multiple substituents, such as
naphthyl, dimethoxy, or even trimethoxy, the reaction could still occur well, and good to
excellent reaction yields could be obtained (3i–3k, 80–96% yields). We also investigated
the reactivity of para-substituents on the benzene ring; both electron-donating substituents
(methyl, isopropyl, tert-butyl, methoxy, and benzyloxy) and electron-withdrawing sub-
stituents (fluorine, chlorine, bromine) had little effect on the reaction (3l–3s, 91–96% yields).
Finally, we investigated thiophene, and although the target product could be obtained only
with a moderate yield, the reaction still proved that the catalyst had good functional group
compatibility (3t, 58% yield).

Considering that this could be a heterogeneous catalyst in this reaction, it is necessary
to identify the reusability and stability of catalyst. It was demonstrated that when the reac-
tion was completed, the CP@Cu catalyst could be easily recycled with a simple operation.
The catalytic activity stayed almost the same after experimenting with recycling the catalyst
six times, and the yield was still up to 96% even in the sixth experiment, so the catalyst has
the advantage of being recyclable (Figure 2).
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Figure 2. The recycling experiments.

The Cu nanoparticles supported on a chitosan–PVA composite are shown in Figure 3.
As observed, the dark spherical particles in the red circles are the CuNPs, which are
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uniformly dispersed in the CP matrix. The particle sizes ranged from 2 to 4 nm, showing
that the Cu nanoparticles were uniformly distributed on the chitosan–PVA composite. In
addition, no aggregation of CuNPs was noticed, which confirmed that the CP matrix is a
good stabilizing agent for the synthesis of CuNPs. The good dispersion of CuNPs into the
CP matrix enhanced their performance during the catalytic process [39].
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Figure 3. TEM images of (a) CP@Cu at 60 nm and (b) CP@Cu at 20 nm.

The full-scan XPS spectrum showed that the major elements of the Cu nanoparticles
supported on the chitosan–PVA composite were O, C, and N (Figure 4a). This is consistent
with the chemical structures of chitosan and PVA, which are rich in the functional groups
of –NH–C=O, –NH2, and –OH. The presence of a Cu 2p peak in the Cu-loaded PVA–CS
nanofiber membrane proved the adsorption of Cu(II) onto the adsorbent. The spectrum of
the adsorbent after copper adsorption showed peaks at 932.67, 933.85, and 934.74 eV, which
corresponded to Cu 2p (Figure 4b). The C 1s spectra of the Cu nanoparticles supported
on the chitosan–PVA composite showed peaks at 284.48, 285.88, and 287.81 eV after the
adsorption of Cu(II), indicating the involvement of the functional groups in the adsorption
of Cu(II) onto the adsorbent (Figure 4c) [40,41].
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Figure 4. High-resolution XPS spectra of (a) CP@Cu after metal adsorption; (b) high-resolution Cu
2p spectra; (c) high-resolution C 1s spectra after adsorption.
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3. Materials and Methods
3.1. Materials

Chitosan (degree of deacetylation ≥95%, viscosity 100–200 MPa·s) was purchased
directly from Aladdin (Shanghai, China), poly (vinyl alcohol) (Mw 120 kDa) was pur-
chased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China), B2pin2 was pur-
chased from Energy Chemical (Shanghai, China), and CuCl2·2H2O was purchased from
Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). All p-quinone methides were
obtained smoothly through reactions between aldehydes and variously substituted 2,6-di-
tert-butylphenol. Chitosan/poly (vinyl alcohol)-composite-film-supported copper nanopar-
ticles (CP@Cu NPs) were prepared according to the method reported in the literature [39].

3.2. Analytical Methods

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance
III 400 MHz spectrometer (Karlsruhe, Germany) operating at 400 for 1H and 100 MHz
for 13C NMR in CDCl3 unless otherwise noted. CDCl3 served as the internal standard
(δ = 7.26 ppm) for 1H NMR and (δ = 77.0 ppm) for 13C NMR. The data for 1H NMR are
reported as follows (See the Supplementary Materials): chemical shift (ppm, scale), mul-
tiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiplet
resonances, br = broad), coupling constant (Hz), and integration. The data for 13C NMR are
reported in terms of the chemical shift (ppm, scale), multiplicity, and coupling constant (Hz).
The purification of products was accomplished by using flash column chromatography on
silica gel (200–300 mesh) or preparative TLC. The weight percentage and metal leaching
of copper were determined by inductively coupled plasma–optical emission spectroscopy
(ICP-OES) (PerkinElmer, Waltham, MA, USA) analysis.

An X-ray photoelectron spectroscopy (XPS) analysis was performed with a Thermo
Fisher ESCALAB250Xi spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) by
using monochromatized Al-Ka radiation at a detection angle of 30◦. The photon energy
was 1486.6 eV. A pass energy of 30 eV was used for high-resolution scans in a valence band
analysis. The test area size was 500 um. The binding energy of all spectra was determined
by using binding energy correction with respect to polluting carbon (C 1s, 284.6 or 284.8eV).
The spectra were collected over a range of 0–1486.6 eV, and the high-resolution spectra of
C 1s and Cu 2p regions were provided. The Shirley background and Gaussian/Lorentzian
functions were used to fit the peaks.

Transmission electron microscopy (TEM) was used to observe the morphology on a
Jeol 2100f instrument (JEOL, Tokyo, Japan). Samples were prepared for TEM analysis by
placing a drop of a sample of a particle suspension on a copper grid and quickly wicking
away the solution with filter paper.

3.3. General Procedure for the Preparation of CP@Cu NPs

According to a report in the literature [39], 200 mg of chitosan powder was dissolved in
10 mL of acetic acid solution (2%, v/v) and stirred at room temperature for 5 h. At the same
time, 400 mg of poly (vinyl alcohol) was dissolved in 10 mL of water and stirred at 80 ◦C for
12 h. The two solutions obtained were mixed and stirred at room temperature for another
0.5 h; then, 32 µL of glutaraldehyde solution (25%, w/w) was added, and stirring was
continued for 5 min. In order to form the chitosan/poly (vinyl alcohol) composite film, the
mixed solution described above was transferred to a Petri dish and dried at 40 ◦C for 12 h.
After completion of this procedure, 0.1 mol/L of NaOH solution was added to the above
composite film and allowed to soak for 5 min; then, this was washed until it was neutral by
using water and dried over 12 h at 40 ◦C. After immersing the composite film in 0.2 mol/L
CuCl2 solution for 2.5 h, the excess Cu2+ and Cl− were removed by washing with water,
and then drying took place at 40 ◦C for 12 h. Finally, the chitosan/poly (vinyl alcohol)-
composite-film-supported copper nanoparticles (CP@Cu NPs) were obtained by reducing
with 0.05 mol/L of NaBH4 solution, and they were then submitted for ICP analysis. The
copper loading of the CP@Cu NPs was found to be 1.78 mmol/g.
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3.4. Recycling and Reuse of CP@Cu NPs

To demonstrate the recyclability of the CP@Cu NPs, the addition of a boron conjugate
was repeated six times with the same composite film. The initial amount of catalyst was
5 mg (6 mol % Cu loading). Reactions were carried out under standard conditions. After
the completion of the reaction, the catalyst was filtered off, washed with acetone, and then
dried at 50 ◦C before the next run.

4. Conclusions

In conclusion, we have reported the preparation of a copper nanoparticle stabilized on
chitosan composite film (CP@Cu) and its application for catalyzing the 1,6-hydroboration
reaction of p-quinone methides with B2pin2 as a boron source. The conditions of the whole
reaction were very mild, and no additional bases were needed. This newly developed
methodology showed very good functional group compatibility and reactivity (20 examples,
up to 98% yield). The organoboron products that were formed could be easily and directly
oxidized to the corresponding hydroxyl products with good to excellent yields. In addition,
the recycling experiments evidenced that this catalyst still showed good reactivity after
being recycled six times (>96% yield), which proved that the catalyst had good reusability
and stability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227962/s1, characterization data, and spectra for the
1H and 13C NMR of products 3a–3t. Citation: [34,36].
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