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ABSTRACT
We give an overview of experimental and computational methods to estimate RNA metabolism
rates genome-wide. We then advocate a local definition of RNA metabolism rate at the level of
individual phosphodiester bonds. Rates of formation and disappearance of individual bonds are
unambiguously defined, in contrast to rates of complete transcripts. We show that over previous
approaches, the recently developed transient transcriptome sequencing (TT-seq) protocol allows for
estimation of metabolism rates of individual bonds with least positional bias.
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Importance of RNA metabolism rates

All stages of RNA metabolism contribute to the
control of gene expression, including RNA synthe-
sis, splicing, and degradation. The ratio between
the synthesis and degradation rates determines
steady-state levels of mature RNA. Upon a tran-
scriptional trigger, both degradation and splicing
rates contribute to the time until which new
steady-state levels are reached. Whereas variations
in RNA synthesis rates are the major determinants
of mRNA levels,1-3 RNA degradation rates further
fine-tunes mRNA abundance and can be dynami-
cally changed to shape gene expression.3-9 Combi-
nations of synthesis and degradation rates enable
different gene regulatory strategies that can favor
turn-over or robustness, and high or low levels of
expression.3,10,11 Although the number of genome-
wide studies of RNA splicing rates is more limited,
it is clear that splicing rates also vary a lot between
and within genes,3,11-13 with impact on the compo-
sition of the isoform repertoire of a cell. Altogether,
precise quantitative measurements of transcription,
degradation, and splicing rates are necessary to
obtain a deeper understanding of gene expression
control and of the underlying mechanisms.

Limitations of steady-state RNA-seq data

At steady-state, production and degradation of every
molecular species balance each other. The mature RNA
concentration is consequently the ratio of the synthesis
rate over the degradation rate (Fig. 1). Hence, steady-state
RNA-seq cannot untangle synthesis rate from degrada-
tion rates. The same issue affects all proxies for splicing
kinetics that are derived from steady-state data. For
instance, there is a possible confounding when defining
using the ratio of reads spanning exon–exon over exon–
intron junctions to assess splicing efficiency.14 Indeed,
steady-state levels of exon–exon junction reads are pro-
portional to synthesis over degradation rates and the
exon–intron junction reads have steady-state values pro-
portional to synthesis over splicing rates (Fig. 1). Hence,
the ratio of exon–exon over exon–intron reads equals to
splicing rate over decay rate. Although this ratio allows
comparing the splicing rate of different junctions within
one gene (under the reasonable assumption that all
exon–exon junctions have a similar decay rate) a straight-
forward comparison of splicing between different genes is
biased due to the generally varying decay rates among
genes. Similarly, the ratio of exonic over intronic reads15

not only depends on how fast the precursor RNA is
processed, but also on both the stability the spliced out
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introns and on the stability of the mature RNA.16 Alto-
gether, the usage of steady-state RNA-seq to infer rates or
variations of rates is intrinsically limited.

Estimation of rates using RNA metabolic labeling

To circumvent these limitations, alternative protocols
are used that directly probe the kinetics. One class of
approach is based on transcriptional arrest.17-19 How-
ever, great care should be taken when using transcrip-
tional arrest, because arresting transcription is a major
stress on cells and because transcription and degrada-
tion are globally coupled.8 Alternatively, D€olken et al.20

developed a technique based on metabolic labeling
which has been successfully applied to many eukaryotes
including yeast, fly, mouse, and human.3,12,21 The key
idea is to use a modified nucleotide, usually 4-thiouri-
dine (4sU), to tag newly synthesized RNA starting from
one point in time. Labeling durations as short as 90 sec
have been applied allowing the investigation of very
rapid events such as the degradation of short-lived non-
coding RNAs and splicing.22 The approach is often
applied with a single labeling duration. However, a

whole labeling time course of a steady-state cell popula-
tion can be also used giving more time points to
investigate the kinetics and fit the rates.13,22 Studying
time-dependence of the rates upon a stress11 or during
the cell cycle9 require mathematical modeling of the
time dependency of the kinetic parameters.

To accurately determine the rates, one further has to
model the underlying read generating process in great
detail. Even though the absolute amount of labeled RNA
of any transcript increases with labeling duration, the
number of sequenced reads of short-lived transcripts
decreases, as short-lived RNAs represent a decreasing
fraction of all purified RNAs. Hence, to fit a kineticmodel
to read counts and to obtain absolute measures of half-
life, a normalization factor that correspond to the overall
amount of labeled RNA in the samples prior to purifica-
tion must be estimated. This has been either done using
spike-ins23 or by fitting a global model jointly across all
genes.3,13,24 Moreover, it is important to control for
cross-contamination with unlabeled RNA,3,13 especially
for short durations where the proportion of unlabeled
RNA in the sample can be so large that small
cross-contamination can lead to a large fraction of reads

Figure 1. RNA-seq versus metabolically labeling approaches. (A) Sketch of a concentration curve of labeled unspliced and spliced RNA
after labeling based on classic first-order kinetics.13 (B) Steady-state data alone is not enough to untangle synthesis, degradation, and
splicing rate. In particular, the ratio of spliced over unspliced reads, often taken as a proxy for splicing efficiency depends on degradation
rate. (C) For labeling duration much shorter than degradation or splicing time, unspliced reads reflect the RNA synthesis (top). Labeling
time series can be analyzed using kinetics model, for instance first-order kinetics (Eser 2016). This time series allows analyzing splice
junction formation kinetics (bottom).
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in the purified samples. Also, inaccurate determination of
the feature length (exon, intron, junction) as well as GC-
content can introduce artificial correlations between the
kinetic rates and, for example, length of a gene. Hence,
correlations between length (transcript, 50-UTR, 30-UTR)
and any kinetic parameter should be considered with
great care. Estimations of the synthesis rate are particu-
larly sensitive to these biases compared with splicing and
decay. We observed great bias for short genes in fission
yeast (mostly non-coding).13 In general, long observation
periods are desirable. However, 4sU induced inhibition
of RNA translation for long labeling periods give an
upper limit of 1 h–2 h of labeling time.25

Defining rates of individual phosphodiester
bonds

The notion of RNA synthesis rates, degradation rates,
and the splicing rates of introns lead to practical and
conceptual difficulties due to the interleaved nature of
transcription. A single gene locus can give rise to many
splice isoforms simultaneously as well as many overlap-
ping non-coding RNAs. It is not possible to unambigu-
ously allocate each read to either of these transcripts.
Statistical models that try to untangle the concentration
of overlapping isoforms exist, but lead to highly coupled
estimates. Hence, delineating the RNAmetabolism rates
of overlapping transcripts is extremely difficult. The
issue is not only technical but also biological. Adding to
splicing variation, the widespread variations in 50 and 30

end imply that there is an extremely large number of
unique RNA sequences that are transcribed from one
gene.26 Variations in the exact transcription start sites
may affect synthesis rates, and variations in the 30 end
can affect RNA stability by adding or removing cis-regu-
latory motifs with role in RNA degradation. Therefore,
similar isoforms may have significantly different RNA
metabolism rates.

Hence, although summary statistics at the level of a
whole gene are certainly useful simplifications, we argue
that a definition of rates for individual bonds helps clari-
fying the notions and devising clear mathematical mod-
els. We distinguish five types of phosphodiester bonds:
exonic, exon–intron, intronic, intron–exon, and exon–
exon bonds (Fig. 2). The production rate of the four first
types is equal to the synthesis rate or transcription rate
of these bonds. In steady-state culture conditions, the
junction formation rate of the exon–exon bonds also
equals the transcription rate, assuming no loss during

RNA processing. However, tracking exon–exon bonds
during a labeling time course will allow studying splicing
kinetics and, in particular, the delay between transcrip-
tion and junction formation. The degradation rates of
exon–intron bonds are the cleavage rate of the donor
sites, and the degradation rates of the intron–exon
bonds are the cleavage rate of the acceptor sites. For one
single intron, those cleavage rates do not need to be
equal to each other because of a likely longer half-life of
the donor site bonds, since they are transcribed before
the acceptor sites, and also because alternative splicing
imply that one donor site can correspond to multiple
acceptor sites. The synthesis rates of these bonds are the
sum of the synthesis rates of all transcripts (including all
alternatively spliced isoforms) containing them. In con-
trast, the degradation rates of single bonds do not trivi-
ally relate to the degradation rate of the RNA species
(including all alternatively spliced isoforms) that con-
tain them. They are some combination of those, in a
way that depend on degradation kinetics and amount of
each RNA species. Nonetheless, both the synthesis rates
and the degradation rates of individual bonds at steady
state are well-defined quantities.

One should note that hand in hand with the defini-
tion of rates described above, a careful annotation of
exon and intron boundaries is required. To this end, it
is important to not rely on annotations but to adopt a
data-driven approach with read mapping algorithms
allowing de novo identification of splice sites. It would
also be interesting to address non-canonical types of
splicing (circular-, trans-splicing) which could be

Figure 2. Synthesis and degradation rates of individual phospho-
diester bonds. To simplify the figure, we only consider a gene
without overlapping transcripts. However, the definitions apply
to configurations with overlapping transcripts and can also be
defined for non-canonical splicing (cryptic-, circular-, and trans-
splicing). The interpretation of the synthesis and degradation
rate of each bond is given to the right.
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revealed by such de novo identifications, possibly with
adapted protocol. Also for these non-canonical cases,
the definition of metabolism rates of phosphodiester
bonds applies and will be a useful concept.

Transient-transcriptome profiling

We recently contributed to the development of a pro-
tocol, transient-transcriptome profiling,23 which will
be instrumental for estimating metabolism rates of

individual bonds as it addresses an important posi-
tional bias that the standard 4sU-seq protocol has.
Standard 4sU-seq leads to an overrepresentation of
reads from the 50 ends of genes due to labeling of
already on-going transcription products. This effect is
particular important in higher eukaryotes, where the
polymerase takes a significantly longer time to tran-
scribe a gene in its full extent (typically 20 min in
human), than the labeling durations required for
studying rapid events such as splicing or degradation

Figure 3. TT-seq enables uniform mapping of the human transient transcriptome. When labeling with 4sU for a shorter duration than
the time required for polymerase to complete transcription, only short part (red) of a nascent transcript gets labeled (top). In standard
4sU-seq, the complete nascent transcript is purified and sequenced. This leads to higher coverage in the 50 end of genes, and due to
co-transcriptional splicing, to high ratio of exon–exon reads over exon–intron reads toward the genes 50 end (bottom left). In contrast
TT-seq, whose fragmentation steps allows sequencing only the labeled part of nascent transcripts, leads to a more uniform coverage
along transcripts and a more uniform distribution of the ratio of exon–exon over exon–intron reads (bottom right). Having a uniform
coverage is important to study the metabolism of individual bonds in an unbiased fashion.
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of short lived RNAs. One consequence is that parts of
the reads sequenced with 4sU-seq protocols are actu-
ally not labeled, and that these tend to be more present
in the 50 end of genes (Fig. 3). Hence, synthesis and
degradation rates estimates based on standard 4sU-
seq protocols are biased by gene length.23 Another
effect is due to co-transcriptional splicing. In the stan-
dard 4sU-seq protocol, the pulled down RNAs may
have introns in their 50 end already spliced out prior
to the labeling. Consequently, there is a relative higher
amount of exon–exon reads in the 50 end of genes and
thus the introns toward the 50 end of genes appear to
be spliced faster. Whether the first introns are gener-
ally spliced faster than other introns, as single-gene
microscopy has indicated, is difficult to assess form
standard 4sU-seq data. In contrast, we expect data
obtained by TT-seq23 to show a more uniform and
less biased coverage of exon–exon reads.

In conclusion, we predict that TT-seq will become an
important protocol to study splicing kinetics genome-
wide, as it alleviates positional biases that former label-
ing protocols entail. To analyze RNA metabolism with
TT-seq data, we suggest a switch from a gene-level to
single-bond level focus.
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