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Background and Objectives: APOE e4 has been linked to poor outcome following

traumatic brain injury (TBI); however, the mechanisms behind this relationship are

unclear. Few studies have investigated the relationship between the APOE genotype

and established brain related protein biomarkers following TBI. The purpose of this study

was to examine this relationship in service members and veterans (SMVs) following TBI.

Methods: Participants were 209 SMVs [124 uncomplicated mild TBI (mTBI); 85

complicated mild, moderate, severe, or penetrating TBI (mod-sev TBI)] prospectively

enrolled in the DVBIC-TBICoE 15-Year Longitudinal TBI Study. APOE genotyping was

undertaken using non-fasting blood serum samples. Participants were divided into three

groups: APOE e2+, APOE e3/e3, and APOE e4+.

Results: In participants with mTBI, those with the APOE e2 allele had significantly lower

levels of tau than those with APOE e4 (p = 0.005, r = 0.43, medium-large effect size).

Those with APOE e3/e3 trended toward having higher tau than those APOE e2+ (p =

0.076, r = 0.20, small-medium effect size) and lower tau than those with APOE e4+ (p

= 0.062, r = 0.21, small-medium effect size). There were no significant differences in

biomarkers based on APOE in the mod-sev TBI group.

Discussion: This study is the first to demonstrate APOE genotype is related to serum

tau levels following a mTBI, extending prior findings to human serum following mTBI. In

addition to higher serum tau levels in APOE e4 carriers, lower tau levels were observed

in APOE e2 carriers, suggesting a possible protective effect.

Keywords: traumatic brain injury, APOE, biomarkers, serum, tau, military

INTRODUCTION

Apolipoprotein E e4 genotype has been linked to poor outcome following traumatic brain
injury (TBI) (1); however, the mechanisms behind this relationship are unclear. To our
knowledge, few studies have investigated the relationship between APOE genotype and
peripherally circulating proteins following TBI. Some proteins of interest include tau,
neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin c-terminal
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hydrolase L1 (UCH-L1), all of which can be measured in blood
after TBI. Tau is highly expressed in unmyelinated cortical
axons (2). Diffuse axonal injury increases extracellular tau, which
can then cross the blood brain barrier and be measured in
blood samples. Similar to tau, NfL provides structure to axons,
though it is most abundant in myelinated axons projecting
subcortically and to the spinal cord (3). Glial Fibrillary Acidic
Protein is an intermediate filament III protein highly expressed in
astrocytes that maintains structure and strength of glial cells and
supports neurons and the BBB. After brain injury, GFAP activates
astrogliosis, increasing the size and number of astrocytes (4).
Ubiquitin C-terminal hydrolase removes ubiquitin from proteins

(5). It is generally found in the neuronal soma cytoplasm. Its

presence in the blood therefore indicates injury of the neuronal
cell body (6). Decreased UCH-L1 can lead to increased alpha-

synuclein in neurodegenerative processes (7, 8).

There is very little research investigating the relationship

between APOE genotype and blood-based biomarkers following

TBI. In boxers with blood and cerebrospinal fluid (CSF) collected

twice within 14 days of a recent bout, APOE genotype was
unrelated to blood levels of amyloid-β-42, or CSF levels of
phosphorylated neurofilament-heavy chain, amyloid precursor
proteins, APOE levels, neurofilament light (NfL), glial fibrillary
acidic protein (GFAP), phosphorylated-tau (p-tau), or S-100B
(9). Thus, there may not be short term protein level changes
related to this gene; however, existing evidence suggests APOE
genotype may have longer-term impacts on biomarkers.

Supporting this, in Alzheimer’s Disease (AD), APOE e4 is
the preeminent genetic risk factor (10). Within AD samples,
APOE e4 has repeatedly been associated with accelerated
neurodegeneration of the medial temporal lobe, reduction in
neuronal and synaptic integrity (11). APOE has been linked to
amyloid-β (12–18), with APOE e4 detrimental and APOE e2

TABLE 1 | Selected demographics and injury characteristics by APOE genotype.

e2/e2 (n = 1) e2/e3 (n = 33) e2/e4 (n = 2) e3/e3 (n = 118) e3/e4 (n = 50) e4/e4 (n = 5)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age 38.0 na 37.0 9.0 31.0 2.8 37.5 9.7 37.1 9.8 32.4 8.6

Months since injury 37.0 na 88.2 69.1 50.0 18.4 84.0 53.1 90.9 75.6 68.8 36.9

Med Range Med Range Med Range Med Range Med Range Med Range

Number of TBIs 1 na 1 1–4 1 1–1 1 1–3 1 1–3 1 1–2

tau 0.49 na 0.36 0.02–2.42 0.60 0.35–0.85 0.43 0.03–2.54 0.51 0.17–2.03 0.37 0.33–0.45

NfL 6.01 na 7.44 1.78–46.22 9.31 5.21–13.41 6.71 1.08–39.32 7.24 2.69–21.30 6.20 4.79–8.22

GFAP 59.37 na 72.00 25.43–151.26 126.80 75.29–178.31 71.45 28.82–492.10 87.15 36.35–318.96 71.87 52.07–450.61

UCHL1 2.89 na 13.49 0.11–139.57 3.86 3.86–3.86 8.60 0.89–91.34 16.00 2.91–69.49 6.36 2.52–20.15

n % n % n % n % n % n %

Male 1 100 31 93.9 2 100 112 94.9 45 90.0 5 100

mTBI 1 100 23 69.7 0 0.0 73 61.9 24 48.0 3 60.0

White 1 100 7 21.2 1 50.0 24 20.3 14 28.0 0 0.0

APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; mTBI, uncomplicated mild TBI; NfL, neurofilament light; Mod-Sev TBI, complicated mild, moderate, severe, and penetrating

TBI; TBI, traumatic brain injury; UCH-L1, ubiquitin carboxyl-terminal hydrolase L1.

protective (19). Additionally, a relationship between APOE and
tau has become apparent (20). Several studies have demonstrated
that APOE e4 modifies tau pathology and neurodegeneration
(20–23), including over and above amyloid-β (24). In APOE
e4 carriers, CSF levels of APOE have been associated with
CSF levels of tau and p-tau (25). Additionally, APOE e4-
expressing mice had increased tau phosphorylation and learning
impairments (26).

Understanding whether APOE impacts brain related protein
levels following TBI has implications for current functioning,
future neurodegeneration, and treatment targets. This study
sought to determine whether blood biomarkers relevant in TBI
(tau, NfL, GFAP, and UCH-L1) are elevated in service members
and veterans (SMV) with history of TBI with APOE e4 compared
to those without APOE e4. It also sought to determine whether
SMVs with APOE e2may have reduced levels of these biomarkers
compared to those without APOE e2.

MATERIALS AND METHODS

Participants
Participants were 209United States SMVs prospectively recruited
into the Defense and Veterans Brain Injury Center/Traumatic
Brain Injury Center of Excellence 15-Year Longitudinal TBI
Study through community events and four Medical Treatment
Facilities a year or more following TBI. General exclusion
criteria included significant neurological/psychiatric condition(s)
unrelated to the injury event.

Participants were selected for inclusion in the final sample
if they had a history of TBI, underwent APOE genotyping,
and had ≥1 useable biomarker samples. This resulted in 124
uncomplicated mild TBI (mTBI) and 85 complicated mild,
moderate, severe, or penetrating TBI (mod-sev TBI).
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TABLE 2 | Demographics and injury characteristics by APOE allele group.

APOE e2+ (n = 34) APOE e3/e3 (n = 118) APOE e4+ (n = 55) F p

M SD M SD M SD

Age 37.00 8.88 37.51 9.68 36.65 9.70 0.158 0.854

Years of Education 15.15 2.27 14.97 2.26 14.76 1.91 0.344 0.710

Time Since Injury (months) 86.68 68.65 84.00 53.15 88.87 73.01 0.122 0.885

Med IQR Med IQR Med IQR Kruskal Wallis H p

Number of TBIs 1 1–2 1 1–1 1 1–1 7.892 0.019

Tau 0.369 0.185–0.487 0.426 0.298–0.573 0.494 0.351–0.709 8.394 0.015

NfL 6.99 4.92–10.00 6.71 4.88–9.71 7.20 5.51–9.22 0.325 0.850

GFAP 71.59 59.32–121.45 71.45 59.58–97.12 84.90 58.55–121.16 2.670 0.263

UCH-L1 13.18 4.76–22.36 8.60 4.65–16.66 15.31 4.63–28.52 4.127 0.127

n % n % n % Fisher’s Exact Test p

Men 32 94.1 112 94.9 50 90.9 1.18 0.527

White 26 76.5 94 79.7 41 74.5 0.71 0.717

Branch 0.0 0.0 0.0 9.754 0.247

Air Force 1 2.9 9 7.6 2 3.6

Army 21 61.8 86 72.9 36 65.5

Navy 6 17.6 10 8.5 10 18.2

Marines 5 14.7 13 11.0 7 12.7

Other 1 2.9 0 0.0 0 0.0

Enlisted 23 67.6 83 70.3 43 78.2 1.549 0.465

TBI severity 4.397 0.115

mTBI 24 70.6 73 61.9 27 49.1

Mod-Sev TBI 10 29.4 45 38.1 28 50.9

APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; mTBI, uncomplicated mild TBI; NfL, neurofilament light; Mod-Sev TBI, complicated mild, moderate, severe, and penetrating

TBI; TBI, traumatic brain injury; UCH-L1, ubiquitin carboxyl-terminal hydrolase L1.

TABLE 3 | Levels of blood biomarkers within each injury group by APOE allele group.

1. APOE e2+ 2. APOE e3/e3 3. APOE e4+ r1-2 r1-3 r2-3 p overall p1-2 p1-3 p2-3

Med IQR Med IQR Med IQR

mTBI

Tau 0.352 0.161–0.486 0.42 0.299–0.573 0.524 0.348–0.716 0.20 0.43 0.21 0.013 0.076 0.005 0.062

NfL 6.99 4.75–10.55 6.69 4.88–9.38 7.48 5.70–9.33 0.05 0.05 0.10 0.607 0.658 0.733 0.322

GFAP 69.97 56.57–106.86 69.55 56.61–81.90 70.73 56.23–100.05 0.05 0.03 0.00 0.910 0.646 0.806 0.972

UCH-L1 13.18 4.76–21.95 10.44 3.77–19.49 14.18 3.59–32.94 0.09 0.07 0.13 0.546 0.502 0.692 0.315

Mod-Sev TBI

Tau 0.399 0.162–1.19 0.444 0.284–0.583 0.436 0.351–0.726 0.06 0.11 0.08 0.753 0.689 0.576 0.549

NfL 7.32 5.04–9.98 7.06 4.85–10.66 6.5 5.14–8.85 0.01 0.05 0.04 0.912 0.929 0.740 0.703

GFAP 116.76 65.88–123.82 86.33 60.47–118.30 109.62 80.09–142.74 0.12 0.06 0.18 0.249 0.371 0.715 0.115

UCH-L1 14.50 4.96–110.04 8.16 4.97–12.06 16.69 5.66–27.74 0.14 0.02 0.33 0.158 0.486 0.920 0.049

APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; mTBI, uncomplicated mild TBI; NfL, neurofilament light; Mod-Sev TBI, complicated mild, moderate, severe, and penetrating

TBI; TBI, traumatic brain injury; UCH-L1, ubiquitin carboxyl-terminal hydrolase L1.

TBI Evaluation and Classification
Diagnosis and classification of TBI has been detailed previously
(27). A comprehensive lifetime TBI history including the

Ohio State University TBI identification method and medical
record review was used to classify TBI severity during case
conferencing (27). Uncomplicated mTBI (n = 124) was

Frontiers in Neurology | www.frontiersin.org 3 July 2022 | Volume 13 | Article 816625

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lippa et al. APOE and Tau After TBI

defined as: no trauma-related intracranial abnormality (ICA)
on CT or structural MRI and either Glasgow Coma Scale
(GCS) = 13–15, posttraumatic amnesia (PTA) < 24 h, loss of
consciousness (LOC) < 30 mins, or alteration of consciousness
present. Complicated mild, moderate, severe, or penetrating
TBI (n = 85) was defined as: trauma-related ICA on CT
or MRI, LOC > 30 mins, PTA > 1 h, or a breach of the
cranial vault and/or dura mater by an external object and/or
skull fragment.

Measures and Procedure
Laboratory Analyses
Of note, the samples used in this study overlap with those
used in our prior work (28–30). Non-fasting blood samples
were collected with plastic serum-separating tubes, processed
within an hour, and stored at −80◦C. Batch assays were
conducted after all samples had been collected. SimoaTM

(Quanterix, Lexington, MA), a high-definition-1 analyzer,
measured biomarker concentrations. Samples were randomized
over plates and run in duplicate with laboratory scientists
blinded to participant groups, using an ultrasensitive multiplex
immunoassay (Neurology 4-Plex A 102153). Blood samples were
not used if the reported coefficients of variation (CV) were over
20% and they were above the lower limit of quantification, and
therefore two NfL, 46 tau, 85 UCH-L1 samples were excluded.
Average CVs were: GFAP-3.6%, NfL-7.1%, tau-14.9%, UCH-L1-
33.0%. The lower limits of quantification are: GFAP-0.467 pg/ml,
NfL-0.241 pg/ml, tau-0.053pg/ml, UCH-L1-5.45pg/ml.

DNA samples were added to Covaris 96 microTUBE plates
at 1,000 ng input and sheared using the Covaris LE220
Focused-ultrasonicator and settings (t: 78; Duty: 18; PIP: 450;
200 cycles) for a peak size of 410 bp. Sequencing libraries
were generated using the Illumina TruSeq DNA PCR-Free
Library Preparation Kit with robotic automation (Hamilton
STAR System) and IDT for Illumina TruSeq DNA UD Indexes
(96 Indexes, 96 Samples) adapters. Library size distribution
and absence of adapter dimers were confirmed by automated
capillary gel-electrophoresis (Advanced Analytical Fragment
Analyzer). Library concentration was determined by qPCR using
the KAPA qPCR Quantification Kit (Roche Light Cycler 480
Instrument II). Sequencing libraries were pooled at 24-plex
and quantified as above before sequencing on an Illumina
NovaSeq 6000 using a S4 Reagent Kit (300 cycles) with
151+8+8+151 cycle run parameters. Raw data were demuxed
using the Illumina HAS2.2 pipeline and sample-level quality
control for base quality, coverage, duplicates, and contamination
(FREEMIX<0.05) was conducted.

APOE genotypes were determined through base identities at
hg38 positions chr19:44908822 (rs7412; reference C, variant T)
and chr19:44908684 (rs429358; reference T, variant C). A two-
element tuple of variant allele counts at these positions was
generated and converted to APOE genotypes according to: (0,0)
= e3/e3, (0,1)= e3/e4, (0,2)= e4/e4, (1,0)= e2/e3, (1,2)= e1/e4,
and (2,0) = e2/e2. Genotype (1,1) was considered e2/e4 given
the low expected probability of observing the double variant
TC allele.

APOE genotyping results for the entire sample was as follows:
e4/e4 (2.2%), e3/e4 (24.4%), e3/e3 (55.6%), e2/e4 (1.4%), e2/e3
(16.1%), e2/e2 (0.4%). Participants were divided into one of three
groups: APOE e2+ (e2/e2, e2/e3), e3/e3, or APOE e4+ (e3/e4,
e4/e4). Those with e2/e4 were excluded from group comparisons.

Standard Protocol Approvals, Registrations, and

Patient Consents
This research was conducted in accordance with the Declaration
of Helsinki guidelines and approved by theWalter Reed National
Military Medical Center Institutional Review Board (IRB).
Written informed consent was obtained from all participants.

Data Availability Statement
Summary/aggregate data and additional information on the
methods and statistical analyses will be provided on request.
However, individual data elements are not available due to DoD
legal requirements and current IRB approved language in the
subject consent forms.

RESULTS

Descriptive statistics for all APOE genotypes are presented
in Table 1. Descriptive statistics and group comparisons for
demographic, clinical characteristics, and blood biomarkers by
APOE group were conducted with ANOVAs, KruskalWallis, and
Mann-Whitney tests and are presented in Table 2. The APOE
e2+ group had a history of sustaining a higher number of lifetime
TBIs than the e3/e3 group (p = 0.008, r = 0.21, small-medium
effect size) and the APOE e4+ group (p= 0.021, r = 0.25, small-
medium effect size). Tau was higher in the APOE e4+ group
compared to the APOE e2+ group (p= 0.008, r = 0.31, medium
effect size).

Kruskal-Wallis H and Mann-Whitney U tests compared
biomarkers between the APOE e2+, e3/e3, and APOE e4+
groups within each injury group. Within mTBI participants, the
APOE e2+ group had significantly lower levels of tau than the
APOE e4+ group (p= 0.005, r = 0.43, medium-large effect size).
Additionally, the e3/e3 group trended toward having higher tau
than the APOE e2+ group (p = 0.076, r = 0.20, small-medium
effect size) and lower tau than the APOE e4+ group (p = 0.062,
r = 0.21, small-medium effect size). There were no significant
differences in the omnibus tests for biomarkers in the mod-sev
TBI group (Table 3).

DISCUSSION

This study is the first to demonstrate APOE alleles relate to
serum tau levels following mTBI in humans, suggesting APOE e4
may increase serum tau while APOE e2 may decrease it. These
findings are consistent with prior basic research (20–24). This
differential impact of APOE on tau in patients with a history
of mTBI may have implications for future neurodegeneration,
and warrants additional investigation. Pre-clinical research also
supports this hypothesis, with a mouse model demonstrating
increased tau phosphorylation and learning impairments in
APOE e4-positive mice (26). It is possible that APOE e4 is
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associated with increased tau distribution to the medial temporal
lobes (24), negatively impacting memory. We previously
demonstrated, in overlapping but non-identical cohorts, that
APOE e4 is related to worse memory performance in SMVs a
year or more after TBI (30). In separate studies we have not found
a cross-sectional relationship between serum tau and cognition
within the first year following a TBI (29) or more than a year after
TBI, (28) though we did find that serum tau within the first year
of a TBI predicted decline in perceptual reasoning and executive
functioning over time (29). Future investigation into how tau
maymediate the impact of APOE on cognition and clinical status
following TBI is warranted.

Interestingly, individuals with an APOE e2 allele sustained
more TBIs than individuals without an APOE e2 allele. This is
in contrast to past research finding no difference in e2 alleles
between college athletes with multiple concussions and those
with zero or one concussions (31). It is possible that the APOE e2
allele increases one’s risk of sustaining a higher number of lifetime
TBIs than the e3/e3 group; however, it is notable that the vast
majority of prior studies have not found a relationship between
APOE genotype and risk of TBI (32–34). Some of these studies
have focused on the APOE e4 allele (35–37), while others have
included an investigation of APOE e2 (31, 38, 39).

Notably, there was no relationship between APOE and tau
(or other biomarkers) in the mod-sev TBI group, suggesting that
mTBI and more severe TBI may result in different biological
processes a year or more post-injury. The lack of relationship
could also be due to small sample size, especially in the APOE
e2+ group, or limited examination of four serum biomarkers.
The present findings and discrepancy between the mild and
mod-sev TBI group suggest additional research is required
to understand how APOE genotype impacts biomarker levels
following TBI of different severity.

Additional limitations include the lack of consideration
of serum amyloid-β levels. Traditionally, APOE e4 has been
associated with increased levels of amyloid-β (2–18). We
previously did not find a relationship between amyloid-β
levels and TBI severity, diffusion tensor imaging, or cognitive
performance in a subsample of these participants (27). Though
serum amyloid-β is not currently available on the entire
sample, it seems likely that a similar, and perhaps stronger,
relationship between APOE and amyloid-β would be observed
compared to the relationship we demonstrated between tau
and APOE.

Despite these limitations, this study builds on prior findings
showing APOE genotype is related to tau pathology (20, 24,
26). We found that APOE genotype was related to serum
tau in patients with mild TBI, with APOE e2 associated with
lower serum tau levels and APOE e4 associated with higher
serum tau levels; however, this relationship between APOE and
tau did not exist in the moderate-severe TBI group. Findings
require replication in larger samples with clinical relevance
explored longitudinally.
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