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Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-
voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes 
that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a 
singular physiologically nested model. However, admixtures of different models may exist within a 
voxel’s CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-
Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model. Sixty-six 
immune-compromised-RNU rats were implanted with human U-251 N cancer cells, and DCE-MRI data 
were acquired from all the rat brains. The time-trace of change in the longitudinal-relaxivity (ΔR1) for 
all animals’ brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using 
NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor 
tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and 
back-flux. Approximately two hundred thirty thousand (229,314) normalized ΔR1 profiles of animals’ 
brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8 × 8, with 
competitive-learning algorithm) and probability map of each model. K-fold nested-cross-validation 
(NCV, k = 10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique 
against the NMS technique. The K-SOM PNMS’s estimation for the leaky tumor regions were strongly 
similar (Dice-Similarity-Coefficient, DSC = 0.774 [CI: 0.731–0.823], and 0.866 [CI: 0.828–0.912] for 
Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, 
NCV, k = 10) for the estimated permeability parameters by the two techniques were: -28%, + 18%, 
and + 24%, for vp, Ktrans, and ve, respectively. The KSOM-PNMS technique produced microvasculature 
parameters and NMS regions less impacted by the arterial-input-function dispersion effect. This study 
introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of 
different nested-models in PK analysis and provides a faster estimate of permeability parameters.
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In the pharmacokinetic (PK) analysis of brain dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) data, the principle of parsimony serves as an accepted heuristic1. Under the constraint of parsimony, the 
simplest physiologically meaningful model that sufficiently represents the temporal variation of DCE-MRI data 
is the best choice for producing stable estimates of model parameters. Parsimonious PK parameters effectively 
summarize the pathophysiological behavior of the underlying brain tissue by balancing variance and bias in 
parametric estimates2,3. Our research group has introduced a nested model selection (NMS) technique for DCE-
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MRI analysis in rat and human brains that utilizes an extended Patlak graphical method2,3 as the highest-order 
model. This NMS approach enhances the stability of dynamic contrast enhanced (DCE) MRI data processing2,3. 
However, it relies on the strong assumption that each voxel’s measured time trace of contrast agent (CA) 
concentration corresponds to a single physiologically nested model. This assumption may produce systematic 
errors in the parametric estimates; for a given voxel’s time trace of CA concentration, combinations of different 
NM’s with different contribution levels likely exist.

In this study, we introduce an unsupervised probabilistic nested model selection (PNMS) method based on 
the model averaging concept for DCE-MRI PK analysis of animal model of cerebral tumor using a Kohonen-
Self-Organizing Map (K-SOM) technique. The proposed model is constructed by the concentration-time trace of 
MR relaxivity change (ΔR1) estimated from DCE-MRI information of animal model of brain tumor to perform 
a PNMS based on the nested model selection results. The PNMS can rank and estimate the uncertainty and 
probability of different nested models as well as their contribution levels in a given voxel to address the voxel-
wise ‘model averaging’ concept that results in a faster estimation of PK parameters.

Methods
Imaging and animal population
Using previously published methods4, sixty-six athymic RNU rats (10–12 weeks old and 200–230 g, Charles 
River Laboratories, Wilmington, MA), implanted with human U-251 N cells. U-251 N cells were maintained in 
Dulbecco’s Minimum Essential Media (DMEM) with 10% fetal bovine serum (FBS) and 1% streptomycin and 
penicillin. Cell cultures were passaged once a week and not more than 4 times. The concentrations of human 
U-251 N cells were 5 × 109 cells per mL, which were loaded into a 10 µL Hamilton syringe (Model 701, Hamilton 
Co., Reno, NV) before implantation. Rat brains were implanted with human U-251  N cancer cells to form 
orthotopic gliomas. A DCE-MRI study was performed using a Dual-Echo Gradient-Echo – DGE pulse sequence 
(400 acquisitions, with TE/TR = 1.55/24.19 [ms]), tail-vein with contrast injection of Magnevist with 0.25 mmol/
kg at undiluted concentration without ~ 60 s after the start of the experiment. Two T1 mapping sequences (Look-
Locker Inversion Recovery) were also acquired from all rat brains5 before and after the DCE-MRI experiment. 
All studies used a Varian/Magnex (Santa Clara, CA), 7 Tesla, 20 cm bore magnet with a Bruker console running 
Paravision 6.0 software. Gradient maximum strengths and rise times were 250 mT/m and 120 µs. Following 
published procedures2,6, all two-dimensional MRI image sets were acquired with a 32 × 32 mm2 field of view 
(FOV). Transmitter and receiver coils included a Bruker Quadrature Birdcage (transmit) and 4-channel phased-
array surface coil receiver (Rapid MR International, Columbus, OH).

Ethical approval
All experimental and imaging procedures were conducted at our institution under an protocol approved by 
the Institutional Animal Care and Use Committee (IACUC) of Henry Ford Health (number 1509) and was 
performed and reported in compliance with the ARRIVE guidelines7–9. Also, all methods were performed in 
accordance with the relevant guidelines and regulations7–9. All animals were anesthetized before and during the 
MRI experiment using Isoflurane. After all experimental studies were completed, rats were euthanized with an 
overdose of isofluorane, followed by transcardial perfusion and fixation.

Calculation of contrast agent concentration from DCE-MRI data
We assume that the gadolinium contrast agent (CA) concentration, [Gd], is proportional to the change in the 
longitudinal relaxation rate (R1) after CA administration: [Gd] = C(t) ~ ΔR1(t), where R1 = 1/T1 and T1 is the 
longitudinal relaxation time. We assume that longitudinal relaxivity for Gd is constant across tissues. Dual 
Gradient Echo (DGE) imaging allows for the computation of T1 and T2* as approximately pure and independent 
components10,11. This is essential for the estimation of CA concentration based on ΔR1 and ΔR2*. We previously 
introduced and developed methods for estimating the ΔR1 signal (~ CA concentration) from the DGE pule 
sequence. As previously noted2, this method introduces equations to describe the measured T1-weighted 
intensities of the first and second echo signals and their relationship to the longitudinal and transverse relaxation 
times (T1, T2

*), repetition time (TR), echo time (TE), flip angle (θ), and equilibrium longitudinal magnetization 
(M0). T2* includes the effects of both static dephasing and irreversible dephasing. In this study, the voxel-wise 
profiles of the CA concentration map, ∆ R1 (t), were directly estimated from the DCE-MRI experiment, and 
the pre and post T1 maps estimated by the pre- and post-DCE T1 pulse sequences (T One by Multiple Read Out 
Pulses, TOMROP/Look-locker12). The time trace of change in the longitudinal relaxation time, ΔR1 in all the 
voxels of the animal’s brain, corresponding and proportional to the time trace of contrast agent concentration, for 
66 rat brains’ DCE-MRI studies were calculated3. Dual Gradient Echo (DGE) imaging allows for the computation 
of T1 and T2* as approximately pure and independent components10,11. At 7T field strength, this is essential for 
an unbiased estimation of CA concentration. We employed a Look-Locker inversion recovery sequence to make 
pre-contrast and post-DGE voxel-by-voxel estimates of tissue T1. After calculating10,11 the pure and independent 
components (T1 and T2

*) of the DGE signals, we used voxel-wise T1 (longitudinal relaxation time) values of 
the signals calculated from pre and post injection TOMROP pulse sequences to calculate the change in the 
longitudinal relaxation rate (ΔR1) at time points after contrast agent (CA) administration, and used this, along 
with a tissue-normalized Arterial Input Function, as estimates for contrast agent concentration-time curves.

Post-processing and conventional nested model selection in PK analysis
Post-processing and pharmacokinetic compartmental analyses of DCE-MRI data were carried out following 
published methods2,3. We used a nested model selection (NMS)2,3,13 paradigm based on Patlak and extended-
Patlak graphical methods14,15. As illustrated in subfigure 1 A, we have shown2,3 that three physiologically nested 
models can be derived from the standard model to describe possible physiological conditions of underlying 
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tissue pathology2,3. We have generated a series of stable processing pipelines accordingly, to produce vascular 
parametric maps based on the NMS technique2,3. As shown in subfigure 1 A, the NMS method2,3 was used to 
generate maps of brain regions labeled with the number of permeability parameters used to describe the data2: 
(a) Model 1 region: normal vasculature with no leakage, the only parameter estimated is plasma volume, vp; (b) 
Model 2 region: tumor tissues with CA leakage without measurable back-flux to the vasculature, in which case vp 
and, Ktrans can be estimated; or (c) Model 3 region: tumor vessels with CA leakage and measurable back-flux and, 
thus, vp, Ktrans, and kep, or extracellular extra-vascular volume, ve (ratio of Ktrans and Kep) can be estimated. Three 
model equations representing the three physiologically nested models were constructed as follows (Eqs. 1–3) 
and used for the conventional PK NMS analysis:

	 Ctissue (t) = [vpCAIF (t)]� (1)

	
Ctissue (t) = [vpCAIF (t) + Ktrans

∫ t

0
CAIF (λ ) dλ ]� (2)

	
Ctissue (t) = [vpCAIF (t) + Ktrans

∫ t

0
CAIF (λ ) e−Kep(t−λ )dλ ]� (3)

Where CAIF(t) and Ctissue(t) refer to the contrast agent (CA) concentration measured from plasma (or arterial 
input function, AIF) and tissue of interest in the brain, respectively. Hematocrit ratio (Hct) was not included in 
the equations. The assumption is that the CA is excluded from the erythrocytes of blood, and that the change 
in R1 is proportional to the concentration of CA in plasma. Since we are estimating plasma volume, there’s no 
correction warranted for Hct. To allow the spin system to reach a true equilibrium after the start of the highly 
saturated DCE-MR imaging, the first 20 timepoints of the pre-injection part of the signals were excluded from 
the analysis (about 30 s). For each observation equation (Eqs. 1–3), the voxel-by-voxel time trace of ΔR1(t) in 
rat brain was used to estimate its PK parameters. At image 15 (corresponds to ~ 23 s after the start of the DCE 
experiment) of the DGE sequence, a bolus injection of the CA (Magnevist; Bayer HealthCare LLC, Wayne, 
NJ, 0.25 mmol/kg at undiluted concentration, no flush) was performed. The group averaged radiological trace 
was normalized to the time trace of CA concentration in the animal’s normal caudate putamen16, with the 
assumption that plasma volume fraction in caudate putamen is 1%. Then, the normalized radiological AIF was 
used as CA concentration measured from plasma.

In the NMS analysis3, the F-statistic generated in three models (1, 2 and 3) can be directly compared to 
its reduced model alternative, thus allowing an unambiguous selection of model and model parameters best 
supported by the data. After converting the data into a time trace of the change from baseline in the longitudinal 

Fig. 1.  (A) illustrates three physiologically nested models, their vascular and extra-cellular-extra vascular 
compartments, and their estimable vascular parameters. (B) shows typical time-traces of the CA concentration 
computed for the three nested models according to the observation equations (Eqs. 1–3) for typical 
permeability parameters. (C) demonstrates the concept of the model averaging technique for estimation of the 
probabilistic nested model selection from the conventional NMS results for a typical voxel.
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relaxation rate, ΔR1 (R1 = 1/T1), it was used as a measure of the change of CA tissue concentration with time. 
Then, for each voxel, the three nested models (1, 2 and 3) were fitted to the concentration-time curve, ΔR1, and 
the F-statistics comparing Model 1 to Model 2 (leakage without vascular reabsorption), and Model 2 to Model 
3 (leakage with reabsorption) were calculated. Each F-statistic was thresholded at the 95% confidence level and 
used as a statistical criterion to compare each of models to their possible reduced versions and to perform the 
nested model selection. In the F-test, the null hypothesis is that the two samples of sum-squared residuals were 
drawn from the same pool. The failure of this hypothesis leads to acceptance of the higher-order model. The 
probability associated with the F-test (the p-value) is that of a Type I error, e.g., the probability of accepting 
Model 3 when the underlying truth is that of Model 2. In comparing model alternatives voxel-by-voxel, the 
confidence level (CL) was set at 95% for the main analysis. Finally, all the rat brains’ ΔR1 profiles (n = 229,314) 
were labeled (149668, 60268, and 19378 profiles for Models 1, 2 and 3, respectively) according to their selected 
models at 95% CL.

Model development and validation
 A total of 229,314 normalized profiles (149668, 60268, and 19378 profiles for Models 1, 2 and 3, respectively) were 
extracted from the rat brains’ voxels and used to construct and validate the unsupervised K-SOM method17,18.

An unsupervised machine learning technique, A K-SOM17,18 or self-organizing feature map, was used to 
produce a low-dimensional representation of higher dimensional data set with complex structures while 
preserving the topological structure of the data. During the K-SOM analysis, a competitive learning algorithm19–21 
along with Best Matching Unit (BMU) strategy were employed to identify the “winner” nodes/neurons for an 
8 × 8 topology. The cover steps for initial covering of the input space for ordering the phase steps of the K-SOM 
was set to 100. The K-SOM’s architecture was hexagonal with an initial neighborhood size of three, and the 
maximum epoch was set to 250 epochs for batch training mode. A BMU-based hit map was generated for 
the CA concentration profiles within the animal brains. The model choice labels for all three models (at the 
Confidence Level of CL = 95%) estimated from the conventional PK-NMS analyses for all profiles were used as 
the source of truth for the conventional nested models (with high Confidence Level: 95%) to calculate the tagged 
BMUs on the K-SOM topology space. The hit maps and their corresponding labels were used to estimate the 
three K-SOM probability and iso-probability maps for the three different model choices.

Dice Similarity Coefficients (DSCs)22 for different model regions generated by the conventional NMS analysis 
and the K-SOM probabilistic NMS (at NMS probabilities of 50%) were used to evaluate the performance of the 
trained K-SOM and the conventional NMS on DCE-MRI data. The calculated DSCs compared the similarity of 
the model regions estimated by the PNMS technique against the physiological state identified by the conventional 
NMS method.

To investigate and validate the performance of the constructed K-SOM to perform the probabilistic NMS 
on DCE-MRI data for the three physiologically nested models, a k-fold (k = 10) Nested Cross Validation (NCV) 
analysis23 was performed. The full dataset for all the three models was randomly permuted (using Random 
Permutation Sampling, RPS24) and split into 10 non-overlapping folds25 (ratio for training/test: 0.66/0.34, 
44/22 26). Two independent loops were defined as outer and inner loops. In the outer loop, for each epoch, 
the data was split into two folds (training + validation fold, and a test fold), and for the inner loop, only the 
validation + training fold was used to construct a series of K-SOMs. Then, for each iteration, an unsupervised 
K-SOM was constructed in the inner loop using the training cohorts. The trained K-SOM constructed in each 
fold of the inner loop was used as the PNMS predictor of the test cohorts of its respective fold in the outer loop. 
This process was repeated 10 times (k = 10) and at each repetition, an independent test set was withheld for the 
estimation of the performance of the constructed K-SOM PNMS model of the inner loop for different nested 
models and their respective permeability parameters.

For each iteration of k-fold NCV, to calculate the probabilities of the three models on the K-SOM’s feature 
space, all the normalized ΔR1 profiles (annotated from the conventional PK-NMS) of the training cohort, 
were used to construct the K-SOM’s hit map. For each K-SOM’s neuron (located at (n, m) within the network 
topology, n = 1,2,0.8 and m = 1,2,0.8), the probability of that neuron being the winner neuron for each model j, 

was calculated as follows: Pj(m, n) = 1
(
∑

8
1n).(

∑
8
1m)

(
Kj(m,n)

K1(m,n)+K2(m,n)+K3(m,n)

)
. Where the index j refers 

to different nested models (j = 1,2,3) and Kj(m, n) refers to the number/frequency of the best matching unit 
(BMU) or number of time the neuron located at n, and m wins for model j.

In each iteration, the model 1 region estimated by the PNMS at 50% threshold was used to mask-out the 
whole brain to identify the two model regions (Models 2 and 3) of the rat brains. Then, two DSCs were calculated 
and averaged (over the 10 folds) for the model 2 and 3 regions estimated by the conventional NMS (at the 
Confidence Level of 95%) and K-SOM PNMS techniques. We thresholded the PNMS maps at 50% (columns 3 
and 4 in Fig. 5, for Models 2 and 3, respectively) and used the generated masks for masking out the PNMS and 
NMS maps for the computation of Models 2 and 3’s DSCs. Finally, for different model regions, three permeability 
parameters were estimated and averaged over the 10-fold nested cross validation for the two techniques and their 
mean percent differences (MPD) were calculated. The voxel-wise permeability parameters, vp(x, y, z), Ktrans(x, y, 
z), and ve(x, y, z), for the K-SOM PNMS technique were calculated as follows:

	
vp (x, y, z) =

P1 (x, y, z) .v(M1)
p (x, y, z) + P2 (x, y, z) .v(M2)

p (x, y, z) + P3 (x, y, z) .v(M3)
p (x, y, z)

P 1 (x, y, z) + P 2 (x, y, z) + P 3 (x, y, z)
� (4)

	
Ktrans (x, y, z) = P2 (x, y, z) .Ktrans (M2)(x, y, z) + P3 (x, y, z) .Ktrans (M3)(x, y, z)

P 2 (x, y, z) + P 3 (x, y, z)
� (5)
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ve (x, y, z) = Ktrans (x, y, z)

K
(M3)
ep (x, y, z)

� (6)

where P1(x, y, z), P2(x, y, z), and P3(x, y, z) refers to the voxel-wise probabilities for the three nested models: 
models 1, 2, and 3, respectively. The vp

1(x, y, z), vp
2(x, y, z), and vp

3(x, y, z) in Eq. 1 refers to the estimated voxel-
wise plasma volumes for models 1, 2, and 3, using the conventional NMS technique. The Ktrans (M2)(x, y, z), and 
Ktrans (M3)(x, y, z) in Eq. 2 refers to the voxel-wise forward transfer constants estimated for the nested models 1 
and 2 using the conventional NMS technique. The Kep

3(x, y, z) in Eq. 3 refers to the voxel-wise reverse transfer 
constant for model 3 using the conventional NMS technique.

Results
Subfigure 1 A illustrates three physiologically nested models, their vascular and extra-cellular extra-vascular 
compartments, and their estimable vascular parameters according to the concept of conventional NMS 
technique. Subfigure 1B shows graphs of typical time-traces of the CA concentration (ΔR1) computed for the 
three nested models according to the observation equations (Eqs.  1–3) for typical permeability parameters. 
Subfigure 1 C demonstrates the concept of the model averaging technique for estimation of the probabilistic 
nested model selection from the conventional NMS results for a typical voxel. Subfigure 2 A and 2B illustrate 
the first and second echo of the DCE-DGE for a slice of rat brain about 8 min after the tail vein administration 
of CA. Subfigure 2  C-F demonstrates the model choice map and its corresponding permeability parameter 
maps (vp, Ktrans, and ve) calculated by the conventional NMS technique for the same slice of rat brain. Subfigure 
3  A illustrates the normalized K-SOM hit map (BMU) constructed from 66 rat brains’ voxels. Subfigure 3B 
demonstrates the topology space of the trained K-SOM network for the three nested model probabilities on the 
feature space. Subfigures 3 C to 3 F show the magnified versions (zoomed by factor of 4 for a better visualization) 
of the K-SOM feature space probabilities for the nested models 1, 2, 3, and their fused map (coded in RGB 
colors) respectively. Subfigure 4  A, 4  C, and 4E illustrates the trained K-SOM probability feature spaces for 
different nested models with their masked-out regions (estimated at the 50% probability threshold for each 
model, identified by dark neurons) for the three nested models. SubFig. 4B and D, and 4 F demonstrate the 
normalized ΔR1 averaged over the typical rat brain’s regions corresponding to the selected neurons/nodes (dark 
neurons) on the K-SOM probability space for Models 1, 2, and 3, respectively. The K-SOM based PNMS and 
conventional NMS analyses results for six slices of different rat brains are shown in Fig. 5. The six columns (from 
left to right) of Fig. 5 demonstrate the K-SOM normalized hit map (BMU), K-SOM probability maps for the 
three models (Model 1, 2, and 3), K-SOM fused probability maps (coded in RGB colors) for the three nested 
models, and the conventional NMS map (at 95% Confidence Level), respectively.

Table 1 shows the average permeability parameters for the combined/fused model regions (model regions 1, 
2 and 3 were fused for the measurement of plasma volume: vp1, vp2, and vp3, model regions 2 and 3 were fused 
and used for the measurement of Ktrans: Ktrans2 and Ktrans3, and model 3 region was used for the measurement 

Fig. 2.  (A) and (B) illustrate the first and second echo of the DCE-DGE for a slice of rat brain about 8 min 
after the tail vein administration of CA. (C)-(F) demonstrate the model choice map and its corresponding 
permeability parameter maps (vp, Ktrans, and ve maps) for the same slice of rat brain.
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of ve) estimated by the conventional NMS for the k-fold NCV (k = 10). Different model regions estimated by the 
NMS were fused and used to measure the permeability parameters estimated by the two techniques, NMS and 
PNMS. The last column of the table shows the mean percent differences (100x[PNMS estimate-NMS estimate)/
NMS estimate]) of the PNMS’s estimates compared to their baseline values (NMS). The average Dice Similarity 

Fig. 3.  (A) illustrates the normalized K-SOM hit map constructed from 66 rat brain’s voxels. (B) demonstrates 
the topology of the trained K-SOM feature space for the three nested model probabilities. (C) to (F) show the 
magnified versions (for better visualization) of the K-SOM feature space probabilities for Models 1, 2, 3, and 
their fused map respectively.
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Fig. 4.  (A), (C), and (E) illustrate the trained K-SOM probability feature spaces for the three nested models 
with their masked-out regions (estimated at the 50% probability threshold for each model, dark neurons) for 
the three nested models. (B), (D), and (F) demonstrate the normalized ΔR1 averaged over the typical rat brain’s 
regions corresponding to the selected neurons/nodes (dark neurons) on the K-SOM probability space for 
Models 1, 2, and 3, respectively.
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Table 1.  The average permeability parameters for the combined/fused model regions(model regions 1, 2 and 
3 were fused for the measurement of plasma volume: vp1, vp2, and vp3,model regions 2 and 3 were fused and 
used for the measurement of Ktrans: Ktrans2 and Ktrans3, andmodel 3 region was used for the measurement of 
ve) estimated by the conventional NMS for the kfoldNCV (k=10). Different model regions estimated by the 
NMS were fused and used to measurethe permeability parameters estimated by the two techniques, NMS and 
PNMS. The last column ofthe table shows the mean percent differences (100x[PNMS estimate-NMS estimate)/
NMS estimate])of the PNMS’s estimates compared to their baseline values (NMS).

 

Fig. 5.  The K-SOM based PNMS and conventional NMS analysis results for six slices of different rat brains 
are shown in this figure. The six columns (from left to right) of this figure demonstrate the K-SOM normalized 
hit map, K-SOM probability map for Model 1, K-SOM probability map for Model 2, K-SOM probability map 
for Model 3, K-SOM fused probability maps for all three models, and the conventional NMS map (at 95% 
Confidence Level), respectively.
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Coefficients (NCV, k = 10 folds) for the leaky tissues were 0.774 [CI: 0.731–0.823], and 0.866 [CI: 0.828–0.912] 
for Models 2 and 3, respectively.

The average plasma volumes (NCV, k = 10) estimated by the conventional NMS and PNMS techniques were: 
2.134% [CI: 1.942%, 2.369%], and 1.573% [CI: 1.429%, 1.629%], respectively. The MPD for the plasma volume 
was − 28.004%. The average forward volumetric transfer constant (NCV, k = 10) estimated by the conventional 
NMS and PNMS techniques were: 0.140 min− 1 [CI: 0.131 min− 1, 0.169 min− 1], and 0.165 min− 1 [CI: 0.153 min− 1, 
0.175 min− 1], respectively. The MPD for the forward volumetric transfer constant was + 18.157%. The average 
interstitial space (NCV, k = 10) estimated by the conventional NMS and PNMS techniques were: 13.649% [CI: 
12.282%, 15.287%], and 16.949% [CI: 15.424%, 18.136%], respectively. The MPD for the interstitial space was 
+ 24.179%.

Discussion
The K-SOM analysis technique used in this study preserved and mapped the dynamic characteristics of model-
based ΔR1 information at different time points to a feature space, and also correspondingly compared the 
information of different time points during the mapping process using a competitive learning approach19–21. 
The K-SOM technique is an unsupervised learning method which enables detection and preservation of the 
topological relationship of the training dataset based on the information similarity. The main goal of the 
study was to evaluate and compare the voxel-wise pathophysiological information content of the DCE-MRI 
information, such as distribution of the different NM information, their similarities, uncertainty levels, and 
model diffusivity on the feature space to perform probabilistic model selection of PK data from rat brain tumors.

We investigated the feasibility of using a K-SOM technique to perform probabilistic model averaging on 
the DCE-MRI information profiles that are directly associated with tissue response (ΔR1) compared to its 
conventional model selection technique to calculate the probability of different pharmacokinetic-based 
pathophysiological states of tissues according to the nested model selection theory.

In this study, recruitment of such an unsupervised mapping revealed different degrees of similarities and 
associations17,18among model-based dynamic information extracted from tumor and surrounding normal 
tissues with their respective pathophysiological states. The K-SOM probabilistic NMS concept proposed in this 
study allows for a selection of an optimal PK nested model, weighted with a similarity-based model information 
using the ‘model averaging’ concept that produces a less biased estimate of permeability parameters best fitted 
to the DCE-MRI information2,3. Once constructed, the K-SOM-based PNMS (works based on the model 
averaging concept) in this study results in faster characterization of tumor physiology, microvasculature and 
microenvironmental parameters.

As shown in subfigure 3B, there are three dominant clusters on the K-SOM feature space (dark blue, dark 
green, and dark red) associated with the three conventional nested models. The K-SOM’s neurons on the feature 
space with lighter colors and mixture of the shades of the three main colors (blue, green, and red) in adjacent 
to these dominant clusters are responsible for characterization of the voxels’ temporal information that may 
contain more than one single physiologically nested model with a higher degree of vasculature heterogeneity. 
These voxels may contain a combination of normal and leaky vasculatures.

We assumed that the change in the longitudinal relaxation rate (R1) after CA administration is proportional 
to the contrast agent (CA) concentration,: [Gd] = C(t) ~ ΔR1(t), where R1 = 1/T1 and T1 is the longitudinal 
relaxation time. Indeed, this assumption is well supported in most DCE-MRI studies because they are conducted 
under the conditions of rapid repetition time and Ernst tip-angle adjusted for a mean decrease in R1. Under these 
conditions, studies in multicompartmental systems demonstrate little effect of water exchange mechanisms26,27.

We examined the information content of the relaxivity change (ΔR1) measured from a rat brain’s voxel using 
an unsupervised K-SOM algorithm17,18,28,29 to estimate the probability of the existence of different nested models 
within that voxel. The time traces of relaxivity change (ΔR1) were channelized into three dominant models with 
high certainties (CL = 95%) using the conventional NMS technique and then projected on a two-dimensional 
topology space to reveal any potential non-linearities, similarities, and dissimilarities of the spatiotemporal 
structures of the ΔR1 profiles in the form of clusters on the K-SOM’s feature space. The notable characteristic 
of K-SOM method is that the detailed structures of input vectors (ΔR1) that are close, and similar in high 
dimensional space are mapped to nearby nodes in its topology space. It is in essence, an unsupervised method 
for data dimensionality reduction and grouping the information, as it maps high-dimension inputs to a low 
dimensional discretized representation while conserving the underlying structures of its input space17,18,28,29. 
This generated distinct clusters with different levels of scattered fragments of ΔR1 information without any 
supervision on the K-SOM’s feature space. The blue, green, and red zones on the fused K-SOM’s topology maps 
(see subfigure 3B) correspond to the models 1, 2, and 3 (estimated from the conventional NMS PK analysis with 
CL = 95%), respectively. The three dominant clusters in this figure strongly confirms the value and discriminant 
power of the ΔR1 information for revelation and capture of the nested models’ features for characterization of 
tumor heterogeneity and microvascular characteristics according to the conventional NMS concept. As shown in 
Fig. 4, the three dominant clusters associated with the three conventional nested model regions on the K-SOM’s 
feature space produced three average ΔR1 profiles (subFig. 4B and D, and 4 F) that are strongly in agreement with 
their respective graph of ΔR1 profiles (see subfigure 1B) generated by the Eqs. 1–3.

As shown in Fig.  5, the K-SOM PNMS has produced stable maps of nested model regions with smooth 
transitions on their borders. The Model-1 regions (corresponding to non-leaky normal tissues) estimated by 
the K-SOM PNMS technique are less impacted by the dispersion effects due to the arterial input function and 
magnetic field gradient. This leads to a lower mis-classification for Model-1 and 2 regions. This is because the 
K-SOM efficiently captures the detailed characteristics of the ΔR1 profiles and their contribution levels within 
the normal tissues’ voxels.
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The results of this study confirm that the K-SOM PNMS technique can efficiently generate probabilistic 
nested model maps with less-biased estimates of their respective permeability parameters compared to the 
conventional NMS technique. Since the K-SOM was trained with the tissue response (ΔR1) information, this 
will preserve the properties or the potential pathophysiological structures of the DCE MRI data that are similar 
across rat and human brains for more robust modeling. Since the physiological properties of brain tissue are 
mostly constant across species and pathologies30–32, the associations of tissue response information with brain 
tissue physiology (NMS information) revealed in this study can be expected to reliably scale and translate to 
human Glioblastoma (GBM) to estimate the physiological properties of solid tumors (such as glioblastoma, 
GBM) and soft surrounding normal tissues in embedded tumors of humans.

The average DSC values for the two models (DSC = 0.774 [CI: 0.731–0.823], and 0.866 [CI: 0.828–0.912] for 
Models 2 and 3, respectively) along with permeability parameters evaluated and measured from the k-fold NCV 
(k = 10) technique strongly confirms the convergence between the two methods (conventional and probabilistic 
NMS techniques) at higher level of certainties (NMS at CL = 95% and PNMS at 50% or higher threshold).

In this study, the PNMS at 50% threshold was used to generate deterministic model choice regions to 
calculate Dice Similarity Coefficient between the two techniques. Choosing different thresholds would directly 
affect the extent of the three model regions generated by the PNMS technique. Our group has investigated10 
the information content and stability of different information modalities (raw signal intensity profiles: 1st and 
2nd echoes) against different probability thresholds to estimate different model regions generated by the NMS 
technique. The results (high Silhouette coefficients) of the study revealed the robustness (the mean and standard 
deviation values of the Silhouette coefficients, SCs, for the two raw DCE-MR information were: 0.392 ± 0.162 
and 0.332 ± 0.131, for the 1st and 2nd echoes, respectively) of the model-based clusters on the KSOM feature 
space and their associations with the physiological state (identified by the NMS analysis using three observation 
equations) of tissue in rat brain. As a future work, a similar study can be conducted for the ΔR1 profiles (used in 
this study for PNMS technique) to reveal the robustness of the PNMS against different probability thresholds.

The k-fold NCV analysis performed in this study, reveals the information content of different model-based 
(ΔR1) profiles and their stabilities to describe the three pathophysiological states of the tissue. As shown in 
Table 1, the average values of the permeability parameters reported for the outer loops of the k-fold NCV (k = 10) 
are less (the MPDs for the three permeability parameters were: -28%, + 18%, and + 24% for vp, Ktrans, and ve, 
respectively) than the values estimated by the conventional NMS technique. Interestingly, the variations (all 
confident intervals) of the permeability parameters estimated by the K-SOM-PNMS are less than their values 
estimated by the conventional NMS technique.

The K-SOM is an unsupervised network. During the training phase, no annotated/labeled information is 
used to identify BMUs or number of hits for each of the neurons in the network topology. Thus, during the 
training phase, the K-SOM is not affected by any potential model misclassification generated by the conventional 
NMS. Once the network is trained, it is locked/frozen, and the model probability maps are built from its final 
hit map by tracing the hits back to their nested Models in the real domain, using their labels. Therefore, any 
misclassification or errors generated by the conventional NMS would affect the validation/testing phase of the 
study and would appear and be manifested on the feature space as penumbra effect or diffusion/overlap of the 
model clusters, affecting the performance of the validation/testing phase of the study.

The ΔR1 profiles estimated in this study can be susceptible to noise, arterial input function dispersion or 
delay33,34, contrast agent arrival time differences among different animals, etc. These systematic and random effects 
can result in uncertainties in the classification models, both conventional and probabilistic NMS techniques. For 
the other known sources of systematic error, a data-driven approach to model selection will minimize over- or 
under-fitting to these parameters2,3. Of note, if the data has systematic errors due to measurement, data-driven 
approaches will likely be limited.

It is clear from an examination of the data that there are elements in modeling DCE-MRI that are not 
accounted for (cf. Figure 8 of Ewing and Bagher-Ebadian2) and cannot be accounted for if over-fitting is to be 
avoided. These ‘tapering effects’ are typical in modeling of all biological systems1. As long as effects due to T2* 
dephasing are accounted-for in the acquisition, the two most evident sources of error are errors in estimating 
the true arterial contrast agent concentration, and dispersion due to flow of the arterial input function (AIF) 
as it progresses from the large arteries to the capillary bed, where exchange with the extravascular space takes 
place. Estimating the true AIF concentration presents significant difficulties, with inflow, outflow, and partial-
volume effects undermining efforts at the site of measurement. This, and dispersion in the arterial tree35,36 
substantially undermine the assumption that either the amplitude or the shape of the tissue input function can 
be determined from a time trace of arterial contrast. One approach to estimating input amplitude is to employ a 
group-averaged time trace of arterial CA concentration normalized to a known vascular volume in normal brain 
tissue (putamen)2,37, thus deliberately introducing a bias that is presumably smaller than the bias of measuring 
contrast change directly from a large artery and inferring dynamic contrast agent concentration. This does not 
address problems with AIF dispersion. Therefore, quantification of all these tapering effects and estimation of 
their impacts on the raw DCE-MRI signal and their propagations into the tissue response is very complex and 
hard to simulate for the validation of the NMS and K-SOM PNMS techniques. As future works, investigation of 
these systematic and random effects on the performances of the conventional and probabilistic NMS techniques 
is warranted.

Our group has studied3 the sampling distribution of the generated F-test within the region of brain’s normal 
tissue. We have shown that it is unlikely that the errors of the fit of any model (1, 2 and 3) to typical concentration-
time data in tissue would be iid (independent and identically distributed) and normally distributed. It is also 
known a priori that contrast agent does not leak into normal brain tissue at any detectable rate during the course 
of DCE-MRI experiment, and therefore Model 1 must be true for the null hypothesis testing of NMS within the 
brain normal tissue. The nesting described is the only nesting that is physiologically reasonable.

Scientific Reports |         (2025) 15:1786 10| https://doi.org/10.1038/s41598-024-83306-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


For non-leaky tissues (Ktrans = 0), there are a number of possible causes of the visible dispersion that occurs. 
There may in fact be some penetration of the blood-brain barrier by the CA; possibility for some small molecules 
penetrating the tissue of those vessels that are surrounded by smooth and normal muscles. There is undoubtedly 
some dispersion in the shape of the input function that is due to the branching of the vessels between the major 
arteries, where the AIF must be sampled, and the arterioles that deliver the CA to the capillary bed of the tissue. 
Additionally, there is dispersion in the capillary bed itself, and finally there is some restriction of water exchange 
between the intravascular plasma, where the CA resides, and the extravascular tissue, where the great majority 
of tissue water, and therefore the great majority of MRI signal, resides2. Thus, an inspection of the Model 1 
time trace (see Ref3. , Fig. 2) demonstrates that, although there is no leakage in the tissue, dispersion in the 
intervening vasculature changes the shape of the input function. The model states that the shape of the AIF and 
tissue response will be kind of the same, but with amplitudes dependent on the vascular volume. This is clearly 
not the case. The combination of low contrast-to-noise, dispersion, and possibly limited transvascular water 
exchange, appear to have increased the sampling distribution of the F-test in tissue that is known not to have a 
leaky microvasculature.

The PNMS technique allows quantification of different uncertainty levels relevant to the three nested models 
in the conventional NMS analysis. Indeed, it offers probabilistic adjustments to the permeability parameters (see 
Eqs. 4–6) estimated by the conventional NMS for the voxels containing a combination of multiple models. The 
model probabilities/weights within each voxel estimated by the PNMS technique are associated with different 
tissue characteristics (different combinations of non-leaky tissue, leaky tissue with and without CA absorption 
with different ratios). We believe that the extreme values of these weights/probabilities could be potentially 
validated using rat brain’s histology information. Our group has already investigated2 different zones (such as 
rim of the tumor, presumably leaky) of the rat brain tumor, stained for von Willebrand factor (vessels) and 
counterstained with hematoxylin38. The results of the study confirm the probability maps around the tumor 
(mainly for model 2 region) generated by the PNMS analysis. As shown in the third column of Fig.  5, the 
brighter green color (corresponding to higher Model 2 probability/weight) around the rim of tumor could be 
associated with the tumor tissues that are highly vascularized (with high CA leakage and low CA absorption) 
that are surrounded with normal tissue that causes a high CA concentration gradient with low interstitial fluid 
pressure.

One of the first self-organizing algorithms28, the K-SOM algorithm groups multi-dimensional data in the 
form of clusters on feature space with no supervision of the intent of visualization, clustering analysis, and 
dimensionality reduction17–21,28,39. Nonlinear dimensionality reduction, unsupervised learning, intuitive 
clustering relationship, feature space visualization, easy interpretation, flexibility to work with numerical, 
categorical, and discrete datasets as well as robustness to the noise of the signal are the most important benefits 
of using the K-SOMs40. Many improvements28,39 have been proposed to the original architecture, which include 
the Batch-SOM28, Dot-Product-SOM28, a SOM that focuses on identifying a linear combination of model 
vectors instead of winner nodes29. For instance, the O(log2M)-SOM41 utilizes a stratification technique that 
inherently deals with propagation to neighborhood nodes on the feature space. The main goal of these evolved 
versions of the K-SOM is to prioritize and improve the optimization and representation of feature information 
within the feature space. Other algorithms that can also improve the original K-SOM’s performance, stability, 
convergence, and its adaptability with other problems include Growing Grid SOM42, Growing Neural Gas43 
algorithms, and Hierarchical-SOM44. These algorithms consist of an additional layer of nodes to automatically 
determine the optimal topology size of the K-SOM based on the properties and cost functions determined by 
the original algorithm. Despite the promising advantages provided by these modified K-SOM algorithms over 
its original version such as memory and speed optimizations, as well as improved data representation, they may 
be susceptible to bias in generating clusters and in the quality of the feature visualization on the feature space. 
In this study, the K-SOM’s topology size was selected as 8 × 8 that can produce a maximum of 64 distinctive 
clusters on the image space. Choosing a larger size of the K-SOM’s topology would increase the precision of 
the estimated probabilities for different models. However, as the size of the network increases, the chance of 
the network running into an over-fitting condition and capturing more detailed information that could be 
irrelevant to the meaningful spatiotemporal trend of the pathophysiological state of the tissue increases. Thus, 
further investigation of the effects of different K-SOM’s architecture, topology sizes, the recruited algorithms, 
its comparison with different unsupervised models such as AutoEncoders45,46, as well as other model averaging 
techniques such as Akaike’s Information Criteria (AIC)13,47, AIC corrected (AICc), Bayesian information 
criteria (BIC)48,49 and their impact on the model efficiency for probabilistic NMS analysis of DCE-MRI data is 
warranted13,50.

Indeed, different scan times would affect the evolution of models during the course of the experiment, and 
model regions would approach an equilibrium condition differently over the duration of the study. Our group 
has previously studied51,52 the effect of different scan times on the evolution of the three models during the 
course of DCE-MR experiment. We have shown51,52 that the Model Evolution (ME) profiles in the course of 
DCE-MRI experiment, depend highly on the inward/outward intravoxel diffusion of contrast agent and contain 
abundant information for describing the compartmentalization and heterogeneity levels of solid tumors. 
Therefore, different K-SOMs should be developed for the PNMS analysis for different scan time.

This study demonstrates an application of an adaptive unsupervised model to improve robustness and 
computation speed of the NMS technique that appear in conventional approaches to estimate DCE-MRI 
vascular parameters. Compared to conventional NMS methods, the trained K-SOM PNMS technique is 
computationally faster and takes a fraction of a second (Core (TM)-6700HQ, CPU @2.60 Hz) to calculate all 
the probabilistic NMS maps for an entire 3D DCE-MRI brain volume (for entire animal brain with 3 full slices). 
The conventional NMS analysis assigns one of the three nested models to each voxel prior to the estimation of 
its permeability parameters, PK analysis. The K-SOM PNMS analysis assigns three probabilities (associated with 
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the three models) to each voxel prior to its final PK analysis. Indeed, the final PK analysis is performed following 
the estimation of the model labels (for the conventional NMS) or the model probabilities (for the PNMS). The 
trained K-SOM provides the probability estimates of the three models in a fraction of second, while it would 
take longer for the conventional NMS to estimate the model choice map for the same dataset. Thus, the K-SOM 
performs the probabilistic version of the NMS along with uncertainty analysis much faster than the conventional 
NMS. However, in order to estimate the probabilistic permeability parameters (Eqs. 4–6), without applying any 
specific threshold, the speed of the proposed PNMS would be comparable with the conventional NMS.

Conclusions
This work establishes an important first step toward spatiotemporal MR characterization of brain and brain 
tumor regions using a probabilistic nested model selection technique. This is fundamental toward an accurate 
estimation of vasculature parameters critical in staging tumors, evaluating early tumor response to treatments, 
as well as designing and optimizing DCE-MR imaging for precise characterization of brain tumors.

Data availability
All imaging data used in this investigation along with programming codes and results are available and can be 
shared upon reasonable request to Drs. Hassan Bagher-Ebadian, Stephen Brown, and James R. Ewing.

Received: 23 May 2024; Accepted: 13 December 2024

References
	 1.	 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (second 

edn, (Springer, 2002).
	 2.	 Ewing, J. R. & Bagher-Ebadian, H. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: 

experimental and clinical applications. NMR Biomed. 26, 1028–1041. https://doi.org/10.1002/nbm.2996 (2013).
	 3.	 Bagher-Ebadian, H. et al. Model selection for DCE-T1 studies in glioblastoma. Magn. Reson. Med. 68, 241–251. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​

.​1​0​0​2​/​m​r​m​.​2​3​2​1​1​​​​ (2012).
	 4.	 Valadie, O. G. et al. Characterization of the Response of 9L and U-251 N Orthotopic Brain Tumors to 3D Conformal Radiation 

Therapy. Radiat. Res. 199, 217–228. https://doi.org/10.1667/RADE-22-00048.1 (2023).
	 5.	 Paudyal, R., Bagher-Ebadian, H., Nagaraja, T. N., Fenstermacher, J. D. & Ewing, J. R. Modeling of Look-Locker estimates of the 

magnetic resonance imaging estimate of longitudinal relaxation rate in tissue after contrast administration. Magn. Reson. Med. 66, 
1432–1444. https://doi.org/10.1002/mrm.22852 (2011).

	 6.	 Elmghirbi, R. et al. Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrast-enhanced MRI in a rat model 
of cerebral tumor. Magn. Reson. Med. 80, 2040–2052. https://doi.org/10.1002/mrm.27163 (2018).

	 7.	 Kilkenny, C. et al. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J. Gene Med. 12, 561–563. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​0​0​2​/​j​g​m​.​1​4​7​3​​​​ (2010).

	 8.	 Leung, V., Rousseau-Blass, F., Beauchamp, G. & Pang, D. S. J. ARRIVE has not ARRIVEd: Support for the ARRIVE (Animal 
Research: Reporting of in vivo Experiments) guidelines does not improve the reporting quality of papers in animal welfare, 
analgesia or anesthesia. PLoS One. 13, e0197882. https://doi.org/10.1371/journal.pone.0197882 (2018).

	 9.	 Rice, A. S. C. et al. Transparency in the reporting of in vivo pre-clinical pain research: The relevance and implications of the 
ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines. Scand. J. Pain. 4, 58–62. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​j​p​a​i​n​.​
2​0​1​3​.​0​2​.​0​0​2​​​​ (2013).

	10.	 Bagher-Ebadian, H. et al. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast 
enhanced (DCE) MRI. Sci. Rep. 13, 10693. https://doi.org/10.1038/s41598-023-37723-8 (2023).

	11.	 Bagher-Ebadian, H. et al. Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based 
adaptive models. Sci. Rep. 13, 9672. https://doi.org/10.1038/s41598-023-36483-9 (2023).

	12.	 Brix, G., Schad, L., Deimling, M. & Lorenz, M. Fast and precise T1 imaging using a TOMROP sequence. Magn. Reson. Imaging. 8, 
351–356. https://doi.org/10.1016/0730-725x(90)90041-y (1990).

	13.	 Brix, G., Zwick, S., Kiessling, F. & Griebel, J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel 
inference and parameter identifiability. Med. Phys. 36, 2923–2933. https://doi.org/10.1118/1.3147145 (2009).

	14.	 Patlak, C. S., Blasberg, R. G. & Fenstermacher, J. D. Graphical evaluation of blood-to-brain transfer constants from multiple-time 
uptake data. J. Cereb. Blood Flow. Metab. 3, 1–7 (1983).

	15.	 Patlak, C. & Blasberg, R. Graphical Evaluation of blood to brain transfer constants from multiple time up take data. Generalizations. 
J. Cereb. Blood Flow. Metab. 5, 584–590 (1985).

	16.	 Nagaraja, T. N. et al. The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model 
of stroke slightly underestimates that of Gd-[14 C]DTPA and marginally overestimates the blood-to-brain influx rate constant 
determined by Patlak plots. Magn. Reson. Med. 63, 1502–1509. https://doi.org/10.1002/mrm.22339 (2010).

	17.	 Lim, S. P. & Haron, H. Cube Kohonen self-organizing map (CKSOM) model with new equations in organizing unstructured data. 
IEEE Trans. Neural Netw. Learn. Syst. 24, 1414–1424. https://doi.org/10.1109/TNNLS.2013.2259259 (2013).

	18.	 Zampighi, L. M., Kavanau, C. L. & Zampighi, G. A. The Kohonen self-organizing map: a tool for the clustering and alignment of 
single particles imaged using random conical tilt. J. Struct. Biol. 146, 368–380. https://doi.org/10.1016/j.jsb.2004.01.008 (2004).

	19.	 Hathaway, R. J., Bezdek, J. C. & Pal, N. R. Sequential Competitive Learning and the Fuzzy c-Means Clustering Algorithms. Neural 
Netw. 9, 787–796. https://doi.org/10.1016/0893-6080(95)00094-1 (1996).

	20.	 Kia, S. J. & Coghill, G. G. Unsupervised clustering and centroid estimation using dynamic competitive learning. Biol. Cybern. 67, 
433–443. https://doi.org/10.1007/BF00200987 (1992).

	21.	 Rumelhart, D. E. M. & James, L. Parallel distributed processing: explorations in the microstructure of cognitionVol. 2 (Cambridge, 
Mass.: MIT Press,, 1986).

	22.	 Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application 
to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab. 5, 1–34 (1948).

	23.	 Cawley, G. C. & a., T. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. 
Res. 11, 2079–2107 (2010).

	24.	 Steyerberg, E. W. & Harrell, F. E. Jr. Prediction models need appropriate internal, internal-external, and external validation. J. Clin. 
Epidemiol. 69, 245–247. https://doi.org/10.1016/j.jclinepi.2015.04.005 (2016).

	25.	 Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD). Ann. Intern. Med. 162, 735–736. https://doi.org/10.7326/L15-5093-2 (2015).

Scientific Reports |         (2025) 15:1786 12| https://doi.org/10.1038/s41598-024-83306-6

www.nature.com/scientificreports/

https://doi.org/10.1002/nbm.2996
https://doi.org/10.1002/mrm.23211
https://doi.org/10.1002/mrm.23211
https://doi.org/10.1667/RADE-22-00048.1
https://doi.org/10.1002/mrm.22852
https://doi.org/10.1002/mrm.27163
https://doi.org/10.1002/jgm.1473
https://doi.org/10.1002/jgm.1473
https://doi.org/10.1371/journal.pone.0197882
https://doi.org/10.1016/j.sjpain.2013.02.002
https://doi.org/10.1016/j.sjpain.2013.02.002
https://doi.org/10.1038/s41598-023-37723-8
https://doi.org/10.1038/s41598-023-36483-9
https://doi.org/10.1016/0730-725x(90)90041-y
https://doi.org/10.1118/1.3147145
https://doi.org/10.1002/mrm.22339
https://doi.org/10.1109/TNNLS.2013.2259259
https://doi.org/10.1016/j.jsb.2004.01.008
https://doi.org/10.1016/0893-6080(95)00094-1
https://doi.org/10.1007/BF00200987
https://doi.org/10.1016/j.jclinepi.2015.04.005
https://doi.org/10.7326/L15-5093-2
http://www.nature.com/scientificreports


	26.	 Spencer, R. G., Ferretti, H. A. & Weiss, J. A. Spillover and Incomplete Saturation in Kinetic Measurements. J. Magn. Reson. 101, 
294–296 (1993).

	27.	 Paudyal, R., Nagaraja, B. E. H., Panda, T. N., Fenstermacher, S. & Ewing, J. D. JR,. MRI Look-Locker Estimates of the Longitudinal 
Relaxation Rate Are Approximately Linear in Contrast Agent Tissue Concentration. Int. Soc. Magn. Reson. Med. 1 (2008).

	28.	 Kohonen, T. Self-Organizing Maps 2nd edn (Edition edn, Springer, 1997).
	29.	 Kohonen, T. Description of Input Patterns by Linear Mixtures of SOM Models. Helsinki Univ. Technol. Adapt. Inf. Res. Centre 1 

(2007).
	30.	 Jacobs, V. L., Valdes, P. A., Hickey, W. F. & De Leo, J. A. Current review of in vivo GBM rodent models: emphasis on the CNS-1 

tumour model. ASN Neuro. 3, e00063. https://doi.org/10.1042/AN20110014 (2011).
	31.	 Radaelli, E. et al. Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of 

glioblastoma multiforme recapitulating the most salient features of human disease. Histol. Histopathol. 24, 879–891. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​4​6​7​0​/​H​H​-​2​4​.​8​7​9​​​​ (2009).

	32.	 Candolfi, M. et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor 
progression. J. Neurooncol. 85, 133–148. https://doi.org/10.1007/s11060-007-9400-9 (2007).

	33.	 Nejad-Davarani, S. P. et al. An extended vascular model for less biased estimation of permeability parameters in DCE-T1 images. 
NMR Biomed. 30 https://doi.org/10.1002/nbm.3698 (2017).

	34.	 Liberman, G. et al. DUSTER: dynamic contrast enhance up-sampled temporal resolution analysis method. Magn. Reson. Imaging. 
34, 442–450. https://doi.org/10.1016/j.mri.2015.12.014 (2016).

	35.	 Nejad-Davarani, S. P. et al. An extended vascular model for less biased estimation of permeability parameters in DCE‐T1 images. 
NMR Biomed. 30 (2017).

	36.	 Nejad-Davarani, S. P. et al. A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at 
the tissue level. NMR Biomed. 30 (2017).

	37.	 Dehkordi, A. N. et al. DCE-MRI prediction of survival time for patients with glioblastoma multiforme: using an adaptive neuro‐
fuzzy‐based model and nested model selection technique. NMR Biomed. (2017).

	38.	 Chuang, S., Yung, Y. C. & von Li, C. Y. Willebrand Factor Is the Most Reliable Immunohistochemical Marker for Megakaryocytes 
of Myelodysplastic Syndrome and Chronic Myeloproliferative Disorders. Am. J. Clin. Pathol. 113, 506–511 (2000).

	39.	 Feyereisl, J. & Aickelin, U. Self-Organizing Maps In Computer Security. arXiv preprint arXiv:1612.07003- arXiv. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​4​8​5​5​0​/​A​R​X​I​V​.​1​6​0​8​.​0​1​6​6​8​​​​​, doi: arXiv. (2016). https://doi.org/10.48550/ARXIV.1608.01668

	40.	 Costa, L. E. B. & d., S. J. A. F. Clustering, Noise Reduction and Visualization Using Features Extracted from the Self-Organizing Map. 
Vol. 8206 242–251Heidelberg, (2013).

	41.	 Kusumoto, H. & Takefuji, Y. O(log2M) Self-Organizing Map Algorithm Without Learning of Neighborhood Vectors. IEEE Trans. 
Neural Networks. 17, 1656–1661. https://doi.org/10.1109/TNN.2006.882370 (2006).

	42.	 Fritzke, B. Growing Self-organizing Networks - Why? ESANN’96: Eur. Symp. Artifcial Neural Networks. 1, 61–72 (1996).
	43.	 Fritzke, B. A growing neural gas network learns topologies. Inform. Process. Systems-Advances Neural Networks- MIT Press. 7, 

625–632 (1995).
	44.	 Kayacik, G. H., Zincir-Heywood, N. A. & Heywood, M. I. On the Capability of an SOM Based Intrusion Detection System. Proc. 

Int. Joint Conf. Neural Networks. 3, 1808–1813 (2003).
	45.	 Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243. ​h​t​t​p​s​:​/​/​d​o​i​.​

o​r​g​/​1​0​.​1​0​0​2​/​a​i​c​.​6​9​0​3​7​0​2​0​9​​​​ (1991).
	46.	 Kramer, M. A. Autoassociative neural networks. Computers & Chemical Engineering-Neutral network. Appl. Chem. Eng. 16, 313–

328. https://doi.org/10.1016/0098-1354(92)80051-A (1992).
	47.	 Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. 

Psychometrika 52, 345–370. https://doi.org/10.1007/BF02294361 (1987).
	48.	 Bollen, K. A., Harden, J. J., Ray, S. & Zavisca, J. BIC and Alternative Bayesian Information Criteria in the Selection of Structural 

Equation Models. Struct. Equ Model. 21, 1–19. https://doi.org/10.1080/10705511.2014.856691 (2014).
	49.	 Mohammad-Djafari, A. & Regularization Bayesian Inference, and Machine Learning Methods for Inverse Problems. Entropy 

(Basel). 23 https://doi.org/10.3390/e23121673 (2021).
	50.	 Bagher-Ebadian, H. et al. MR Estimation of Permeability Parameters in Dynamic Contrast Enhanced Studies Using Model 

Averaging Technique and Nested Model Selection Method. Proc. Intl. Soc. Mag. Reson. Med. 22 ( Milan, Italy 1, 4090 (2014). (2014).
	51.	 Bagher Ebadian, H. et al. Model evolution technique as a novel concept for characterization of tumor heterogeneity in dynamic 

contrast enhanced MRI studies. Bioinformatics and Systems Biology, The American Association for Cancer Research (AACR)- 107th 
Annual Meeting April 16–20 in New Orleans, USA 76, doi: (2016). https://doi.org/10.1158/1538-7445.AM2016-2710 Published 
July 2016 (2016).

	52.	 Bagher-Ebadian, H. et al. Model Evolution Concept in Dynamic Contrast Enhanced MRI for Prediction of Tumor Interstitial Fluid 
Pressure. Neuro-Oncology2015 / 11 Vol. 17; Iss. suppl 5 17, doi: (2015). https://doi.org/10.1093/neuonc/nov236.5

Acknowledgements
This work was supported in part by a grant from Varian Medical Systems (Siemens Healthineers, Palo Alto, CA), 
HSC Pilot Grant (F80005) from Michigan State University and Henry Ford Health System, Dykstra Steel Family 
(Philanthropic grant, #F5670), and NCI/NIH R01-CA218596.

Author contributions
Conceptualization, methodology, investigation, modeling, validation, and manuscript writing were performed 
by H.B.E., K.T., and J.R.E — Review and scientific editing were performed by H.B.E., K.T., S.L.B., I.J.C, and 
M.M.G. — MR Data acquisition and conventional pharmacokinetic modeling of DCE-MRI data were per-
formed by J.R.E., H.B.E., S.L.B., and P.C.A. —Data curation, pre-processing, and data inspection were performed 
by H.B.E, K.T., J.R.E. and M.M.G.— Resources and Supervision: H.B.E., K.T, B.M., J.R.E., S.L.B., and I.J.C. — 
Project administration, funding acquisition: H.B.E., K.T., B.M., S.L.B., and J.R.E.

Declarations

Competing interests
The authors declare no competing interests.

Animal study
This study was approved at the Institutional Animal Care and Use Committee (IACUC) board of Henry Ford 
Health System and conducted with an approved IACUC # 1509. The animal study of this work was performed 

Scientific Reports |         (2025) 15:1786 13| https://doi.org/10.1038/s41598-024-83306-6

www.nature.com/scientificreports/

https://doi.org/10.1042/AN20110014
https://doi.org/10.14670/HH-24.879
https://doi.org/10.14670/HH-24.879
https://doi.org/10.1007/s11060-007-9400-9
https://doi.org/10.1002/nbm.3698
https://doi.org/10.1016/j.mri.2015.12.014
https://doi.org/10.48550/ARXIV.1608.01668
https://doi.org/10.48550/ARXIV.1608.01668
https://doi.org/10.48550/ARXIV.1608.01668
https://doi.org/10.1109/TNN.2006.882370
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1016/0098-1354(92)80051-A
https://doi.org/10.1007/BF02294361
https://doi.org/10.1080/10705511.2014.856691
https://doi.org/10.3390/e23121673
https://doi.org/10.1158/1538-7445
https://doi.org/10.1093/neuonc/nov236.5
http://www.nature.com/scientificreports


and reported in compliance with the ARRIVE guidelines.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​8​3​3​0​6​-​6​​​​​.​​

Correspondence and requests for materials should be addressed to H.B.-E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |         (2025) 15:1786 14| https://doi.org/10.1038/s41598-024-83306-6

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-83306-6
https://doi.org/10.1038/s41598-024-83306-6
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Probabilistic nested model selection in pharmacokinetic analysis of DCE-MRI data in animal model of cerebral tumor
	﻿Methods
	﻿Imaging and animal population
	﻿Ethical approval
	﻿Calculation of contrast agent concentration from DCE-MRI data
	﻿Post-processing and conventional nested model selection in PK analysis
	﻿Model development and validation

	﻿Results
	﻿Discussion
	﻿Conclusions
	﻿References


