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Abstract: Previously, a designed ankyrin repeat protein, AnkGAG1D4, was generated for intracellular
targeting of the HIV-1 capsid domain. The efficiency was satisfactory in interfering with the HIV
assembly process. Consequently, improved AnkGAG1D4 binding affinity was introduced by sub-
stituting tyrosine (Y) for serine (S) at position 45. However, the intracellular anti-HIV-1 activity of
AnkGAG1D4-S45Y has not yet been validated. In this study, the performance of AnkGAG1D4 and
AnkGAG1D4-S45Y in inhibiting wild-type HIV-1 and HIV-1 maturation inhibitor-resistant replication
in SupT1 cells was evaluated. HIV-1 p24 and viral load assays were used to verify the biological
activity of AnkGAG1D4 and AnkGAG1D4-S45Y as assembly inhibitors. In addition, retardation of
syncytium formation in infected SupT1 cells was observed. Of note, the defense mechanism of both
ankyrins did not induce the mutation of target amino acids in the capsid domain. The present data
show that the potency of AnkGAG1D4-S45Y was superior to AnkGAG1D4 in interrupting either HIV-1
wild-type or the HIV maturation inhibitor-resistant strain.

Keywords: ankyrin; capsid; HIV-1 assembly; anti-HIV-1 molecule; HIV-1 drug resistance

1. Introduction

Human immunodeficiency virus (HIV) infection remains a major health problem
worldwide. Highly active antiretroviral therapy (HAART) is currently used to sustain
HIV suppression and recover the immune function of patients [1,2]. Despite success in
terms of improved clinical symptoms, adverse drug effects from using HAART have been
reported. Therefore, alternative strategies have been developed for HIV therapy [3]. Several
intrabodies have been designed to target the viral HIV-1 protein, e.g., scFvD8 [4], GPI scFv-
X5 [5], and scFv 183-H12-5C [6], which were generated to inhibit HIV-1 replication in
infected cells. However, cytoplasmic reducing conditions halted their development, since
proper folding and stability requires disulfide bond formation.

Accordingly, the attempt to construct a disulfide bond-independent scaffold might be
promising for HIV-1 therapy. An alpha repeat (αRep) protein has been designed to target
HIV-1 Gag. This αRep exhibits activity by impairing the viral packaging and maturation
process [7,8]. Another type of disulfide bond-free scaffold is called designed ankyrin repeat
protein (DARPin), which is based on natural ankyrin [9]. This building block provides
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the properties of ankyrin in protein–protein interactions involved in several cellular activi-
ties [10–12]. The advantages of DARPin include high stability and solubility. Furthermore,
resistance in the protease and reducing cytoplasmic environment may make ankyrin an
intracellular therapeutic molecule [10]. According to these advantages, DARPins were
designed to overcome several limitations when using immunoglobulins as therapeutics
agents [13–16]. In addition, the DARPins have been reported to have a role in HIV inhibi-
tion. CD4-specific DARPins [17] and HIV gp120-specific DARPins [18] were designed to
block HIV-1 entry. However, their efficiency was reduced by unwanted side effects [19]
and mutation in the HIV envelope [20].

Besides the extracellular anti-HIV-1 DARPins, we reported an intracellular anti-HIV-1
DARPin, AnkGAG1D4, which specifically targets the N-terminus of the HIV-1 capsid pro-
tein [21]. AnkGAG1D4 provides anti-HIV-1 activity through interference with HIV Gag
multimerization, an important step in HIV assembly. This ankyrin reduces the permis-
siveness of HIV-1 production in HIV-1-infected SupT1 cells [22]. In addition, AnkGAG1D4
has broad-spectrum antiviral activity against an HIV-1 circulatory strain that carries a
mutation in the N-terminus capsid [23]. However, the anti-HIV-1 activity of AnkGAG1D4
was mediocre, especially in the late stage of infection [24]. Computational analysis and
calculation of van der Waals (vdW) forces indicate the choices of key amino acid residues
in ankyrin sequence [25]. An evaluation of the binding activity and affinity using an
enzyme linked immunosorbent assay (ELISA)-modified method and bio-layer interferome-
try (BLI) showed that substitution of serine (S) at position 45 with tyrosine (Y), forming
AnkGAG1D4-S45Y, leads to increased affinity against the HIV-1 capsid domain. Enhanced
binding affinity of AnkGAG1D4 might provide complete HIV-1 inhibition.

The emergence of drug-resistant strains is another important obstacle in HIV-1 therapy.
Mutations in the genes involved with antiretroviral drug target sites are continuously
reported [26,27], resulting in the failure of HAART. Nowadays, several HIV-1 drugs and
inhibitors have been developed in order to overcome this problem [28]. Capsid-targeting
inhibitors represent one interesting compound, which work by interfering in the late stage
of the HIV-1 life cycle, assembly and maturation [29,30]. The HIV-1 maturation inhibitor
(MI) is a class of anti-HIV-1 compound that blocks proteolytic cleavage of the Gag protein,
resulting in non-infectious virions. MI can be divided into two classes; betulinic acid-
based and pyridone-based MI. The betulinic acid-based MI, bevirimat (BVM), blocks HIV-1
maturation by interrupting CA-SP1 cleavage [31]. According to the resistance-conferring
mutation on the Gag protein, a BVM derivative, C28-BVM, was further developed [32].
The second class of MI, PF46396, exhibits antiretroviral activity in HIV-1 laboratory strain
and HIV-1 circulatory isolates. However, HIV-1 resistance against both classes of MI has
been reported [33–35]. These data indicate that even though new anti-HIV-1 agents were
developed, it is not enough to inhibit HIV-1 replication. As the target region of AnkGAG1D4
is distinctive from that of MI, AnkGAG1D4 is expected to inhibit the assembly process of
the HIV-1 MI-resistant strain.

This study was aimed at investigating the anti-HIV activity of binding affinity-
enhanced AnkGAG1D4 in infected SupT1 cells. In addition, the role of the AnkGAG1D4
in HIV-1 maturation inhibitor resistant (MIR) strain was addressed. The HIV-1 NL4-3
MIRCAI201V virus, carrying a mutation on the CA-SP1 junction on Gag protein, was used as
a model. Regarding our results, the binding affinity-improved AnkGAG1D4 had increased
antiviral activity against wild-type (WT) and MIR viruses.

2. Materials and Methods
2.1. Cell Lines and Plasmid

SupT1 cells (ATCC) were cultured in Roswell Park Memorial Institute (RPMI)
1640 medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS),
100 U/mL of penicillin (Gibco), 100µg/mL of streptomycin (Gibco), and 2 mM of L-glutamine
(Gibco). HEK293T cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)



Biomolecules 2021, 11, 1437 3 of 17

supplemented with 10% heat-inactivated FBS (Gibco), 100 U/mL of penicillin (Gibco),
100 µg/mL of streptomycin (Gibco), and 2 mM of L-glutamine (Gibco).

pNL4-3 plasmid, the infectious HIV-1 NL4-3 molecular clone (NIH), was used to
produce the HIV-1 NL4-3 laboratory strain virus. Additionally, mutagenesis was performed
on this plasmid to generate a clone of the HIV-1 MIR virus.

2.2. Preparation of HIV-1 Virions

HIV-1 NL4-3 viral stock was produced as previously described [36]. Briefly, 5 × 106

HEK293T cells were seeded in a 10 cm2 dish containing 10% heat-inactivated FBS-DMEM.
At 70% cell confluence, cells were transfected with 5 µg of pNL4-3 plasmid using
LipofectamineTM LTX reagent and PLUSTM reagent (Thermo Fisher Scientific, Waltham,
MA, USA). After 48 h post-transfection, culture supernatant containing virus was har-
vested, centrifuged at 335× g for 5 min and filtrated through a 0.45 µm filter membrane to
remove unwanted particles. The viral stock was aliquoted and kept at −80 ◦C. HIV-1 viral
titer was determined by HIV viral load assay using COBAS AmpliPrep/COBAS Taqman
HIV-1 test (Roche, Basel, Switzerland).

2.3. Construction of pNL4-3 MIRCAI201V Plasmid and Preparation of HIV-1 Maturation Inhibitor
Resistant (MIR) Virus

In order to compare the function of AnkGAG1D4 and AnkGAG1D4-S45Y in HIV-1 MIR
virus production, HIV-1 NL4-3 MIRCAI201V was generated. Mutation at position 201 on CA-
CTD from isoleucine (I) to valine (V), CAI201V, confers resistance of HIV-1, in both clade B
and C, against PF-46396, and partial resistance to BVM [33,35]. To construct the molecular
clone of HIV-1, NL4-3 MIRCAI201V, mutagenesis was performed on pNL4-3 plasmids
using a QuickChange Lightening Site-Directed Mutagenesis Kit (Agilent Technologies,
Santa Clara, CA, USA). The synthesized oligonucleotides used in this experiment were as
follows: Fwd_CAI201V: 5′cgaacccagattgtaagactgtgttaaaagcattgggacca-3′; Rev_CAI201V:
5′tggtcccaatgcttttaacacagtcttacaatctgggttcg-3′. The mutated plasmid was transformed into
XL-1 blue competent E. coli cells for plasmid amplification. The plasmid-harboring XL-
1 blue cells were grown on Luria–Bertani (LB) agar supplemented with 100 µg/mL of
ampicillin, at 37 ◦C for 16 h. A bacterial colony was picked and further cultured in super
broth (SB) supplemented with 100 µg/mL of ampicillin at 37 ◦C for 16 h. After culturing,
the plasmid was extracted and purified using a Geneaid™ Midi Plasmid Kit (Geneaid
Biotech, New Taipei, Taiwan). To confirm the corrected mutagenesis, pNL4-3 MIRCAI201V
was subjected to plasmid sequencing analysis.

pNL4-3 MIRCAI201V was used for HIV-1 NL4-3 MIRCAI201V viral production. This
plasmid was transfected into HEK293T cells using MirusTransITX2 (Mirus Bio, Madison,
WI, USA). After 48 h post-transfection, culture supernatant containing virus was harvested,
centrifuged at 335× g for 5 min, and filtrated through 0.45 µm filter membrane to remove
unwanted particles. The viral stock was aliquoted and kept at −80 ◦C. HIV-1 viral titer
was determined by HIV viral load assay using COBAS Ampliprep/COBAS Taqman HIV-1
test (Roche, Basel, Switzerland).

2.4. Generation of SupT1 Cells Stably Expressing Ankyrin Protein, AnkGAG1D4-EGFP,
AnkGAG1D4-S45Y-EGFP, and AnkA32D3-EGFP by Lentiviral Gene Transferring Method

To generate SupT1 cells stably expressing ankyrin protein, 1 × 105 of SupT1 cells were
transduced with VSV-G pseudotyped lentiviral vector at a multiplicity of infection (MOI)
of 1, with the addition of 5 ug/mL polybrene. Each VSV-G pseudotyped lentiviral vector
included VSVG–CGW–Myr (+) AnkGAG1D4-EGFP, VSVG–CGW–Myr (+) AnkGAG1D4-
S45Y-EGFP, and VSVG–CGW–Myr (+) AnkA32D3-EGFP. These cells were spinoculated at
2500× g for 1.30 h, and further cultured for 16 h. After incubation, these cells were washed
3 times with RPMI 1640 medium and cultured in 10% heat-inactivated FBS-RPMI 1640.
To evaluate ankyrin expression in SupT1 cells, EGFP-positive cells were observed under
an inverted fluorescence microscope (Zeiss Axio Observer-Colibri 7) and the percentage
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of EGFP-positive cells was determined by a CyAnTM ADP flow cytometer (Beckman
Coulter, Brea, CA, USA). SupT1 stable cells were sorted by a BD FACSMelodyTM cell
sorter (BD biosciences, Franklin Lakes, NJ, USA) to obtain the comparable expression
level of ankyrin. 2.6. Evaluation of CD4 surface expression on SupT1 was done on cells
stably expressing ankyrin protein. To test whether overexpression of ankyrin in SupT1
cells interferes with CD4 expression on the cell surface, CD4 protein was examined by
immunofluorescence staining. SupT1 cells and SupT1 stable cells were washed twice with
phosphate-buffered saline (PBS) and incubated in 10% human AB serum-PBS on ice for
30 min. After incubation, the cells were stained with APC-conjugated mouse anti-human
CD4 antibody (Immunotools, Friesoythe, Germany) and placed on ice for 30 min. Next,
cells were washed 3 times with FACS buffer solution and resuspended in fixation buffer
(1% paraformaldehyde in PBS). CD4-positive cells were analyzed by a BD AccuriTMC6
cytometer (BD biosciences, Franklin Lakes, NJ, USA).

2.5. Determination of Subcellular Localization of Ankyrin Proteins in SupT1 Cells

To determine subcellular localization of ankyrin proteins, ankyrin-EGFP-expressing
SupT1 cells were observed under confocal fluorescence microscopy. SupT1 cells and
ankyrin-EGFP-expressing SupT1 cells were centrifuged at 335× g for 5 min, then resus-
pended in RPMI 1640 medium. A total of 1 × 106 cells of SupT1 cells or ankyrin-EGFP-
expressing SupT1 cells were seeded to poly-L lysine-precoated cover slips. Cells were
incubated in humidified a 5% CO2 atmosphere incubator at 37 ◦C for 10 min. Cells were
subsequently incubated in fixation buffer (4% paraformaldehyde in PBS) at room tempera-
ture for 15 min. After twice washing with PBS, cells were stained with a 1:1000 dilution of
CellMaskTM Deep red membrane staining (Thermo Fisher Scientific, Waltham, MA, USA)
and 1:1000 dilution of Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA, USA) in
RPMI 1640 medium at 37 ◦C for 10 min. Cell imaging was performed using Nikon C2 plus
confocal fluorescence microscopy (Nikon, TYO, Japan) at 63×magnification. Excitation
wavelengths were 405 nm for Hoechst 33342, 488 nm for EGFP, and 560 nm for CellMaskTM

Deep red membrane staining.

2.6. HIV-1 Challenge

SupT1 cells and ankyrin-expressing SupT1 cells were incubated with 10 MOI of HIV-1
NL4-3 or NL4-3 MIRCAI201V virus. In this experiment, SupT1 cells without exogenous
ankyrin expression and SupT1 cells expressing irrelevant ankyrin (Myr (+) AnkA32D3-
EGFP) were used as controls. After incubation, these cells were washed 3 times with RPMI
1640 medium, then cultured in 10% heat-inactivated FBS-RPMI 1640 medium. During the
culture, cells were observed for syncytium formation under inverted microscopy. Cells
were subcultured every 2 days, and culture supernatants were collected at days 3, 5, 7, 9, 11,
13, 17, and 21 post-infection. Collected culture supernatants were centrifuged to removed
debris and unwanted particles. Culture supernatant was kept at −80 ◦C for HIV-1 p24 and
viral load assay.

2.7. Evaluation of HIV-1 p24 and Viral Load

The level of HIV-1 capsid (p24) in culture supernatant was evaluated using a
GenscreenTM Ultra p24 ELISA kit (Bio-Rad, Marnes-la-Conquette, PAR, France). The
viral particles in culture supernatant were lysed by 1% Triton-X 100 prior to the assay.
Culture supernatants were added to a well precoated with monoclonal antibody against
HIV-1 p24. After incubation and washing, biotinylated anti-HIV-1 p24 polyclonal antibody
was added. The reaction was incubated at room temperature for 30 min, then washed.
Next, HRP-conjugated streptavidin was added to the well, and the reaction was incubated
for 30 min at room temperature. After incubation and washing, the reaction was detected
by adding chromogenic substrate, and stopped at 30 min with 1 N sulfuric acid solution.
The absorbances were read using a microplate reader at 450 nm, and calculated for HIV-1
p24 levels using HIV-1 p24 standard curve. To further determine the viral production,
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culture supernatants at 13 days post- infection were subjected to HIV viral load assay. The
level of HIV virion in culture supernatant was evaluated using reverse transcription quan-
tification polymerase chain reaction (RT-qPCR) by COBAS Ampliprep/COBAS Taqman
HIV-1 test (Roche, Basel, Switzerland).

2.8. Analysis of HIV-1 Capsid Sequence

The sequence analysis of the HIV-1 capsid was modified from a previously de-
scribed method [22]. In brief, viral RNA was extracted from culture supernatant using
a QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany). To generate cDNA encod-
ing the HIV-1 capsid, extracted RNA was used as a template for reverse transcription
PCR (RT-PCR) using a Superscript III One-step RT-PCR system (Invitrogen, Friesoythe,
Germany). The PCR reaction contained a pair of oligonucleotides, (FWD_RIHES_p24:
5′-ggatagaggtaaaagacaccaaggaagc-3′; REV_RIHES_p24: 5′-ctcattgcctcagccaaaacccttgc-3′),
and PCR product was purified using a GENEJET PCR purification kit (Thermo Fisher Sci-
entific, Waltham, MA, USA). The purified PCR product was subjected to DNA sequencing
with the same oligonucleotides with RT-PCR. To analyze sequencing results, HIV-1 capsid
sequence was aligned against HIV-1 NL4-3 WT using SnapGene software version 2.8.3
(GSL Biotech, San Diego, CA, USA).

2.9. Statistical Analysis

The data are presented as the mean ± S.D. from 3 replicate experiments. Statistical
analysis was performed using unpaired t-test. Differences were considered significant at
p < 0.05 (indicated with asterisks).

3. Results
3.1. Expression of Ankyrin Protein Did Not Interfere with Cell-Surface CD4

To generate SupT1 stable cells, SupT1 cells were transduced with VSV-G pseudotyped
lentivirus. Each lentivirus vector carries the gene encoding N-terminus myristoylated
ankyrin protein with enhanced green fluorescence protein (EGFP) fusion, including Myr (+)
AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+) AnkGAG1D4-S45Y-EGFP. After
48 h post-transduction, SupT1 cells were observed to be EGFP positive under fluorescence
microscopy (Figure 1A). Since a comparable expression level of ankyrin is required to verify
their anti-HIV-1 activity in infected cells, these transduced SupT1 cells were sorted. After
cell sorting, the percentage of EGFP-positive cells in SupT1 stable cells was approximately
100%, with a comparable level of ankyrin (Figure 1B,C). In addition, subcellular localization
of ankyrin proteins in SupT1 cells was determined under confocal microscopy. The result
showed that EGFP tagging ankyrins were colocalized with a plasma membrane dye,
suggesting their targeting to inner leaflet of cell membrane as a result from the N-terminus
myristoylation signal (Figure 2). To examine whether the expression of ankyrin interfered
with the HIV receptor, CD4 expression on the surface of SupT1 stable cells was measured
by flow cytometry. The results demonstrated that the number of CD4-positive cells in
ankyrin-expressing and control SupT1 cells was similar (Figure 3A). The mean fluorescence
intensity of CD4 in SupT1 cells and ankyrin-expressing SupT1 cells (Myr (+) AnkA32D3-
EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+) Ank GAG1D4-S45Y-EGFP) was 4.47 × 104,
5.58 × 104, 4.31 × 104, and 3.96 × 104, respectively (Figure 3B). These data suggest that the
expression of N-terminus myristoylated ankyrin protein did not alter the level of CD4 on
the cell surface of SupT1 cells.
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Figure 1. Establishment of SupT1 cells stably expressing ankyrin proteins. SupT1 cells were transduced with 1 MOI of
VSV-G pseudotyped virus carrying gene encoding the ankyrin protein with EGFP fusion. (A) After 48 h post-transduction,
EGFP-positive cells were observed under fluorescent microscopy. Cell imaging was done at 20×magnification with the same
exposure time using Axio Observer 7. (B) After cell sorting, the level of ankyrin expression in SupT1 cells was investigated
by flow cytometry. EGFP signal indicates ankyrin-expressing SupT1 cells. (C) EGFP intensity in ankyrin-expressing SupT1
cells shown in a bar graph. No ankyrin, AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y represent SupT1 cell control, SupT1
cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.

Figure 2. Subcellular localization of ankyrins in SupT1 cells. Ankyrin-EGFP expressing SupT1 cells were stained with
plasma membrane dye, CellMaskTM Deep Red. Nuclei were stained with Hoechst 33342. Confocal imaging was done at
60×magnification using Nikon C2 plus confocal fluorescence microscopy. Green represents EGFP-tagging ankyrins. Blue
indicates nucleus, and red shows the plasma membrane of SupT1 cells. AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y
refer to SupT1 cells expressing AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y, respectively.
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Figure 3. Surface CD4 expression on ankyrin-expressing SupT1 cells. Ankyrin-expressing SupT1 cells were stained
with APC conjugated anti-human CD4 antibody and analyzed by flow cytometry. (A) Percentage of CD4 positive cells
represented in a bar graph. (B) Mean fluorescence intensity of APC indicates the level of CD4 expression on SupT1 cells. Data
represent mean ± SD from three independent experiments. No ankyrin, AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y
represent SupT1 cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+)
AnkGAG1D4-S45Y-EGFP, respectively.

3.2. AnkGAG1D4-S45Y Provides More Protection against HIV-1-Mediated Cell Death

To investigate the antiviral activity of ankyrin targeting the HIV-1 capsid, SupT1
and SupT1 stable cells (SupT1/Myr (+) AnkA32D3-EGFP, SupT1/Myr (+) AnkGAG1D4-
EGFP, and SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP) were infected with HIV-1 NL4-3
laboratory strain virus at an MOI of 10. A schematic representation of the experiments is
shown in Figure 4A. Following HIV-1 infection, the cytopathic effect in infected cells was
observed under inverted microscopy (Figure 4B,C). Syncytium formation in SupT1 and
SupT1/Myr (+) AnkA32D3 was detected early at 5 days post-infection (Figure S1). The
parental Myr (+) AnkGAG1D4 delayed the formation of syncytium cells in infected cells to
21 days post-infection, while no syncytium cells were observed in SupT1 cells expressing
Myr (+) AnkGAG1D4-S45Y-EGFP. In addition, cell viability was monitored by the trypan
blue exclusion method. The cell viability of HIV-1-infected SupT1 and SupT1/Myr (+)
AnkA32D3-EGFP was dramatically decreased at 9 days post-infection, and they were
entirely dead at day 17 (Figure 4D). On the other hand, SupT1/Myr (+) AnkGAG1D4-EGFP
and SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP had extended cell viability to 21 days with a
greater percentage of viable cells in the latter.

Figure 4. Cont.
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Figure 4. Syncytium cell formation and cell viability of HIV-1-infected SupT1 cells expressing ankyrins. (A) SupT1 cells
and SupT1 stable cells were infected with HIV-1 NL4-3 laboratory strain at 10 MOI. Infected cells were cultured and
processed as shown. After HIV-1 challenge, cells were subcultured every 2 days. (B) At 13 days post-infection, syncytium
formation in infected cells was observed under microscopy. Cell imaging was done at 20×magnification using Axio Vert.A1.
Arrows point to syncytium cells. (C) Syncytium formation in infected SupT1/Myr (+) AnkGAG1D4-EGFP and SupT1/Myr
(+) AnkGAG1D4-S45Y-EGFP was continuously observed until 21 days post-infection. (D) Cell viability of infected cells
was determined using the Trypan blue exclusion method. No ankyrin, AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y
represent SupT1 cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+)
AnkGAG1D4-S45Y-EGFP, respectively.

3.3. AnkGAG1D4-S45Y Improves Antiviral Activity Than Parental Ankyrin in HIV-1-Infected
SupT1 Cells

HIV-1 production in SupT1 cells and ankyrin-expressing SupT1 cells was evaluated
using HIV-1 p24 ELISA. The level of p24 in SupT1 cells control was detected at 3 days
post-infection, and continuously increased to 1.46 × 105 pg/mL at 13 days (Figure 5A).
SupT1/Myr (+) AnkA32D3, an irrelevant ankyrin, showed continuously increased
p24 levels to 1.30× 105 pg/mL at 13 days and was not different from infected the SupT1 cell
control. Myr (+) AnkGAG1D4-EGFP and Myr (+) AnkGAG1D4-S45Y-EGFP showed higher
anti-HIV-1 potency based on 1000-fold lower HIV-1 production than the SupT1 cell control.
However, at day 17, superior anti-HIV-1 activity of Myr (+) AnkGAG1D4-S45Y-EGFP was
indicated (Figure 5B). The level of HIV-1 p24 in Myr (+) AnkGAG1D4-EGFP and Myr (+)
AnkGAG1D4-S45Y-EGFP was 1.47 × 103 and 44.36 pg/mL, respectively. HIV viral load
assay confirmed the ability of Myr (+) AnkGAG1D4-EGFP and AnkGAG1D4-S45Y-EGFP to
inhibit viral replication, as the HIV RNA copy number was lower than in the SupT1 cell con-
trol and irrelevant ankyrin (Figure 5C). Moreover, HIV viral load confirmed that the number
of RNA copies in SupT1/Myr (+) AnkGAG1D4 -S45Y-EGFP was 5.12 × 105 copies/mL, and
in SupT1/Myr (+) AnkGAG1D4-EGFP was 7.20 × 106 copies/mL.

Furthermore, the anti-HIV-1 activity of Myr (+) AnkGAG1D4-S45Y-EGFP in more ex-
tensive infection was investigated. In this experiment, SupT1 cells and ankyrin-expressing
SupT1 cells were infected with 50 MOI of WT HIV-1 NL4-3 virus and monitored as
described above. Numerous syncytium cells were observed in SupT1 cell control and
SupT1/Myr (+) AnkA32D3-EGFP at 13 days post-infection (Figure S2). Myr (+) AnkGAG1D4-
EGFP showed a delay in syncytium cell formation at 17 days post-infection, whereas
Myr (+) AnkGAG1D4-S45Y-EGFP delayed the formation of syncytium cells to 21 days.
HIV-1 p24 ELISA demonstrated a low level of HIV-1 p24 in SupT1 cells control at 3 days
post-infection, then instantly increased at 5 days post-infection (Figure 6A). HIV-1 p24
was continuously detected at high levels in infected SupT1/Myr (+) AnkA32D3-EGFP and
produced similar levels to the SupT1 cell control. In contrast to Myr (+) AnkGAG1D4-EGFP
and SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP, HIV p24 was detected at low levels. At day
17 post-infection, the detected p24 level in SupT1/Myr (+) AnkGAG1D4-EGFP was
1.90 × 104 pg/mL (Figure 6B), which slightly increased at day 21. Surprisingly,
Myr (+) AnkGAG1D4-S45Y-EGFP retained the ability to inhibit HIV-1 replication. At
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17 days post-infection, the p24 level in Myr (+) AnkGAG1D4-S45Y-EGFP was 1000 times
lower compared with the parental ankyrin. The number of HIV RNA copies in
SupT1/Myr (+) AnkGAG1D4-EGFP and SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP was lower
than in infected SupT1 cell controls and SupT1/Myr (+) AnkA32D3-EGFP (Figure 6C). The
number of HIV RNA copies was verified as 8.11 × 105 copies/mL in SupT1/Myr (+)
AnkGAG1D4-S45Y-EGFP and 1.02 × 107 copies/mL in SupT1/Myr (+) AnkGAG1D4-EGFP.
Viral load assay indicated that Myr (+) AnkGAG1D4-S45Y-EGFP performed better in block-
ing viral replication.

Figure 5. HIV replication in 10 MOI of HIV-1-infected SupT1 cells expressing binding affinity-
enhanced AnkGAG1D4. After HIV-1 challenge, cells were subcultured every 2 days. Cultured
supernatant was collected at 3, 5, 7, 9, 11, 13, 17, and 21 days post-infection, then assayed to evaluate
HIV-1 production. (A,B) HIV-1 p24 levels were determined using p24 ELISA. † Indicates undetectable
HIV-1 p24 level. (C) HIV RNA copies were determined at 13 days post-infection using HIV viral
load assay. Bar graph shows HIV RNA copies from viral load assay. Data represent mean ± SD
from triplicate wells. * p ≤ 0.05 using unpaired t-test. No ankyrin, AnkA32D3, AnkGAG1D4, and
AnkGAG1D4-S45Y represent SupT1 cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP,
Myr (+) AnkGAG1D4-EGFP, and Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.
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Figure 6. HIV replication in 50 MOI HIV-1-infected SupT1 cells expressing binding affinity-enhanced
AnkGAG1D4. After HIV-1 challenge, cells were subcultured every 2 days. Cultured supernatant
was collected at 3, 5, 7, 9, 11, 13, 17, and 21 days post-infection, then assayed to evaluate HIV-
1 production. (A,B) HIV-1 p24 levels were determined using p24 ELISA. (C) HIV RNA copies
were determined at 13 days post-infection using HIV viral load assay. Data represent mean ± SD
from triplicate wells. No ankyrin, AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y represent
SupT1 cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and
Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.

In addition, a single cycle assay was performed to investigate the role of AnkGAG1D4
and AnkGAG1D4-S45Y in inhibiting HIV-1 production. SupT1 cells and ankyrin-expressing
SupT1 cells were infected with one MOI of VSV-G pseudotyped NL4-3 ∆Env virus
(as shown in Supplementary Method). At 48 h post-infection, the morphology of in-
fected SupT1 cells and ankyrin-expressing SupT1 cells was not different (Figure S3).
In addition, HIV-1 p24 was determined by ELISA. The level of intracellular p24 of ankyrin-
expressing SupT1 cells was not significantly distinct from controls. Whereas, extracel-
lular p24 was decreased in ankyrin-expressing SupT1 cells (Figure S4A,B). The concen-
tration of HIV-1 p24 in culture supernatant of SupT1/Myr (+) AnkGAG1D4-EGFP and
SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP was 28.78 and 8.94 pg/mL, respectively. These
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results suggested that HIV-1 assembly/release was impaired in the presence of ankyrin pro-
tein. Taken together, AnkGAG1D4-S45Y provides higher efficiency of intracellular antiviral
effect on HIV-1 replication than the parental AnkGAG1D4.

3.4. Anti-HIV-1 Ankyrins Do Not Drive Mutation in Amino Acid Sequence of HIV-1 Capsid

According to the infection experiment, leakage of viral progeny was detected on the
last day of observations. Therefore, we determined whether the leakage in protection was
a result from mutation in the ankyrin-targeted region. Since our anti-HIV-1 ankyrins were
against the HIV-1 capsid, viral cDNA was subjected to sequencing for capsid amino acid
sequence analysis. According to the alignment result, no mutation was indicated, especially
in helix 1 and helix 7 (Figure 7), targeting regions of ankyrin on the N-terminus capsid.
These data suggest that the leakage of HIV-1 progeny was due to an overload of virus.
In addition, AnkGAG1D4 and AnkGAG1D4-S45Y did not drive mutation in the HIV-1 capsid.
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The HIV-1 capsid region was amplified and subjected to sequencing analysis. The diagram shows alignment of HIV-1
capsid sequence against WT HIV-1 NL4-3. Regions of helix 1 (upper) and helix 7 (lower) of HIV-1 capsid indicated in
gray. Underlined letters indicate binding sites of ankyrins on the HIV-1 capsid. No ankyrin, AnkA32D3, AnkGAG1D4, and
AnkGAG1D4-S45Y represent HIV-1 capsid sequence of viral particles released from HIV-1 infected SupT1 cell controls, SupT1
cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.

3.5. Binding Affinity-Enhanced Ankyrin Provides Antiviral Effects on HIV-1 Maturation Inhibitor
Resistant Virus

To solve the drug resistance issue, several anti-HIV-1 compounds were established;
the HIV-1 maturation inhibitor is one anti-HIV-1 compound. Although these anti-HIV-1
compounds performed well in inhibiting HIV-1 production, a number of MI-resistant
strains were reported. In this study, the antiviral activity of ankyrin on HIV-1 MIR virus
was investigated. HIV-1 NL4-3 MIRCAI201V was selected as a model to observe intracellular
anti-HIV-1 activity of ankyrin. SupT1 cells and ankyrin-expressing SupT1 cells were
infected with HIV-1 NL4-3 MIRCAI201V virus at 10 MOI. After HIV-1 challenge, the infected
cells were observed for syncytium formation under microscopy (Figure S5). Infected SupT1
cells and SupT1/Myr (+) AnkA32D3 cells showed no protection against HIV-1 replication.
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A number of syncytial cells were observed on day 13 in SupT1 cells and SupT1/Myr (+)
AnkA32D3 cells with the appearance of clumping cells (Figure 8A). Consequently, p24 was
detected at a very high level on day 13 (Figure 9A).

Figure 8. Cell morphology and cell viability of HIV-1 NL4-3 MIRCAI201V infected SupT1 stable cells. SupT1cells and
ankyrin-expressing SupT1 cells were infected with 10 MOI of HIV-1 MIRCAI201V virus. After infection, cells were sub-
cultured every 2 days. (A) Syncytium cells and cell morphology were observed under microscopy. Cell imaging was
done at 10×magnification using Axio Vert.A1. (B) Cell morphology of infected SupT1/Myr (+) AnkGAG1D4-EGFP and
SupT1/Myr (+) AnkGAG1D4-S45Y-EGFP was continuously observed until 21 days post-infection. Arrows point to syn-
cytium cells. (C) Cell viability of infected cells was determined using Trypan blue exclusion method. No ankyrin, AnkA32D3,
AnkGAG1D4, and AnkGAG1D4-S45Y represent SupT1 cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP,
Myr (+) AnkGAG1D4-EGFP, and Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.

Both Myr (+) AnkGAG1D4 and Myr (+) AnkGAG1D4-S45Y expressed potency in inhibit-
ing HIV-1 MIR virus. Interestingly, Myr (+) AnkGAG1D4-S45Y showed higher efficiency
in protection, as syncytium cell formation was not observed until day 21 (Figure 8B), to-
gether with extended cell viability to day 21 (Figure 8C). Whereas, syncytium formation in
Myr (+) AnkGAG1D4 was observed at day 17 post-infection (Figure S5). Consistently
with the p24 level, the level of HIV-1 p24 in SupT1/Myr (+) AnkGAG1D4-S45Y was sig-
nificantly lower than in infected SupT1/Myr (+) AnkGAG1D4 at 21 days post-infection
(Figure 9B). However, HIV viral load assay indicated comparable anti-HIV-1 activity
of Myr (+) AnkGAG1D4 and Myr (+) AnkGAG1D4-S45Y (Figure 9C). HIV-1 RNA copies
in SupT1/Myr (+) AnkGAG1D4 and SupT1/Myr (+) AnkGAG1D4-S45Y were verified as
2.06 × 105 and 2.61 × 105 copies/mL, respectively.
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Figure 9. HIV-1 MIR viral replication in SupT1 cells expressing binding affinity-enhanced
AnkGAG1D4. After HIV-1 challenge, cells were subcultured every 2 days. Cultured supernatant was
collected at 5, 9, 13, 17, and 21 days post-infection, then assayed to evaluate HIV-1 production.
(A,B) HIV-1 p24 levels were determined using p24 ELISA. † Indicates undetectable level of
HIV-1 p24. (C) HIV RNA copies were determined at 13 days post-infection using HIV viral
load assay. Data represent mean ± SD from triplicate well. ns, non-significant. * p ≤ 0.05 us-
ing unpaired t-test. No ankyrin, AnkA32D3, AnkGAG1D4, and AnkGAG1D4-S45Y represent SupT1
cell control, SupT1 cells expressing Myr (+) AnkA32D3-EGFP, Myr (+) AnkGAG1D4-EGFP, and
Myr (+) AnkGAG1D4-S45Y-EGFP, respectively.

4. Discussion

Although HAART is successfully used for HIV-1 therapy, it is limited by adverse drug
effects and viral mutation. Furthermore, development of HIV-1 drugs takes years and
is expensive [37]. It is desirable to establish new anti-HIV molecules against alternative
viral targets in the HIV life cycle. Instead of antibodies and their derivatives, DARPins,
representing a disulfide-independent scaffold, were sought for HIV-1 therapy based on
their biological properties [3,38,39]. An extracellular DARPin, including CD4-specific
DARPins and gp120-specific DARPins, was reported to inhibit HIV-1 entry [17,18]. Al-
though these DARPins specifically perceive their target, limitations in terms of immune
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function and mutation-driven side effects were reported. CD4-specific DARPins can lead
to impaired CD4 function, while gp120-specific DARPins drive mutation in the HIV-1
envelope. Moreover, a high clearance rate of DARPins in the blood circulation remains an
obstacle [19]. Accordingly, we previously generated an intracellular AnkGAG1D4, which
interferes with HIV-1 assembly by interacting with the N-terminus of HIV-1 capsid domain
(CA-NTD) [21]. Several studies indicated that this specific area is crucial in viral assembly,
maturation, and uncoating through viral capsid mutation [40,41]. The mutation leads to
capsid polymorphisms that impair HIV-1 infectivity. Numerous CA-targeted molecules
have been studied, such as PF74 [42], CAI [43], and GSCAI [16]. Although these molecules
express activity in inhibiting HIV-1 replication, viral escape and inefficient cell penetration
hamper its competency [44]. In contrast, DARPin is well-expressed inside the cells [45],
specifically AnkGAG1D4, with the domain necessary for capsid polymorphism [21].

Despite the demonstrated anti-HIV-1 activity of AnkGAG1D4, protection in the late pe-
riod of in vitro culture needs to be improved [24]. To enhance the efficiency of AnkGAG1D4,
computational analysis was performed to identify the key residues on the ankyrin binding
sites suitable for mutagenesis [25]. According to previous work, substituting tyrosine for
serine improves the binding affinity of Myr (+) AnkGAG1D4-S45Y without altering speci-
ficity. However, an investigation of the intracellular anti-HIV activity of affinity-enhanced
AnkGAG1D4 is required. In this study, antiviral activity of Myr (+) AnkGAG1D4-S45Y was
observed in infected SupT1 cells compared with parental Myr (+) AnkGAG1D4. The affinity-
improved ankyrin expression delayed the formation of syncytium cells and dramatically
decreased viral replication as measured by p24 and viral load. By and large, different from
mutant ankyrin, HIV-1 Gag was impaired in the assembly process, leading to reduced
HIV-1 production in infected cells. The cytopathic effect in HIV-1 infected cells in the form
of multinucleated giant cell formation and cell rupture represents a mechanism involving
HIV-1 replication [46]. According to our experiment, inhibition of HIV-1 replication by
AnkGAG1D4-S45Y results in late detection of syncytium formation, followed by extended
cell viability. Although minimal progeny leakage was evidenced on day 21, the interactive
amino acid sequence at HIV-1 NL4-3 CA was conserved. This suggests that both ankyrins
were not likely to drive the mutation of HIV-1 NL4-3 CA. Thus, the progeny detected on the
last day of culture probably resulted from the overload of HIV particles, which exceeded
the ankyrin harness.

From our results, tyrosine substitution introduces binding affinity to intracellular
Gag, since tyrosine is frequently found in the hot-spot of the antigen binding site [47].
Additionally, the role of tyrosine in mediating the binding of AnkGAG1D4 against a viral
target has been highlighted by computational analysis and in vitro studies [25]. Tyrosine
contains an aromatic side chain, comprising both a hydrophobic ring and a hydrophilic
hydroxyl group, which contributes to its hydrogen bond forming ability, hydrophobic
interaction, van der Waals interaction, and amino aromatic interaction [48,49]. Replacement
with tyrosine provides more stable interaction of AnkGAG1D4-S45Y against viral targets,
leading to higher efficiency in anti-viral activity.

Another group of CA-binding compounds is HIV-1 MIs. MIs confer anti-HIV activity
through disrupting the maturation process of the virus at the CA–SP1 junction. However,
HIV-1 is highly sensitive to mutations at the CA–SP1 junction, resulting in reports of MI-
resistant strains [50]. Different from MI, our anti-assembly ankyrin specifically interacted
with CA-NTD [21]. We assumed that AnkGAG1D4 inhibits replication of resistant viruses
at the step prior to maturation. To prove the concept, we investigated the activity of
AnkGAG1D4 and its mutant against MI-resistant virus. SupT1 cells expressing AnkGAG1D4
and AnkGAG1D4-S45Y were infected with HIV-1 NL4-3 MIRCAI201V virus. This mutation
has been reported to confer resistance against PF4696, the second-class HIV-1 maturation
inhibitor, and partial resistance to BVM [33,34]. From the infection experiment, both
anti-HIV-1 ankyrins were shown to have a negative effect on viral replication. Herein,
HIV-1 NL4-3 MIRCAI201V virus is a representative for observing antiviral activity against
drug-resistant viruses. Another mutation on the HIV-1 capsid and downstream of the SP1



Biomolecules 2021, 11, 1437 15 of 17

region also confers MI resistance [51,52]. Moreover, there are several reports on mutations
in the HIV-1 genome, leading to the emergence of HIV-1 drug resistance against first-line
ART [27] as well as a novel HIV-1 drug classes. For example, the M184V mutation along
with thymidine analogue-associated mutations (TAMs) in HIV-1 reverse transcriptase gene
increases abacavir resistance [53]. Another is Gag cleavage site mutation, which may confer
resistance against protease inhibitors (PIs) in patients who fail PI-containing regimens [54].
As a different viral target site, AnkGAG1D4-S4Y might inhibit the viral replication of these
resistant strains of HIV.

5. Conclusions

Our current results underscore the significance of AnkGAG1D4-S45Y for enhancing
antiviral activity in either WT HIV-1 NL4-3 or MIR virus. Although the single amino acid
change in a previous report did not markedly increase the affinity of AnkGAG1D4, the
intracellular activity of AnkGAG1D4-S45Y demonstrated distinctly notable performance.
Further improvement of AnkGAG1D4 affinity will provide a direction for rational design
regarding predicted complexes from molecular dynamics (MD) simulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11101437/s1, Figure S1: Cell morphology of 10 MOI HIV-1 infected SupT1 cells at 5 days
post-infection. Figure S2: Cell morphology of 50 MOI HIV-1 infected SupT1 cells. Figure S3: Cell
morphology of 1 MOI of VSV-G pseudotyped NL4-3 ∆Env infected SupT1 cells or ankyrin-expressing
SupT1 cells. Figure S4: Anti-HIV-1 activity of ankyrin proteins in VSV-G pseudotyped virus NL4-3
∆Env infected SupT1 cells or ankyrin-expressing SupT1 cells. Figure S5: Cell morphology of 10 MOI
HIV-1 MIRCAI201V infected SupT1 cells.
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