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Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its

potential of zooming into complex biological systems. Genome-wide expression analysis

at single-cell resolution provides a window into dynamics of cellular phenotypes. This

facilitates the characterization of transcriptional heterogeneity in normal and diseased

tissues under various conditions. It also sheds light on the development or emergence of

specific cell populations and phenotypes. However, owing to the paucity of input RNA, a

typical single cell RNA sequencing data features a high number of dropout events where

transcripts fail to get amplified.

Results: We introduce mcImpute, a low-rank matrix completion based technique

to impute dropouts in single cell expression data. On a number of real datasets,

application of mcImpute yields significant improvements in the separation of true zeros

from dropouts, cell-clustering, differential expression analysis, cell type separability,

the performance of dimensionality reduction techniques for cell visualization, and gene

distribution.

Availability and Implementation: https://github.com/aanchalMongia/McImpute_scR

NAseq

Keywords: scRNA-seq, dropouts, imputation, matrix completion, Nuclear norm minization

1. BACKGROUND AND INTRODUCTION

In contrast to traditional bulk population-based expression studies, single-cell transcriptomics
provides more precise insights into the functioning of individual cells. Over the past few years,
this powerful tool has brought in transformative changes in the conduct of functional biology
(Wagner et al., 2016). With single-cell RNA sequencing (scRNA-seq) we are now able to discover
subtypes within seemingly similar cells. This is particularly advantageous for characterizing cancer
heterogeneity (Patel et al., 2014; Tirosh et al., 2016), identification of new rare cell type and
understanding the dynamics of transcriptional changes during development (Tang et al., 2010; Yan
et al., 2013; Biase et al., 2014).

Despite all the goodness, scRNA-seq technologies suffer from a number of sources of technical
noise. Most important of these is insufficient input RNA. Due to small quantities transcripts are
frequently missed during the reverse transcription step. As a direct consequence, these transcripts
are not detected during the sequencing step (Kharchenko et al., 2014). Often times the lowly
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expressed genes are the worst hit. Excluding these genes from the
analysis may not be the best solution as many of the transcription
factors and cell surface markers are sacrificed in this process (van
Dijk et al., 2017). Added to that, variability in dropout rate across
individual cells or cell types works as a confounding factor for a
number of downstream analyses (Sengupta et al., 2016; Li et al.,
2017). Hicks et al. (2015) showed, on a number of scRNA-seq
datasets, that the first principal components highly correlate with
the proportion of dropouts across individual transcriptomes. In
summary, there is a standing need for efficientmethods to impute
scRNA-seq datasets.

Very recently, efforts have been made to devise imputation
techniques for scRNA-seq data (Table S6). Most notable of
among these are MAGIC (van Dijk et al., 2017), scImpute (Li
and Li, 2018), and drImpute (Kwak et al., 2017). MAGIC uses
a neighborhood based heuristic to infer the missing values based
on the idea of heat diffusion, altering all gene expression levels
including the ones not affected by dropouts. On the other hand,
scImpute first estimates which values are affected by dropouts
based on Gamma-Normal mixture model and then fills the
dropout values in a cell by borrowing information of the same
gene in other similar cells, which are selected based on the genes
unlikely affected by dropout events. The overall performance of
scImpute has been shown to be superior to MAGIC. Parametric
modeling of single-cell expression is challenging due to our
lack of knowledge about possible sources of technical noise and
biases (Sengupta et al., 2016). Moreover, there is a clear lack of
consensus about the choice of the probability density function.
Another method, Drimpute, repeatedly identifies similar cells
based on clustering and performs imputation multiple times by
averaging the expression values from similar cells, followed by
averaging multiple estimations for final imputation. We propose
mcImpute (Figure 1), an imputation algorithm for scRNA-
seq data which models gene expression as a low-rank matrix
and sprouts in values in place of dropouts in the process of
recovering the full gene expression data from sparse single-cell
data. This is done by applying soft-thresholding iteratively on
singular values of scRNA-seq data. One of the salient features of
mcImpute is that it does not assume any distribution for gene
expression.

We first evaluate the performance of mcImpute in separating
“true zero" counts from dropouts on single-cell data of myoblasts
(Trapnell et al., 2014) (We call it Trapnell dataset). On
the same dataset, we assess the impact of imputation on
differential genes prediction. We further investigate mcImpute’s
ability to recover artificially planted missing values in a single
cell expression matrix of mouse neurons (Usoskin et al.,
2015).Accurate imputation should enhance cell type identity i.e.,
the transcriptomic similarity between cells of identical type. We,
therefore, quantify cell type separability as a metric and assess
its improvement. In addition to these, we also test the impact
of imputation on cell clustering. Four independent datasets
Zeisel (Zeisel et al., 2015), Jurkat-293T (Zheng et al., 2017),
Preimplantation (Yan et al., 2013) and Usoskin (Usoskin et al.,
2015), for which cell type annotations are available and another
dataset, Trapnell et al. (2014) for which bulk RNA-seq data
has been provided (required for validation of differential genes

prediction and separation of “true zeros" from dropouts), are
used for this purpose. McImpute clearly serves as a crucial
tool in the scRNA-seq pipeline by significantly improving all
the above-mentioned metrics and outperforming the state-of-
the-art imputation methods in the majority of experimental
conditions.

With the advent of droplet-based, high-throughput
technologies (Macosko et al., 2015; Zheng et al., 2017), library
depth is being compromised to curb the sequencing cost. As a
result, scRNA-seq datasets are being produced with an extremely
high number of dropouts. We believe that mcImpute’s great
performance, will provide an adequate solution for the dropouts
problem.

2. RESULTS

We performed computational experiments to evaluate the
efficacy of our proposed imputation technique comparing
mcImpute with a number of existing imputation methods for
single cell RNA data: scImpute, drImpute, and MAGIC.

2.1. Dropouts vs. True Zeros
The inflated number of zero counts in scRNA-seq data could
either be biologically driven or due to lack of measurement
sensitivity in sequencing. The transcript which is not detected
because of failing to get amplified in the sequencing step
essentially corresponds to a “false zero" in the finally observed
count data and needs to be imputed. A reasonable imputation
strategy which has this discriminating property should keep the
“true zero" counts (where the genes are truly expressed and have
no transcripts from the beginning) untouched, while at the same
time attempt to recover the dropouts.

The goodness of an imputation strategy can be formally
confirmed by observing two factors. First, whether the
imputation method is able to impute the true zero counts
in the expression data as is or not; Second, if it can fill-in
the dropouts with biologically meaningful expression counts
or not; showing an increasing difference between the zero
counts observed in unimputed data and the imputed one with
expression amplification.

We investigate the performance of mcImpute in
distinguishing “true zero" counts from dropouts on Trapnell
data (Trapnell et al., 2014), for which the bulk-counterpart was
available and hence, we could pull out low-to-medium expression
genes from the corresponding bulk data for validation. Of note,
to differentiate between the “true" and “false" zeros, we have used
the matched bulk-expression profiles; as it is a well-known fact
that bulk-RNA seq data has limited or no dropouts events as the
corresponding experiments involve millions of cells. The fraction
of zero counts was observed for genes with expression ranging
from zero to 500 for unimputed and imputed gene-expression
data. It should be noted that an imputed count value ranging
from 0 to 0.5 is taken as an imputed zero, rendering minor
flexibility to all imputation techniques.

Given the nature of this analysis, gene filtering in single cell
expressions has been skipped. DrImpute could not be taken into
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FIGURE 1 | Overview of mcImpute framework for imputing single-cell RNA sequencing data. Raw read counts were filtered for significantly expressed genes and then

normalized by Library size. Then, the expression data was Log2 transformed (after adding a pseudo-count of 1). This pre-processed expression matrix (Y) is treated as

the measurement/observation matrix (and fed as input to Nuclear-norm minimization algorithm) from which the gene expressions of the complete matrix (X) need to be

recovered by solving the non-convex optimization problem. The objective function minimizes the nuclear norm of expression matrix and satisfies the constraint

Y = A(X) with minimum error; where Y is the sampled version of the complete expression matrix X and A is the sub-sampling operator.

account since we could not programmatically mute the gene
filtering step in its pipeline.

We observe (Figure 2A, Table S1) that with low expression
genes, all imputation strategies successfully impute the “true
zeros” while, as the gene expression amplifies, un-imputedmatrix
still exhibits large fraction of zeros, which essentially correspond
to dropouts and only mcImpute and scImpute are able to curtail
the fraction of zeros, thus recovering the dropouts back. As
can be observed, MAGIC although successfully imputes the
“true zeros"; it fails to recover most of the dropouts in the
expression data.

2.2. Improvement in Clustering Accuracy
A correct interpretation of single-cell expression data is
contingent on the accurate delineation of cell types. Bewildering
level of dropouts in scRNA-seq data often introduces batch effect,
which inevitably traps the clustering algorithm. A reasonable
imputation strategy should fix these issues to a great extent. In
a controlled setting, we, therefore, examined if the proposed
method enhanced clustering outcomes. For this, we ran K-
means on first 2 principal component genes of log-transformed
expression profiles featured in each dataset (Figure S5). Since the
prediction from this clustering algorithm tends to change with
the choice of initial centroids, which are chosen at random, we
analyze the results on 100 runs of k-means to get reliable and
robust results. We set the number of annotated cell types as the

value of K for every data. Adjusted Rand Index (ARI) was used to
measure the correspondence between the clusters and the prior
annotations.

McImpute based re-estimation best separates the four groups
of mouse neural single cells from Usoskin dataset and brain cells
from Zeisel dataset, and clearly shows comparable improvement
on other datasets too (Figures 2B–E, Table S2). The striking
difference between Jurkat and 293T cells made them trivially
separable through clustering, leading to same ARI across all 100
runs. Still, mcImpute was able to better maintain the ARI in
comparison to other imputation methods.

2.3. Matrix Recovery
In this set of experiments, we study the choice of
matrix completion algorithm – matrix factorization
(MF) or nuclear norm minimization (NNM). Both the
algorithms have been explained in section Materials and
Methods.

The experiments are carried out on the processed Usoskin
dataset (Usoskin et al., 2015). We artificially removed some
counts at random (sub-sampling) in the data to mimic dropout
cases and used our algorithms (MF and NNM) to impute the
missing values. (Figures 3A–C) and Table S3 show the variation
of NormalizedMean Squared Error (NMSE), RootMean Squared
Error (RMSE) and Mean Absolute Error (MAE) to compare
our two methods for different sub-sampling ratios. This is the
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FIGURE 2 | McImpute shows remarkable improvement in separation of “true zeros" from dropouts and clustering of single cells (A) Separation of “true zeros" from

dropouts: plot showing fraction of zero counts (values between 0 and 0.5) in single cell expression matrix against the median bulk expression. The genes are divided

into 10 bins based on median bulk genes expression (first bin corresponds to zero expression genes) (B–E) Boxplots showing the distribution of ARI calculated on

100 runs of k-means clustering algorithm on first two principal components of single cell expression matrix for datasets (B) Jurkat-293T (C) Preimplantation (D)

Usoskin, and (E) Zeisel.

standard procedure to compare matrix completion algorithms
(Keshavan et al., 2010; Marjanovic and Solo, 2012).

We are showing the results for Usoskin dataset, but
we have carried out the same analysis for other datasets
and the conclusion remained the same. We find that the
nuclear norm minimization (NNM) method performs slightly
better than the matrix factorization (MF) technique; so
we have used NNM as the workhorse algorithm behind
mcImpute.

2.4. Improved Differential Genes Prediction
Optimal imputation of expression data should improve the
accuracy of differential expression (DE) analysis. It is a standard
practice to benchmark DE calls made on scRNA-Seq data against
calls made on their matching bulk counterparts (Kharchenko
et al., 2014). To this end, we used a dataset of myoblasts, for
which matching bulk RNA-Seq data were also available (Trapnell
et al., 2014). For simplicity, this dataset has been referred to as

the Trapnell dataset. DE and non-DE genes were identified using
edgeR (Zhou et al., 2014) package in R.

We used the standardWilcoxon Rank-Sum test for identifying
differentially expressed genes from matrices imputed by various
methods. Congruence between bulk and single cell-based DE
calls were summarized using the Area Under the Curve
(AUC) values yielded from the Receiver Operating Characteristic
(ROC) curves (Figure 3D). Among all the methods mcImpute
performed best with an AUC of 0.85.

For each method, the AUC value was computed on the
identical set of ground truth genes. We had to make an exception
only for drImpute as it applies the filter to prune genes in its
pipeline. Hence AUC value for drImpute was computed based on
a smaller set of ground truth genes.

2.5. Improvement in Cell Type Separability
Downstream analysis becomes much easier if expression
similarities between cells of identical type are considerably
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FIGURE 3 | McImpute recovers the original data from their masked version with low error, performs best in prediction of differentially expressed genes and

significantly improves CTS score. Variation of (A) NMSE, (B) RMSE, and (C) MAE with sampling ratio using MF (Matrix factorization) and NNM (Nuclear norm

minimization) on Usoskin dataset showing NNM performing better than MF algorithm. (D) ROC curve showing the agreement between DE genes predicted from

scRNA and matching bulk RNA-Seq data (Trapnell et al., 2014). DE calls were made on expression matrix imputed using edgeR. (E–H) 2D-Axis bar plot depicting

improvement in Cell type separabilities between (E) Jurkat and 293T cells from Jurkat-293T dataset; (F) 8cell and BXC cell types from Preimplantation dataset; (G) NP

and NF cells from Usoskin dataset; and (H) S1pyramidal and Ependymal from Zeisel dataset . Refer Table S4 for absolute values.

higher than that of cells coming from different subpopulations.
To this end, we define the cell-type separability score as
follows:

For any two cell groups, we first find the median of
Spearman correlation values computed for each possible pair
of cells within their respective groups. We call the average
of the median correlation values the intra-cell type scatter.
On the other hand, inter-cell type scatter is defined as the
median of Spearman correlation values computed for pairs
such that in each pair, cells belong to two different groups.
The difference between the intra-cell scatter and inter-cell type
scatter is termed as the cell-type separability (CTS) score. We
computed CTS scores for two sample cell-type pairs from each
dataset. In more than 80 % (13 out of 16) of test cases,
mcImpute yielded significantly better CS values (Figures 3E–H,
Table S4).

2.6. Cell Visualization
Representing scRNA-seq data visually would involve reducing
the gene-expression matrix to a lower dimensional space and

then plotting each cell transcriptome in that reduced two
or three-dimensional space. Two well-known techniques for
dimensionality reduction are PCA and t-SNE (Holland, 2008;
Maaten and Hinton, 2008). It has been shown that t-Distributed
Stochastic Neighbor Embedding (t-SNE) is particularly well
suited and effective for the visualization of high-dimensional
datasets (Liu et al., 2017). So, we use t-SNE (Figures 4, 5)
on Usoskin and Zeisel expression matrices to explore the
performance of dimensionality reduction, both without and
with imputation. The cells are visualized in 2-dimensional
space, coloring each subpopulation by its annotated group, both
before and after imputation. To quantify the groupings of cell
transcriptomes, we use an unsupervised clustering quality metric,
silhouette index. The average silhouette values for each method
have been shown in the plot titles (Figures 4, 5 and Figures S3,
S4).

T-SNE analysis depicts that mcImpute brings all four groups
of mouse neural cells from Usoskin dataset closest to each
other in comparison to other methods and performs fairly well,
competing with drImpute on Zeisel dataset too.
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FIGURE 4 | Plot showing t-SNE visualization and average silhouette values for Usoskin dataset before and after imputation. McImpute improves the visual

distinguishability the most for all groups of mouse neural single cells amongst all imputation strategies. The neuronal types were defined as neurofilament containing

(NF), non-peptidergic nociceptors (NP), peptidergic nociceptors (PEP), and tyrosine hydroxylase containing (TH).

FIGURE 5 | Plot showing t-SNE visualization and average silhouette values for Zeisel dataset before and after imputation. Both mcImpute and drImpute bring brain

cells closer, at the same time maintaining the structure of gene-expressions.
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2.7. Improvement in Distribution of Genes
It has been shown that for single-cell gene expression data, in the
ideal condition all genes should obey CV = mean−1/2 (Klein
et al., 2015) (CV: coefficient of variation), following a Poisson
distribution as depicted by the green diagonal line (Figures 6, 7).
This is because individual transcripts are sampled from a pool
of available transcripts for CEL-Seq. This accounts for technical
noise component which obeys Poissonian statistics (Grün et al.,
2014), and thus the CV is inversely proportional to the square
root of the mean. Since this result has only been shown for
single-cell data with transcript numbers, this experiment has not
been analyzed for Jurkat-293T and Zeisel datasets for which the
individual RNA molecules were counted using unique molecular
identifiers (UMIs).

We model CV as a function of mean expression for all
genes to analyze how various imputation methods affect the
relationship between them. The results (Figures 6, 7) show
that both mcImpute and drImpute succeed to restore the
relationship between CV and mean to a great extent (improving
the dependency of the CV on the mean expression level to be
more consistent with Poissonian sampling noise), while others
do not.

3. DISCUSSION

Single-cell RNA seq technologies have opened up numerous
possibilities for analysis at the single-cell resolution. But, low
amount of starting RNA is a major limitation of the technology
which results in frequent missing of transcripts in the reverse
transcription step (dropout events). This dropout problem in
single-cell RNA-seq data makes the expression matrix highly
sparse; which in turn hinders the downstream analysis.

To overcome the dropout problem in single-cell data, we take
motivation from various areas of applied sciences (including
computer vision Tomasi and Kanade, 1992, control Mesbahi and
Papavassilopoulos, 1997,machine learning Abernethy et al., 2006;
Amit et al., 2007; Argyriou et al., 2007, etc) where recovery of an
unknown low-rank matrix from very limited information is of
interest. The problem is akin to that of recommendation systems
(e.g. in Netflix movie recommendations and Amazon product
recommendations) (Bell and Koren, 2007; Bennett and Lanning,
2007; SIGKDD, 2007), where there is a database of ratings
given by users to movies/products. Since the users typically rate
only a small subset of items, not all the ratings are available;
which makes the user-movie rating matrix sparse. Also, the
matrix is assumed to be of low-rank because there are not too
many independent parameters on which the users generally rate
the movie. The objective is to estimate the ratings of all the
users on all the movies. If the new movie rating predictions
can be done accurately, recommendation accuracy increases.
There is a pretty straightforward link between both the Netflix
problem and dropout problems. Therefore, imputation to single-
cell expression matrix can be efficiently performed by Low-rank
approximation. (Koren et al., 2009; Majumdar and Ward, 2011).

One could argue about the low-rank origin of the gene
expression data. It should be noted that numerous studies have

suggested that genes do not work in isolation (Staiger et al.,
2013), but as part of a complex regulatory network (Silver et al.,
2013). This inter-dependency has been analyzed in the form of
associated network structures (Xiong et al., 2005; Gill et al., 2010)
and is best reflected by the gene-gene correlations (Weckwerth
et al., 2004; Klebanov and Yakovlev, 2007; Reynier et al., 2011;
Najafov and Najafov, 2018). It is so believed that such high
levels of correlation are caused by sharing of regulatory programs
among different genes (Ye et al., 2013). Also, it has previously
been shown that a small number of interdependent biophysical
functions trigger the functioning of transcription factors, which
in turns influence the expression levels of genes, resulting in a
highly correlated data matrix (Kapur et al., 2016). On the other
hand, cells coming from same tissue source also lie on differential
grades of the variability of a limited number of phenotypic
characteristics. Therefore, it is just to assume that the gene
expression values lie on a low-dimensional linear subspace and
the data matrix thus formed may well be thought as a low-rank
matrix.

We attempt to give another mathematical justification on the
Low-rank assumption of the gene-expression in Figure S2 by
showing that the maximum information of the expression-data
is held in its first few singular values; hence the rank of the
expression matrix (number of non-zero singular values) should
be low.

In specific, we used Nuclear Norm-based Matrix Completion
for imputing single-cell RNA seq data. The algorithm models
the single-cell gene expression as a low-rank matrix and recovers
the full gene expression from partial information by thresholding
the singular values of expression matrix iteratively. The recovery
process sprouts-in appropriate expressions in place of dropouts;
keeping the biologically silent expression values intact.

Apart from taking care of biologically silent genes, the
proposed algorithm performs competitively with the state-of-
the-art methods in improving the clustering accuracy of cells,
identifying differentially expressed genes, enhancing cell type
separability, improving the dimensionality reduction, etc.

Our method is particularly suitable for single-cell data since
it does not assume anything about the statistical property of the
expression or the dropouts and can be seamlessly incorporated
into the single-cell analysis pipeline. We have also demonstrated
that our method clearly distinguishes between biological and
technical silencing.

The algorithm has some scope of improvement when it comes
to handling scRNA– seq datasets with large sample sizes. As
can be seen in Table S5, the running time of our algorithm is
comparativelymore than that ofMAGIC and drImpute; although
much less than that of scImpute.

4. DATA AND METHODS

4.1. Dataset Description
We used five scRNA-seq datasets from four different studies for
performing various experiments (Table S7).

• Jurkat-293T: This dataset contains expression profiles of
Jurkat and 293T cells, mixed in vitro at equal proportions
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FIGURE 6 | Plot showing log10(CV) vs. log10(mean) relationship between genes for Preimplantation dataset before and after imputation.

FIGURE 7 | Plot showing log10(CV) vs log10(mean) relationship between genes for Usoskin dataset before and after imputation.
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(50:50). All ∼ 3,300 cells of this data are annotated based on
the expressions of cell-type specific markers (Zheng et al.,
2017). Cells expressing CD3D are assigned Jurkat, while
those expressing XIST are assigned 293T. This dataset is
also available at 10x Genomics website (https://support.
10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/
jurkat:293t_50:50).
• Preimplantation: This is an scRNA-seq data of mouse

preimplantation embryos. It contains expression profiles of ∼
300 cells from zygote, early 2-cell stage, middle 2-cell stage,
late 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage, early
blastocyst, middle blastocyst, and late blastocyst stages. The
first generation of mouse strain crosses was used for studying
monoallelic expression. We downloaded the count data from
Gene Expression Omnibus (GSE45719) (Yan et al., 2013).
• Zeisel: Quantitative single-cell RNAseq has been used to

classify cells in the mouse somatosensory cortex (S1)
and hippocampal CA1 region based on 3005 single cell
transcriptomes (Zeisel et al., 2015). Individual RNA molecules
were counted using unique molecular identifiers (UMIs)
and confirmed by single-molecule RNA fluorescence in situ
hybridization (FISH). A divisive biclustering method based
on sorting points into neighborhoods (SPIN) was used to
discover molecularly distinct, 9 major classes of cells. Raw data
is available under the accession number GSE60361.
• Usoskin:This data ofmouse neurons (Usoskin et al., 2015) was

obtained by performing RNA-Seq on 799 dissociated single
cells dissected from the mouse lumbar dorsal root ganglion
(DRG) distributed over a total of nine 96-well plates. After
Principal component analysis (PCA) of expressionmagnitudes
across all cells and genes, 622 cells were classified as neurons,
68 cells had an ambiguous assignment and 109 cells were non-
neuronal. We take into account the 622 neuronal clusters of
mouse lumbar DRG- neurofilament containing (NF), non-
peptidergic nociceptors (NP), peptidergic nociceptors (PEP),
and tyrosine hydroxylase containing (TH). RPM normalized
counts are available under the accession number GSE59739.
• Trapnell: This is an scRNA-seq data of primary human

myoblasts (Trapnell et al., 2014). Differentiating myoblasts
were cultured and cells were dissociated and individually
captured at 24-h intervals. 50–100 cells at each of the four
time points were captured following serum switch using the
FluidigmC1microfluidic system. This data is available at Gene
Expression Omnibus under the accession number GSE52529.
Of note, this dataset has been used for the experiments which
require the Bulk-counterpart of the gene-expression data i.e.,
“Dropout vs true-zeros” and “Differential genes prediction.”

4.2. Data Preprocessing
Steps involved in preprocessing of raw scRNA-seq data are
enumerated below.

• Data filtering: It is ensured that data has no bad cells and
if a gene was detected with ≥ 3 reads in at least 3 cells we
considered it expressed. We ignored the remaining genes.
• Library-size Normalization: Expression matrices were

normalized by first dividing each read count by the total

counts in each cell, and then by multiplying with the median
of the total read counts across cells.
• Log Normalization: A copy of the matrices were log2

transformed following the addition of 1 as pseudo-count.
• Imputation: Further, log transformed expression matrix was

used as input tomcImpute. The algorithm returns imputed log
transformed matrix, normalized matrix (after applying reverse
of log operation on imputed log-transformed expressions),
and the count matrix after imputation.

A brief overview of the complete mcImpute pipeline has been
shown in Figure 1.

4.3. Low-Rank Matrix Completion:
Definition
Our problem is to complete a partially observed gene expression
matrix X where columns represent genes and rows, individual
cells. The complete matrix is constituted by the known and the
yet unknown values. We can assume that the single cell data
that we have acquired, Y is a sampled version of the complete
expression matrix X. Mathematically, this is expressed as,

Y = A(X) (1)

Here A is the sub-sampling operator. It is a binary mask that
has 0’s where the counts of complete expression data X have not
been observed and 1’s where they have been. The values of A are
element-wise multiplied to the complete expression matrix X so
that Y (the sub-sampled data) is a sparse representation of X and
has expression values only at positions where gene expression is
observed. Our problem is to recover X, given the observations Y ,
and the sub-sampling mask A. It is known that X is of low-rank.

It should be noted that matrix completion is a well studied
framework. In this work, we consider two algorithms for efficient
imputation of scRNA-seq expression data: Matrix factorization
(Koren et al., 2009) and Nuclear norm minimization?

4.4. Matrix Factorization
Matrix factorization is the most straightforward way to address
the low-rank matrix completion problem; it has previously been
used for finding lower dimensional decompositions of matrices
(Lee and Seung, 2001). SayX is of dimensionsm×n, but is known
to have a rank r (<m, n). In that case, one can express Xm×n as a
product of two matricesUm×r and Vr×n . Therefore the complete
problem (1) can be formulated as,

Y = A(X) = A(UV) (2)

Estimating U and V from (2) tantamount to recovering X. The
two matricesU andV can be solved by minimizing the Frobenius
norm of the following cost function.

min
U,V
||Y − A(UV)||2F (3)

Since this is a bi-linear problem, one cannot guarantee
global convergence. However, it usually works in practice. It
has been used for solving recommender systems problems
(Koren et al., 2009), where (3) was solved using stochastic
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gradient descent (SGD). SGD is not an efficient techniques
and requires tuning of several parameters. In this work, we
will solve (3) in a more elegant fashion using Majorization-
Minimization (MM) (Sun et al., 2017). The basic MM approach
and its geometrical interpretation has been diagrammatically
represented (Figure S1). It depicts the solution path for a simple
scalar problem but essentially captures the MM idea.

For our given problem, the cost function to be minimized is
given as J(X) = ||Y − A(X)||2F ; the majorization step basically
decouples the problem (from A), so that we can solve the
optimization problem by solving

min
U,V
||B− UV||2F (4)

where Bk+1 = Xk+
1
aA

T(Y−A(Xk)) at each iteration k. Here, Xk

is the matrix at iteration k and a is a scalar parameter in the MM
algorithm.

This (4) is solved by alternating least squares (Hastie et al.,
2015), i.e., while updating U, V is assumed to be constant and
while updating V , U is assumed to be constant.

Uk ← min
U
||B− Uk−1Vk−1||

2
F (5)

Vk ← min
V
||B− UkVk−1||

2
F (6)

Since the log-transformed input (with pseudo count added)
expressions would never be negative, we have imposed a non-
negativity constraint on the recovered matrix X, so that it does
not contain any negative values.

The matrix factorization algorithm has been summarized in
Algorithm 1. The initialization of factor V is done by keeping r
right singular vectors of X in V obtained by performing singular
value decomposition (SVD) of X, where r is the approximate rank
of the expression matrix to be recovered.

Algorithm 1Matrix completion using matrix factorization

1: procedureMATRIX-FACTORIZATION(Y ,A, r)
2: Initialize:X = random, a,V (SVD initialization), k and l.
3: For loop 1, iterate (k)
4: Bk = Xk−1 +

1
aA

T(Y − A ◦ Xk−1)
5: For loop 2, iterate (l)
6: Ul ← min

U
||Bk − Ul−1Vl−1||

2
F

7: Vl ← min
V
||Bk − UlVl−1||

2
F

8: End loop 2

9: Xk = UkVk

10: Xk ← X+
k

11: End loop 1

4.5. Nuclear Norm Minimization
The problem depicted in (3) is non-convex. Hence, there is no
guarantee for global convergence. Also one needs to know the
approximate rank of the matrix X in order to solve it, which

is unknown in this case. To combat this issues, researchers
in applied mathematics and signal processing proposed an
alternative solution. They would directly solve the original
problem (1) with a constraint that the solution is of low-rank.
This is mathematically expressed as,

min
X

rank(X) such that Y=A(X) (7)

However, this turns out to be NP hard problem with doubly
exponential complexity. Therefore, studies in matrix completion
(Candes and Recht, 2009; Candès and Tao, 2010) proposed
relaxing the NP hard rank minimization problem to its closest
convex surrogate: nuclear norm minimization.

min
X
||X||∗ such that Y=A(X) (8)

Here ||.||∗ is the nuclear norm and is defined as the sum of
singular values of data matrix X. It is the l1 norm of the vector
of singular values of X and is the tightest convex relaxation of the
rank of matrix, and therefore its ideal replacement.

This is a semi-definite programming (SDP) problem. Usually
its relaxed version (Quadratic Program) is solved (Candès and
Plan, 2010) with the unconstrained Lagrangian version.

min
X
||Y − A(X)||2F + λ||X||∗ (9)

Here, ||.||∗ is the nuclear norm and λ is called the Lagrange
multiplier. The problem (9) does not have a closed form solution
and needs to be solved iteratively.

To solve (9), we invoke MM once more. Here J(X) = ||Y −
A(X)||2F + λ||X||∗ , we can express (9) in the following fashion in
every iteration k

min
X
||B− X||2F + λ||X||∗ (10)

where Bk+1 = Xk +
1
aA

T(Y − A(Xk)).
Using the inequality ||Z1 − Z2||F ≥ ||s1 − s2||2 , where s1 and

s2 are singular values of the matrices Z1 and Z2 respective, we can
solve the following instead of solving the minimization problem
(10).

min
sx
||sB − sX||

2
2 + λ||sX||1 (11)

Here, sB and sX are the singular values of B and X, respectively
and ||sX||1 is the l1 norm or the sum of absolute values of sX . It has
been shown that problem (10) is minimized by soft thresholding
the singular values with threshold λ/2. The optimal update is
given by

sX =







sB + λ/2 when sB ≤ −λ/2
0 when |sB| ≤ λ/2
sB − λ/2 whensB ≥ λ/2

(12)

or more compactly by

sX = soft(sB, λ/2) = sign(sB)max(0, |sB| − λ/2) (13)
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Algorithm 2Matrix completion via nuclear norm minimization

1: procedureMATRIX-NNM(Y ,A)
2: Initialize: X = random, a
3: For loop , iterate (k)
4: Bk = Xk−1 +

1
aA

T(Y − A ◦ Xk−1)
5: Compute SVD (singular value decomposition) of

B :Bk = USVT

6: Soft threshold the singular values:
6 = soft(S, λ/2) ⊲ refer equation 13

7: Xk = U6VT

8: Xk ← X+
k

9: End loop 1

We found that the algorithm is robust to values of λ as long as
as it is reasonably small (< 0.01).

Here too, we have imposed the non-negativity constraint on X
since expressions cannot be smaller than zero. The Nuclear Norm
Minimization algorithm has been depicted in Algorithm 2.

5. CONCLUSION

As an inevitable consequence of a steep decline in single
cell library depth, dropout rates in scRNA-seq data have
skyrocketed. This works as a confounding factor (Hicks
et al., 2015), thereby hindering cell clustering and further
downstream analyses. A good imputation strategy would
handle the Dropouts problem gracefully and thereby has the
potential to facilitate the discovery of new rare cell subtypes
within seemingly similar cells. This, in turn, can be helpful
for characterizing cancer heterogeneity and understanding
the dynamics of transcriptional changes during development.
The proposed mcImpute algorithm, without making any
assumption about the expression data distribution, recovers
dropouts by simultaneously retaining the true zero counts
and shows comparable performance on a number of

measures including clustering accuracy, cell type separability,
differential gene prediction, cell visualization, gene distribution,
etc.

We believe that McImpute, by far is the most intuitive way
of catering the dropouts problem. It can seamlessly be integrated
and serve as a key component in single-cell RNA seq pipeline.

Currently, imputation and clustering are together a piecemeal
two-step process—imputation followed by clustering. In the
future, we would like to incorporate both clustering and
imputation as a joint optimization problem.

6. SOFTWARE

The source code of mcImpute is shared at https://github.com/
aanchalMongia/McImpute_scRNAseq.

DATA AVAILABILITY STATEMENT

The details of datasets for this study has been given in section 4.

AUTHOR CONTRIBUTIONS

DS and AnM led the study, contributed to the statistical analysis
and design of the experiments. AaM analyzed and interpreted the
scRNA-seq data and performed the experiments. All authors read
and reviewed the manuscript.

ACKNOWLEDGMENTS

This manuscript has been submitted to the preprint server-
bioRxiv (Mongia et al., 2018).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00009/full#supplementary-material

REFERENCES

Abernethy, J., Bach, F., Evgeniou, T., and Vert, J. P. (2006). Low-rank matrix

factorization with attributes. arXiv preprint cs/0611124.

Amit, Y., Fink, M., Srebro, N., and Ullman, S. (2007). “Uncovering shared

structures in multiclass classification,” in Proceedings of the 24th International

Conference on Machine Learning (Corvallis, OR: ACM), 17–24.

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). “Multi-task feature learning,” in

Advances in Neural Information Processing Systems (Vancouver, BC), 41–48.

Bell, R. M. and Koren, Y. (2007). “Improved neighborhood-based collaborative

filtering,” in KDD Cup and Workshop at the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (San Jose, CA: Citeseer),

7–14 .

Bennett, J., and Lanning, S. (2007). “The netflix prize,” in Proceedings of KDD Cup

and Workshop Vol 2007 (New York, NY), 35.

Biase, F. H., Cao, X., and Zhong, S. (2014). Cell fate inclination within 2-cell and

4-cell mouse embryos revealed by single-cell rna sequencing. Gen. Res. 24,

1787–1796. doi: 10.1101/gr.177725.114

Candès, E. J., and Plan, Y. (2010). Matrix completion with noise. Proc. IEEE 98,

925–936. doi: 10.1109/JPROC.2009.2035722

Candes, E. J., and Recht, B. (2009). Exact matrix completion

via convex optimization. Found. Comput. Math. 9, 717–772.

doi: 10.1007/s10208-009-9045-5

Candès, E. J., and Tao, T. (2010). The power of convex relaxation: Near-

optimal matrix completion. IEEE Trans. Inf. Theor. 56, 2053–2080.

doi: 10.1109/TIT.2010.2044061

Gill, R., Datta, S., and Datta, S. (2010). A statistical framework for

differential network analysis from microarray data. BMC Bioinform. 11:95.

doi: 10.1186/1471-2105-11-95

Grün, D., Kester, L., and Van Oudenaarden, A. (2014). Validation of noise models

for single-cell transcriptomics. Nat. Methods 11:637. doi: 10.1038/nmeth.2930

Hastie, T., Mazumder, R., Lee, J. D., and Zadeh, R. (2015). Matrix completion

and low-rank svd via fast alternating least squares. J. Mach. Learn. Res. 16,

3367–3402.

Hicks, S. C., Teng, M., and Irizarry, R. A. (2015). On the widespread and critical

impact of systematic bias and batch effects in single-cell rna-seq data. bioRxiv

[preprint]. doi: 10.1101/025528

Holland, S. M. (2008). Principal Components Analysis (pca).

Athens, GA: Department of Geology, University of Georgia,

30602–2501.

Frontiers in Genetics | www.frontiersin.org 11 January 2019 | Volume 10 | Article 9

https://github.com/aanchalMongia/McImpute_scRNAseq
https://github.com/aanchalMongia/McImpute_scRNAseq
https://www.frontiersin.org/articles/10.3389/fgene.2019.00009/full#supplementary-material
https://doi.org/10.1101/gr.177725.114
https://doi.org/10.1109/JPROC.2009.2035722
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.1109/TIT.2010.2044061
https://doi.org/10.1186/1471-2105-11-95
https://doi.org/10.1038/nmeth.2930
https://doi.org/10.1101/025528
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mongia et al. McImpute

Kapur, A., Marwah, K., and Alterovitz, G. (2016). Gene expression

prediction using low-rank matrix completion. BMC Bioinformatics 17:243.

doi: 10.1186/s12859-016-1106-6

Keshavan, R. H., Montanari, A., and Oh, S. (2010). Matrix completion from a few

entries. IEEE Trans. Inf. Theor. 56, 2980–2998. doi: 10.1109/TIT.2010.2046205

Kharchenko, P. V., Silberstein, L., and Scadden, D. T. (2014). Bayesian approach

to single-cell differential expression analysis. Nat. Methods 11, 740–742.

doi: 10.1038/nmeth.2967

Klebanov, L., and Yakovlev, A., (2007). Diverse correlation structures in gene

expression data and their utility in improving statistical inference. Ann. Appl.

Stat. 1, 538–559. doi: 10.1214/07-AOAS120

Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., et al.

(2015). Droplet barcoding for single-cell transcriptomics applied to embryonic

stem cells. Cell 161, 1187–1201. doi: 10.1016/j.cell.2015.04.044

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer 8, 30–37. doi: 10.1109/MC.2009.263

Kwak, I. Y., Gong, W., Koyano-Nakagawa, N., and Garry, D. (2017). Drimpute:

imputing dropout events in single cell rna sequencing data. bioRxiv [preprint].

doi: 10.1101/181479

Lee, D. D., and Seung, H. S. (2001). “Algorithms for non-negative matrix

factorization,” in Advances in Neural Information Processing Systems 13, eds

T. K. Leen, T. G. Dietterich, andV. Tresp (Vancouver, BC:MIT Press), 556–562.

Li, H., Courtois, E. T., Sengupta, D., Tan, Y., Chen, K. H., Goh, J. J. L., et al.

(2017). Reference component analysis of single-cell transcriptomes elucidates

cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718.

doi: 10.1038/s41467-018-03405-7

Li, W. V., and Li, J. J. (2018). An accurate and robust imputation method scimpute

for single-cell rna-seq data. Nat. Commun. 9:997. doi: 10.1038/ng.3818

Liu, S., Maljovec, D., Wang, B., Bremer, P. T., and Pascucci, V. (2017). Visualizing

high-dimensional data: Advances in the past decade. IEEE Trans. Visual. Comp.

Grap. 23, 1249–1268. doi: 10.1109/TVCG.2016.2640960

Maaten, L. v. d., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605.

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al.

(2015). Highly parallel genome-wide expression profiling of individual cells

using nanoliter droplets. Cell 161, 1202–1214. doi: 10.1016/j.cell.2015.05.002

Majumdar, A., and Ward, R. (2011). Some empirical advances in matrix

completion. Signal Process 91, 1334–1338. doi: 10.1016/j.sigpro.2010.12.005

Marjanovic, G., and Solo, V. (2012). On lq optimization and matrix completion.

IEEE Trans. Signal Process. 60, 5714–5724. doi: 10.1109/TSP.2012.2212015

Mesbahi, M., and Papavassilopoulos, G. P. (1997). On the rank minimization

problem over a positive semidefinite linear matrix inequality. IEEE Trans.

Autom. Control 42, 239–243. doi: 10.1109/9.554402

Mongia, A., Sengupta, D., andMajumdar, A. (2018). Mcimpute: matrix completion

based imputation for single cell rna-seq data. bioRxiv [preprint]. doi: 10.1101/3

61980

Najafov, J., and Najafov, A. (2018). GECO: gene expression correlation analysis

after genetic algorithm-driven deconvolution. Bioinformatics 35, 156–159.

doi: 10.1093/bioinformatics/bty623

Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto,

H., et al. (2014). Single-cell rna-seq highlights intratumoral heterogeneity

in primary glioblastoma. Science 344, 1396–1401. doi: 10.1126/science.12

54257

Reynier, F., Petit, F., Paye, M., Turrel-Davin, F., Imbert, P. E., Hot, A., et al.

(2011). Importance of correlation between gene expression levels: application

to the type i interferon signature in rheumatoid arthritis. PLoS ONE 6:e24828.

doi: 10.1371/journal.pone.0024828

Sengupta, D., Rayan, N. A., Lim, M., Lim, B., and Prabhakar, S. (2016). Fast,

scalable and accurate differential expression analysis for single cells. bioRxiv

[preprint]. doi: 10.1101/049734

SIGKDD (2007). Kdd Cup 2007. Available at online: https://www.kdd.org/kdd-

cup/view/kdd-cup-2007. (Accessed December 15, 2018).

Silver, M., Chen, P., Li, R., Cheng, C.-Y., Wong, T.-Y., Tai, E.-S., et al. (2013).

Pathways-driven sparse regression identifies pathways and genes associated

with high-density lipoprotein cholesterol in two asian cohorts. PLoS Genet.

9:e1003939. doi: 10.1371/journal.pgen.1003939

Staiger, C., Cadot, S., Györffy, B., Wessels, L. F., and Klau, G. W. (2013).

Current composite-feature classification methods do not outperform simples

single-genes classifiers in breast cancer prognosis. Front. Genet. 4:289.

doi: 10.3389/fgene.2013.00289

Sun, Y., Babu, P., and Palomar, D. P. (2017). Majorization-minimization

algorithms in signal processing, communications, andmachine learning. Trans.

Sig. Proc. 65, 794–816. doi: 10.1109/TSP.2016.2601299

Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., et al.

(2010). Tracing the derivation of embryonic stem cells from the inner

cell mass by single-cell rna-seq analysis. Cell Stem Cell 6, 468–478.

doi: 10.1016/j.stem.2010.03.015

Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J.,

et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by

single-cell rna-seq. Science 352, 189–196.

Tomasi, C., and Kanade, T. (1992). Shape and motion from image streams

under orthography: a factorization method. Int. J. Comp. Vis. 9, 137–154.

doi: 10.1126/science.aad0501

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., et al.

(2014). Pseudo-temporal ordering of individual cells reveals dynamics and

regulators of cell fate decisions. Nat. Biotech. 32:381. doi: 10.1038/nbt.2859

Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lönnerberg, P., Lou, D., et al. (2015).

Unbiased classification of sensory neuron types by large-scale single-cell rna

sequencing. Nat. Neurosci. 18:145. doi: 10.1038/nn.3881

van Dijk, D., Nainys, J., Sharma, R., Kathail, P., Carr, A. J., Moon, K. R.,

et al. (2017). Magic: a diffusion-based imputation method reveals gene-

gene interactions in single-cell rna-sequencing data. BioRxiv [preprint].

doi: 10.1101/111591

Wagner, A., Regev, A., and Yosef, N. (2016). Revealing the vectors of

cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160.

doi: 10.1038/nbt.3711

Weckwerth, W., Loureiro, M. E., Wenzel, K., and Fiehn, O. (2004). Differential

metabolic networks unravel the effects of silent plant phenotypes.

Proc. Natl. Acad. Sci. U.S.A 101, 7809–7814. doi: 10.1073/pnas.03034

15101

Xiong, M., Feghali-Bostwick, C. A., Arnett, F. C., and Zhou, X. (2005). A systems

biology approach to genetic studies of complex diseases. FEBS Lett. 579,

5325–5332. doi: 10.1016/j.febslet.2005.08.058

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., et al. (2013).

Single-cell rna-seq profiling of human preimplantation embryos and

embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139. doi: 10.1038/

nsmb.2660

Ye, G., Tang, M., Cai, J. F., Nie, Q., and Xie, X. (2013). Low-rank

regularization for learning gene expression programs. PLoS ONE 8:e82146.

doi: 10.1371/journal.pone.0082146

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno,

G., Juréus, A., et al. (2015). Cell types in the mouse cortex and

hippocampus revealed by single-cell rna-seq. Science 347 , 1138–1142.

doi: 10.1126/science.aaa1934

Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., et al.

(2017). Massively parallel digital transcriptional profiling of single cells. Nat.

Commun. 8:14049. doi: 10.1038/ncomms14049

Zhou, X., Lindsay, H., and Robinson, M. D. (2014). Robustly detecting differential

expression in rna sequencing data using observation weights. Nucleic Acids Res.

42, e91–e91. doi: 10.1093/nar/gku310

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Mongia, Sengupta and Majumdar. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 12 January 2019 | Volume 10 | Article 9

https://doi.org/10.1186/s12859-016-1106-6
https://doi.org/10.1109/TIT.2010.2046205
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1214/07-AOAS120
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1101/181479
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1038/ng.3818
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.sigpro.2010.12.005
https://doi.org/10.1109/TSP.2012.2212015
https://doi.org/10.1109/9.554402
https://doi.org/10.1101/361980
https://doi.org/10.1093/bioinformatics/bty623
https://doi.org/10.1126/science.1254257
https://doi.org/10.1371/journal.pone.0024828
https://doi.org/10.1101/049734
https://doi.org/10.1371/journal.pgen.1003939
https://doi.org/10.3389/fgene.2013.00289
https://doi.org/10.1109/TSP.2016.2601299
https://doi.org/10.1016/j.stem.2010.03.015
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nn.3881
https://doi.org/10.1101/111591
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1073/pnas.0303415101
https://doi.org/10.1016/j.febslet.2005.08.058
https://doi.org/10.1038/nsmb.2660
https://doi.org/10.1371/journal.pone.0082146
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1093/nar/gku310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
	1. Background and Introduction
	2. Results
	2.1. Dropouts vs. True Zeros
	2.2. Improvement in Clustering Accuracy
	2.3. Matrix Recovery
	2.4. Improved Differential Genes Prediction
	2.5. Improvement in Cell Type Separability
	2.6. Cell Visualization
	2.7. Improvement in Distribution of Genes

	3. Discussion
	4. Data and Methods
	4.1. Dataset Description
	4.2. Data Preprocessing
	4.3. Low-Rank Matrix Completion: Definition
	4.4. Matrix Factorization
	4.5. Nuclear Norm Minimization

	5. Conclusion
	6. Software
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


