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Abstract

Many biologically active macrocycles contain a C–C double bond through which various other 

derivatives are prepared; the stereochemical identity of the alkene or the resulting moieties can be 

critical to the beneficial properties of such molecules. Catalytic ring-closing metathesis (RCM) is 

a widely employed method for the synthesis of large unsaturated rings;1,2 however, cyclizations 

often proceed without control of alkene stereochemistry.2 Such shortcoming is particularly costly 

with complex molecules when cyclization is performed after a long sequence of transformations.2 

Here, we outline a reliable, practical and general approach for efficient and highly stereoselective 

synthesis of macrocyclic alkenes by catalytic RCM; transformations deliver up to 97% Z 

selectivity due to control induced by a tungsten-based alkylidene. Utility is demonstrated by 

stereoselective preparation of anti-cancer epothilone C [Ref. 3–5] and anti-microbial nakadomarin 

A [Ref. 6], previously reported syntheses of which have been marred by late-stage non-selective 

RCM.7–15 The tungsten alkylidene can be manipulated in air, promoting reactions carried out in a 

fume hood to deliver products in useful yields and high Z selectivity. As a result of efficient RCM 

and re-incorporation of side products into the catalytic cycle with minimal alkene isomerization, 

desired cyclizations proceed in preference to alternative pathways even under relatively high 

concentration (0.1 molar).
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Catalytic ring-closing metathesis (RCM) of alkenes is indispensable to the preparation of 

cyclic structuresi; it is used extensively in the synthesis of biologically active moleculesii. 

RCM is broadly employed in accessing large rings, despite the lack of a reliably 

stereoselective variant, the availability of which would substantially enhance the value of 

this critical class of reactions. The absence of stereochemical control originates from the 

dependency of the catalytic ring closure on the energetic attributes of the product 

stereoisomers (vs. dictated by the catalyst). With small- or medium-rings, Z alkenes are 

generated exclusively; this is not so with sizeable rings, since, frequently, either the energy 

difference between the two isomeric alkenes is insufficient for achieving high 

stereoselectivity by thermodynamic control, or, if one isomer is adequately lower in energy, 

the catalyst is unable to promote facile equilibration.

The severe shortcoming in the state-of-the-art is illustrated by the two sets of non-selective 

catalytic RCM, shown in Fig. 1, performed en route to macrocyclic natural products 

epothilone Ciii,iv,v and nakadomarin Avi. Efforts from several laboratories have focused on 

catalytic RCM for synthesis of the macrocyclic moiety of different members of the 

epothilone family; popular catalysts, like those derived from alkylidene 1vii and carbenes 

2a–dviii,ix (Fig. 1), deliver little or no stereoselectivityx,xi. Initiatives regarding nakadomarin 

A (cf. 5→6, Fig. 1), consisting of four different routes that incorporate a late-stage catalytic 

macrocyclic ring closure, have met with equally unsatisfactory outcomesxii,xiii,xiv,xv.

Catalytic stereoselective RCM of dienes 3 and 5 (Fig.1) constitutes particularly compelling 

objectives for several reasons. Epothilone C (precursor to epothilone A), as well as 

nakadomarin A, belong to important classes of natural products that exhibit exceptional 

biological activityiv,v,vi,xvi. Epothilones are potent naturally occurring tubulin 

polymerization and microtubule stabilizing agents that have been investigated extensively. 

The geometry of the macrocyclic alkene has been shown to influence their activityxvi; the Z 

macrocyclic alkene of epothilone C is needed for the desired stereochemical outcome in the 

preparation of epothilone A through epoxidationx,xi. Nakadomarin A is a potent anti-

microbial and anti-cancer agent isolated only in minute quantitiesvi,xv. An effective method 

for laboratory synthesis of such important targets leads to larger quantities of these 

molecules or their analogs, which might not be easily accessible by fermentationxvii. As 

synthesis of the large rings in epothilone C or nakadomarin A entails the use of extensively 

functionalized substrates and occurs late in a multi-step sequence, a non-selective 

transformation inflicts a costly diminution in efficiency; this difficulty is exacerbated by the 

fact that the two alkene isomers of epothilone C and nakadomarin A are difficult to 

separatexviii. Moreover, with structurally complicated dienes such as 3 or 5, the tactic of 

carrying out preliminary studies involving simpler structural variants to help establish the 

feasibility of an RCM strategy is unreliable; substituents and their stereochemical identities 

play a pivotal role in the efficiency and stereoselectivity of catalytic ring closures and their 

absence often has a major influence on the cyclization processx. In a catalyst-controlled 

RCM, stereoselectivity would become far less dependent on the attributes of the diene 

starting material and therefore more predictable.

At the time the present investigations were initiated, efforts to address the above 

complications had centered on the more common but less efficient detour of altering 

Yu et al. Page 2

Nature. Author manuscript; available in PMC 2012 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



substrate structure (vs. identification of a catalyst that generates the desired alkene 

stereoselectively). One relatively established two-step approach consists of W- or Mo-

catalyzed alkyne RCM followed by Pd-catalyzed partial hydrogenationxix,xx: the first 

process affords the ring system and the other adjusts the oxidation state. Syntheses of the 

methyl-substituted alkyne precursors, required to enhance catalyst longevity and avoid 

oligomerizationxxi, necessitate additional manipulations; elevated temperatures (80–140 °C) 

are often required for ring closure, and the presence of Lewis basic alkylamines can lead to a 

need for high loadings of the metal complex (e.g., 50 mol %xxii) or complete catalyst 

inhibitionxxiii. More recently, macrocyclic RCM of a limited range of substrates involving 

reactions between an internal vinylsilane and a terminal alkene, followed by 

protodesilylation, has been disclosedxxiv. Two additional steps are again needed: the 

requisite vinylsilanes are prepared by Ru-catalyzed alkyne hydrosilylation, and the resulting 

trisubstituted silyl-substituted alkenes are converted to the cyclic Z alkene by treatment with 

a mixture of an ammonium fluoride, a silver fluoride salt and acetic acid. High catalyst 

loadings (20 mol %) are used in the latter RCM strategy, partly because of the intermediacy 

of a trisubstituted alkene.

We have introduced several types of intermolecular Z-selective olefin metathesis reactions 

promoted by molybdenum and, less commonly, tungsten alkylidenes that bear a pyrrolide 

and an alkoxide or an aryloxide ligand. Such stereogenic-at-metalxxv catalysts initiate Z-

selective alkene formation by ring-opening/cross-metathesisxxvi, homocouplingxxvii or the 

more complicated cross-metathesis (CM)xxviii. Stereochemical models that provide a 

mechanistic foundation for high Z selectivity have been proposedxxviii and are based on the 

size differential between the large aryloxide and the smaller imido group 

(metallacyclobutane substituents oriented towards the latter; see the Supplementary 

Information for details). Successful design of stereoselective macrocyclic RCM reactions, 

however, requires addressing challenges that are distinct from those pertaining to 

stereoselective CM reactions. When RCM or CM involves two unhindered alkenes, 

stereoisomeric purities can be fragile, since the kinetically-generated Z alkene can more 

readily undergo isomerization to the E isomerxxviii. With many cyclizations, such as those in 

Fig. 1, there is no allylic substituent to discourage association of the macrocyclic Z alkene 

with the catalyst to retard the rate of unwanted equilibration; adventitious ring-opening can 

pose a serious problem. Achieving high stereoselectivity and yield often calls for a catalyst 

that delivers the subtle and difficult balance that culminates in an efficient and Z- or E-

selective cyclization with little or no ring-opening/ring-closing that can cause isomerization. 

Thus, a complicating factor that is critical to RCM but does not apply to CM relates to the 

interplay between ring closure and isomerization by ring-opening. Furthermore, a commonly 

utilized strategy in CM relates to the use of excess amounts of one cross partner to favor 

formation of the desired product (vs. homocoupling or isomerization)xxviii; in an RCM, on 

the other hand, the two reacting alkenes can only be present at the same concentration. 

Whereas the steric and electronic attributes of one alkene may be rendered distinct in CM as 

the means to minimize homocoupling and enhance the yield of the desired productxxviii, 

such strategic differentiations are often not possible in RCM (cf. Fig. 1). Unlike CM, 

conformational preferences can be critical to the facility of RCM, aiding or resisting the 

influence of the catalyst. Finally, in CM only homocoupling can lead to adventitious 
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substrate consumption, whereas in RCM the same side product continues to deplete the 

substrate amount through oligomerization.

Examining the ability of different catalysts to promote the RCM of diene 11 to afford 

sixteen-membered ring lactone Z-12 (Table 1) was first on our agenda. Preliminary DFT 

calculations (see the Supplementary Information) revealed that the E isomer is 1.2 kcal/mol 

lower in energy, suggesting that, at equilibrium, there would exist an approximately 12:88 

Z:E mixture. A previously disclosed attempt involving ruthenium carbene 2a delivered 12 
with 77% E selectivity (i.e., 23% Z; 4.0 mol %, 22 °C, 30 h)xxix. As demonstrated in entries 

1–3, E-12 is formed preferentially with complexes 1 or 2c; reduced pressure, a strategy used 

to minimize isomerizationxxviii, does not improve selectivity (cf. entries 1 vs. 2). In contrast, 

Z-12 is generated with moderate preference when RCM is carried out with monopyrrolides 

7a–b (entries 4–6). Adamantylimido 8 furnishes 85% of the Z isomer under vacuum (7.0 

torr; 62% yield; entry 7); stereoselectivity increases to 92% Z with 1.2 mol % catalyst 

loading (entry 8; vs. 3.0 mol % in entry 7) while generating similar efficiency, presumably 

because isomerization of the cyclic Z alkene is reduced when the catalyst is less available. 

Reaction with tungsten alkylidene 9 leads to equally high yield and stereochemical control 

(62% and 91% Z; entry 9). There is exceptional stereoselectivity with dichloroimido 

tungsten alkylidene 10xxvii (95% Z; entry 10, Table 1), but the reaction proceeds only to 

14% conversion with this less active and sterically more demanding complex; longer 

reaction times do not result in significantly higher conversion. The preference for generation 

of the Z macrocycle is likely due to similar principles that result in stereoselective 

homocoupling and cross-metathesis reactions (see the Supplementary Information for a 

proposed model).

Next, we turned our attention to the challenge of achieving high Z selectivity in RCM 

reactions that lead to epothilones C and A (cf. Fig. 1). We prepared diene 3 along the lines 

of a formerly devised sixteen-step sequencex. Treatment of 3 with Ru-based 2d leads to 

preferential formation of the E isomer (66%; entry 1, Table 2). Use of 10 mol % arylimido 

Mo alkylidene 7a gives rise to 57% conversion to macrocyclic alkene 4 within three hours, 

but the Z isomer is only generated with 64% selectivity (entry 2). When adamantylimido 8 is 

employed under the same conditions (entry 3), efficiency and stereoselectivity improve 

(87% conv. in 1.5 h and 85% Z), presumably as a result of a more accessible metal center 

and larger size differential between the aryloxide and the alkylimido unit (cf. stereochemical 

model in the Supplementary Information). There is only a limited enhancement of 

conversion and stereoselectivity under reduced pressure (entry 4 vs. 3, Table 2). When ring 

closure is carried out under reduced pressure with tungsten alkylidene 10, which bears a 2,6-

dichlorophenylimido and a bulky 2,5-di-[2,4,6-(i-Pr)3]-phenoxy ligand (vs. aryloxides in 7–
9), (entry 5) the reaction proceeds to near completion in the same amount of time (2.5 h, 

97% conv.), allowing the desired macrocycle to be isolated in 85% yield (96% Z). As the 

data in entry 6 of Table 2 illustrate, with the reaction mixture fifty times more concentrated 

(0.05 M), 3.0 mol % of the same alkylidene can be used to synthesize the desired product (4) 

in 63% yield and 97% Z selectivity. The wider gap between percent conversion and yield 

values (97% and 63%, respectively) is largely the result of adventitious oligomerization, 

likely facilitated by the increased substrate concentration. Lactone 4 is converted to 
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epothilone C upon silyl ether removal (81% yield; Table 2); epoxidation of epothilone C 

generates epothilone Ax,xi.

The higher stereoselectivities furnished by W-based complex 10 are likely because, as stated 

above, it possesses the desired activity level. The tungsten alkylidene promotes efficient 

RCM at reasonable catalyst loading within being too active for it to react readily with the 

macrocyclic alkene to cause Z-to-E isomerization – even at late stages of the transformation 

when diene concentration is low. In contrast, the more active Mo-based variants likely 

initiate a similarly Z-selective RCM but are sufficiently active to engender subsequent ring-

opening/isomerization. It is possibly due to such attenuated activity that – contrary to the 

commonly held perception – tungsten alkylidene 10 proves to be sufficiently stable so that it 

can be easily handled in air. An example is shown in entry 7 of Table 3: with 7.5 mol % 10, 

weighed in air under up to 80% humidity, and all manipulations performed in a fume hood 

with standard glassware, macrocyclic alkene 4 is delivered in 82% yield and 94% Z 

selectivity (219 mg scale). It should be mentioned that the faster acting Mo complexes, 

superior to W-based alkylidenes in effecting intermolecular CM reactionsxxviii, are more 

sensitive to air and moisture.

The above findings broach the question as to whether the low stereoselectivity in the 

synthesis of the fifteen-membered ring moiety of nakadomarin A (cf. Fig. 1) can be 

addressed through the use of monopyrrolide complexes. As indicated by the data in entries 

1–2 of Table 3, arylimido molybdenum alkylidene 7b affords only 10% conversion to 6, a 

precursor to the natural product. In contrast, the sterically more accessible adamantylimido 8 
readily converts 5 to pentacycle 6, but with only 69:31 Z:E selectivity. Similarly, reaction 

with tungsten alkylidene 9 is inefficient likely due to slow rate of initiation (entry 3, Table 

3). The robust tungsten alkylidene 10, on the other hand, again emerges as the source of a 

facile and uniquely stereoselective catalyst (entry 4, Table 3): the desired pentacycle 6 is 

obtained in 90% yield after purification and with 97% Z selectivity (performed with 107 mg 

of 5).

It is striking that under conditions (0.1 M; entry 5, Table 3) routinely used to perform a 

typical chemical transformation (vs. high dilution typically required for marcocyclic RCM), 

reaction proceeds to furnish 6 in 52% yield and 94% Z selectivity. Equally noteworthy is 

that when cyclization of 5 is carried out at 0.1 M concentration, reduced pressure is not 

necessary (i.e., ethylene is not removed). Otherwise, 6 is obtained in lower yield and 

selectivity (39% and 90% Z under 7.0 torr, entry 6, Table 3). Since at higher concentration 

of the diene, homocoupling is rampant, it is likely that the ethylene formed as the byproduct 

raises the availability of the highly reactive methylidene complexxxviii, which converts the 

homocoupled product to the monomeric RCM substrate, thus increasing the yield of the 

desired product. The above scenario, and the fact that Z selectivity remains high at 0.1 M 

concentration (94% Z), implies that the tungsten methylidene reacts with the acyclic alkene 

of the homocoupled triene preferably (vs. with the cyclic alkene 6 to promote 

isomerization). The somewhat lower stereoselectivity observed under vacuum (90:10 vs. 

94:6 Z:E, entries 5–6, Table 3) might be because some macrocyclic product is formed 

through RCM involving the alkylidene derived from the terminal alkene of the homocoupled 

byproduct. The latter pathway to pentacyclic 6 can be less selective than RCM via diene 5, 
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arising from reaction of two terminal alkenes. It is consequently as a result of several 

delicate reactivity preferences that the RCM with complex 10 in a 0.1 M solution can be 

performed efficiently and selectively.

Total synthesis of nakadomarin A might alternatively be accomplished by a late-stage 

stereoselective RCM (vs. at an earlier point as in the pathway in Table 3); such a plan, 

however, can present additional complications and a non-selective RCM translates to loss of 

a more valuable advanced intermediate. One route proceeds through the especially 

demanding RCM (vs. 5→6) of azacene-containing 13xv (Fig. 2): the higher ring strain 

within the pentacyclic diene substrate is not only expected to discourage ring closure, it 

likely lowers the barrier to undesired rupture of the macrocyclic alkene. Accordingly, past 

attempts at achieving conversion of 13 to nakadomarin A, as shown in Fig. 2, have involved 

the significantly less reactive ruthenium carbene 2bviii (vs. 2c–d) in order to minimize post-

RCM isomerization of the macrocyclic alkene. Use of such a reluctant catalyst, which must 

be introduced slowly, translates to high loadings and elevated temperatures (20 mol %, 40 

°C). Extremely dilute conditions (0.2 mM) are needed as well, since it is unlikely that under 

such conditions any homocoupled byproducts that would otherwise be formed can be 

reverted back to the monomeric dienes or converted directly to the desired macrocycle. 

Additionally, the presence of substantial quantities (300 mol %) of camphorsulfonic acid, a 

strong BrØnsted acid, is required for achieving 63% Z selectivity (otherwise, slight excess of 

the E alkene is obtained)xv. In sharp contrast, treatment of 13 with 5.0 mol % 10 at 22 °C 

affords nakadomarin A in 94% Z selectivity and 63% yield (plus 9% recovered diene). 

Finally, it should be noted that attempts to effect alkyne RCM of the diyne derivative of 13 
(Me-substituted), bearing two Lewis basic tertiary amines, with either Mo- or W-based 

alkylidynes leads to <5% conversion even with 30–50 mol % of a metal complex and at 80 

°C (up to 24 h); this latter approach must therefore involve the use of the derived bisamide 

(20–25 mol % catalyst, 80 °C, 16–18 h).

The investigations described above point to stereogenic-at-tungsten alkylidenes as practical 

and uniquely effective catalysts for Z-selective macrocyclic RCM. We demonstrate that, in 

planning a multi-step pathway for the preparation of a complex molecule, such complexes 

can be relied upon to deliver the desired outcome at the late stages of an extended route. The 

impact of stereoselective W-catalyzed marcocyclizations reaches beyond the target 

structures probed in this study, as there are numerous other total synthesesxxii, xxx of 

biologically active molecules that would similarly benefit from the protocols disclosed here.

METHODS SUMMARY

General procedure for catalytic Z-selective macrocyclic RCM

A 250-ml Schlenk flask, fitted with a connecting adapter attached to an argon-filled 

manifold, was flame-dried and charged with diene 3 (0.219 g, 0.298 mmol). After azeotropic 

distillation with dry benzene (three times; freeze-pump), the apparatus was charged with 

tungsten complex 10 (21.9 mg, 22.4 μmol, weighed in air), evacuated, back-filled with argon 

and charged with mesitylene (50.0 ml). The mixture was exposed to vacuum (0.02 torr) and 

allowed to stir for four hours at 22 °C, after which the reaction was quenched by the addition 

of wet diethyl ether (~1 ml). Purification by silica gel chromatography (hexanes:diethyl 
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ether 20:1) afforded 4 (0.172 g, 0.243 mmol, 82% yield, 94:6 mixture of Z:E isomers, 

determined by 500 MHz 1H NMR) as a white foam and 9.3 mg of the recovered starting 

material (13 μmol, 3.0%).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two cases in natural product total synthesis where catalytic RCM with some of the 
most commonly used complexes (1, 2b–d) affords the macrocyclic alkene with minimal 
stereoselectivity and often with a preference for generation of the undesired E isomer
Difficulties in stereoselective ring closure are particularly detrimental since the catalytic 

RCM takes place late in the synthesis route, inflicting substantial loss in efficiency. For 

example, diene 3, used in the total synthesis of anti-cancer agent epothilone C, is prepared 

by a 16-step sequence. TBS = t-butyldimethylsilyl; Boc = t-butoxycarbonyl.
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Figure 2. Total synthesis of nakadomarin A realized through late-stage tungsten-catalyzed RCM 
of pentacyclic 13 and comparison with results delivered by Ru catalysts
RCM of the strained 13 with tungsten complex 10 affords the natural product in 63% yield 

(69% based on recovered substrate) and 94% Z selectivity. This is in contrast to previous 

attempts, the best of which involves 20 mol % of a Ru carbene added slowly to a highly 

dilute solution (0.2 mM) to generate only 63:37 Z:E mixture.
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