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Abstract

Human Papillomaviruses (HPVs) are a diverse group of viruses that infect the skin and mucosal tissues of humans. A high-
risk subgroup of HPVs is associated with virtually all cases of cervical cancer [1–3]. High-risk HPVs are transmitted sexually;
however, the exact mechanisms by which sexual contact promotes virus infection remain uncertain. To study this question
we asked whether capsids of HPV type 16 (a high-risk HPV) specifically interact with sperm cells. We tested if purified HPV16
virions directly adsorb to live human sperm cells in native semen and in conditions that resemble the female genital tract.
We found that HPV16 capsids bind efficiently to two distinct sites at the equatorial region of the sperm head surface.
Moreover, we observed that the interaction of virus with sperm can be reduced by two HPV infection inhibitors, heparin and
carrageenan. Our findings suggest that 1) sperm cells may serve as motile carriers that promote virus dispersal and mucosal
penetration, and 2) blocking interactions between HPV16 and sperm cells may be an important strategy for the
development of antiviral therapies.
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Introduction

Human Papillomaviruses (HPVs) comprise a highly diverse

group of non-enveloped DNA viruses. HPVs commonly infect

mucosal genital epithelia, with an estimated 75% of humans being

affected [1,2]. Although many HPV infections remain clinically

inconspicuous or develop benign symptoms such as warts

(papillomas), a subset of infections lead to cancer of the uterine

cervix [3–5]. The majority of cervical cancers are induced by one

highly oncogenic HPV type, HPV16, which has received

significant public attention for the past decade [3].

HPV16 is primarily transmitted through sexual intercourse.

However, the exact mechanism by which sexual contact promotes

virus infection remains unclear. To infect, the virus must overcome

the body’s first line of defense, a thick mucus layer in the female

genital tract that shields the underlying cells from contact with

noxious agents and pathogens [6–9]. We might expect that viruses

have evolved strategies to facilitate their dispersal through the

mucus gel. In cytoplasm, viruses exploit the motility of motor

proteins [10]. In mucus, viruses perhaps also exploit exogenous

sources of motility.

Sperm cells associated with sexual contact are highly motile and

well adapted to passage through mucus [11]. We hypothesize that

sexually transmitted viruses may have evolved to exploit sperm

cells as vehicles for dispersal and mucus penetration within the

female genital tract. If this hypothesis is correct, HPV16 should be

able to bind to live human sperm cells.

Results and Discussion

We aimed to test the possibility that HPVs can interact with

sperm cells with an in vitro system. HPV16 is an excellent model to

study this question because infectious HPV16 capsids, also called

pseudovirions, can be produced in vitro in large quantities using

cultured cell lines. Biochemical and genetic perturbations of

HPV16 pseudovirions are therefore feasible; their interactions with

defined mucus components and effects on virus motility can be

studied directly. We used HPV16 capsids that were covalently

labeled with Alexa Fluor 488 (Alexa488) for direct detection. This

modification does not compromise capsid integrity or infectivity

[12].

First, we studied HPV16-sperm interaction in freshly ejaculated,

undiluted human semen. Fluorescent HPV16 capsids were added

to semen at a final concentration of 80 mg/ml and the capsid-

semen mixture was incubated at 37uC. At various time points,

aliquots were taken and sperm were analyzed for association with

HPV16 capsids by live fluorescence microscopy. Under these

conditions, no HPV16 capsids were detected on the surface of

sperm, even after several hours of incubation (data not shown).

Semen contains high concentrations of soluble proteins that

could protect sperm from potentially deleterious interactions with

virus capsids. When semen is passed into the female genital tract, it

mixes with vaginal fluids. Seminal factors are diluted, and sperm

are exposed to a comparably acidic environment, which can reach

pH values below 4 due to lactic acid production by native vaginal
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microflora. Both the absence of seminal factors and low pH may

affect the propensity of sperm cells to associate with HPV16.

To test this possibility, we washed sperm prior to exposure with

HPV16 capsids. To account for a possible influence of pH, we

conducted the virus-sperm association reaction at pH 8.6, which

resembles conditions in native semen, and pH 7.4. The washing

procedure and the buffer composition were optimized to achieve

maximal sperm viability for the duration of the experiment (see

Material and Methods). In both conditions, HPV16 capsids

rapidly adsorbed to the surface of the sperm heads. The capsids

accumulated specifically at two foci, one located on each side of

the sperm head along its equator (Fig. 1). Viral binding was

observed on 52% of live sperm when the reaction was carried out

at pH 8.6, and increased to 72% in more neutral conditions

(pH 7.4) (Table 1).

Two controls assessed the specificity of the HPV16-sperm

interaction: First, HPV16 capsids tagged with L2-GFP fusion

protein [13] instead of Alexa488 also localized to the two foci (data

not shown), confirming that the capsid, not the Alexa488 dye,

mediated this interaction. Second, bacterially-produced Alexa488-

labelled maltose binding protein (MBP) did not accumulate at

these domains but instead bound weakly at irregular patches on

sperm head and tail (Fig. 1 and Table 1). This suggests that certain

properties specific to the HPV16 capsid, which are absent from

MBP, facilitate binding to the foci on the sperm head.

Together, our data reveal that HPV16 capsids can bind live

human sperm cells. Interactions of HPV with sperm have been

Figure 1. HPV16 capsids bind to distinct foci at the equatorial region of live sperm. Freshly ejaculated sperm cells were washed and
subjected to purified Alexa488 labeled HPV16 capsids or Alexa488 maltose binding protein (MBP), which was used as a control. The protein-sperm
reaction was incubated at 37uC for 10 min and subsequently analyzed by live confocal microscopy. The capsids accumulated specifically at two foci,
one located on each side of the sperm head along its equator. It is crucial to note that this specific localization was detectable only on live sperm; on
sperm with compromised viability, capsids stained a ring surrounding the entire sperm head. In contrast to HPV16 capsids, Alexa488 MBP bound
faintly to irregular patches on sperm head and tail. Scale bar, 2 mm.
doi:10.1371/journal.pone.0005847.g001

Table 1. Quantification of HPV16-sperm interaction.

Percentage sperm+/2SD associated
with:

HPV16 MBP

native semen 0 0

buffer: pH 8.6 52.5+/215.0 0

pH 7.4 71.6+/22.0 0

+i-carrageenan 33+/217.5 0

+heparin 15.8+/29.4 0

Freshly ejaculated sperm cells were washed and incubated with Alexa488
labeled HPV16 capsids or the control protein Alexa488 MBP. Sperm-washing
and the virus-sperm binding reactions were carried out as indicated at pH 8.6 or
pH 7.4 (for buffer composition see Methods). The virus-sperm mixture was
incubated at 37uC for 10 min and subsequently analyzed by live microscopy.
The number of sperm with fluorescent staining at one or both foci on the
sperm head was determined. Only live sperm, i.e. visibly moving cells, were
considered. The numbers represent averages drawn from three independent
experiments. In each experiment, 50 sperm cells were evaluated. Note that the
association of HPV16 to sperm increases in efficiency at neutral conditions. To
assess the effect of carrageenan and heparin on the HPV16-sperm interaction,
HPV16 capsids were pre-incubated with carrageenan (0.1 mg/ml) or heparin
(0.1 mg/ml) at RT for 10 min to allow association of the molecules to the
capsids. Thereafter, the capsid-inhibitor mixture was added to the washed
sperm in buffer at pH 7.4. Both heparin and carrageenan significantly reduced
binding of HPV16 to sperm.
doi:10.1371/journal.pone.0005847.t001
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observed previously [14–19]. Our study extends these observations

in two important ways: it shows that HPV16 has two distinct

binding sites along the equator of the sperm heads, and moreover,

that virus association to these domains is more efficient in neutral

conditions and after removal of soluble seminal factors. It is

possible that seminal factors, when present at high concentrations,

prevent interactions between HPV16 and sperm. We deduce that

the association of HPV16 with sperm is unlikely to occur in native

semen, but rather may be promoted in the female genital tract at

comparably low pH following the dilution of seminal fluid.

A direct interaction with live sperm cells has been documented

for the vertically transmitted fish rhabdovirus, which causes infectious

hematopoietic necrosis in salmonids [20]. Salmonid fish are oviparous

species with external fertilization. The rhabdovirus adsorbs to sperm

and transfers with it to the egg through the open water. We propose

that mechanistically similar interactions occur between HPV16 and

human sperm, and that these interactions promote HPV16 dispersal

and mucosal penetration in the female genital tract.

HPVs and numerous other sexually transmitted viruses initially

bind to negatively charged cell-surface glycosaminoglycans

(GAGs), particularly heparan sulfate proteoglycans (HSPGs), on

cultured epithelial cells (reviewed in [21]). The surface of sperm is

also densely coated with carbohydrates [22], which may provide

viral binding sites similar to those found on epithelial surfaces. If

this is correct, it should be possible to compete for virus

attachment with soluble factors that resemble GAGs in chemical

structure. Heparin and carrageenan, two sulfated polysaccharides,

have this property. Both molecules directly bind to papillomavirus

capsids and efficiently block their association with cell-surface

HSPGs [12,23–25]. Heparin is a highly sulfated form of heparan

sulfate produced by mast cells. Carrageenan is a class of sulfated

polysaccharide extracted from marine red algae (seaweed), which

is used as a thickener in several commercially available sexual

lubricant products.

Both HSPG-mimicking compounds significantly reduced bind-

ing of HPV16 to sperm (Table 1). This suggests that GAGs, or

molecules of similar chemical structure, are present on specific

domains of the sperm surface and enable attachment of HPV16.

This interaction may be related to the biochemical mechanism by

which HPV16 adsorbs to cell surface GAGs on epithelial cells at

initial stages of infection. Importantly, many viruses other than

HPV bind epithelial cell surface GAGs [21]. Two examples are

human immunodeficiency virus (HIV) and herpes simplex virus

(HSV), which are also mucosotropic viruses transmitted via sexual

contact. Indeed, an association of HIV and HSV with sperm has

been reported [26–33]. It is possible that these viruses bind to

similar binding sites as HPV16, and that hitchhiking on sperm

may be a general strategy used by sexually transmitted viruses to

overcome long distances and mucus barriers in the female genital

tract.

The potential importance of virus-sperm association for HPV16

dispersal and mucosal penetration suggests that blocking viruses

from binding to sperm may be a new and general strategy to

prevent sexually transmitted viral diseases. Peptides derived from

HPV16 or benign intact viruses that shield binding sites on the

surface of sperm are excellent candidates to achieve this. Such

tools may offer an important advantage over vaccination with

antigens. Viruses can rapidly evolve new surface properties to

escape neutralization by specific antibodies. However, to bypass

inhibitors of virus-sperm attachment, the virus must evolve new

interaction mechanisms that exploit novel binding sites on the

sperm head, which are presumably limited. Thus, blocking viral

attachment to sperm may be a more sustainable method of disease

prevention than conventional vaccination.

Materials and Methods

Reagents and buffers
Alexa488 labeled HPV16 capsids were produced as previously

reported [12]. Detailed protocols for production and handling of

HPV capsids are available at the website ,http://home.ccr.

cancer.gov/Lco/.. Heparin (H4784) and i-carrageenan (C0414)

were obtained from Sigma. Recombinant MBP was expressed,

purified, and covalently labeled with Alexa488 as previously

described [34].

In vitro HPV16-sperm association reaction
For each experiment freshly ejaculated sperm from one of four

donors was prepared. Semen was processed, and the experiments

conducted, within 6 hours to maintain maximal sperm viability.

To remove soluble seminal factors, native semen was diluted 1:10

with reaction buffer (see below) at the desired pH and incubated

for 10 min at 37uC. Sperm cells were pelleted at 300 rcf for

10 min, the supernatant was rapidly discarded, and the pelleted

sperm cells were resuspended in prewarmed buffer to repeat the

washing step. After three rounds of washing, sperm cells were

resuspended in reaction buffer and used for incubation with the

HPV16 capsids.

The reaction buffer for the virus-sperm association consisted of

50 mM Tris (pH 8.6 and 7.4), 35 mM NaCl, 3 mM KCl, 2 mM

CaCl2, 1 mM MgSO4, 500 mM glucose, and 0.1% BSA. Similar

effects were seen when Hepes instead of Tris was used as the

buffering agent at pH 7.4.

Alexa488 labeled HPV16 capsids and Alexa488 MBP were

added in separate reactions at final concentrations of 80 mg/mL

and 5 mM, respectively. The reaction volume was 25 mL. To

assess effects of carrageenan and heparin on the association of

HPV16 with sperm, HPV16 capsids were pre-incubated with

carrageenan or heparin at different concentrations at RT for

10 min to allow association of the molecules to the capsids.

Thereafter, the inhibitor-HPV16 mixture was combined with

washed sperm to start the reaction. The carrageenan and heparin

concentrations that are indicated in Table 1 and in the main text

were the concentrations at which maximal suppression of HPV16

attachment was observed in our experimental conditions.

Protein-sperm mixtures were incubated at 37uC. At different

time points, aliquots were taken and live sperm were scored by

fluorescence microscopy. Fifty live sperm cells were evaluated per

experiment, and each experiment was repeated three times.
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