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A better understanding of the mechanisms underlying parturition would provide an impor-
tant step toward improving therapies for the prevention of preterm labor. Aldo–keto reduc-
tases (AKR) from the 1D, 1C, and 1B subfamilies likely contribute to determining the timing
of parturition through metabolism of progesterone and prostaglandins. Placental AKR1D1
(human 5β reductase) likely contributes to the maintenance of pregnancy through the
formation of 5β-dihydroprogesterone (DHP). AKR1C1, AKR1C2, and AKR1C3 catalyze the
20-ketosteroid and 3-ketosteroid reduction of progestins. They could therefore eliminate
tocolytic progestins at term. Activation of the F prostanoid receptor by its ligands also
plays a critical role in initiation of labor. AKR1C3 and AKR1B1 have prostaglandin (PG) F
synthase activities that likely contribute to the initiation of labor. AKR1C3 converts PGH2 to
PGF2α and PGD2 to 9α,11β-PGF2. AKR1B1 also reduces PGH2 to PGF2α, but does not form
9α,11β-PGF2. Consistent with the potential role for AKR1C3 in the initiation of parturition,
indomethacin, which is a potent and isoform selective inhibitor of AKR1C3, has long been
used for tocolysis.
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INTRODUCTION
Preterm birth (prior to 37 weeks gestational age) is the principle
cause of neonatal morbidity and mortality in the developed world.
The United States has one of the highest rates of preterm births in
the developed world, occurring in 12–13% of pregnancies (Gold-
enberg et al.,2008). Preterm deliveries account for 75% of perinatal
mortality and surviving preterm infants are at risk for neurolog-
ical, respiratory, and gastrointestinal complications (Goldenberg
et al., 2008; Iams et al., 2008). Treatments such as intravaginal prog-
esterone can be effective at maintaining pregnancies in women at
increased risk for preterm labor. Tocolytic therapies to stop active
labor do not delay parturition long enough to allow further fetal
development, but do provide time for transportation to a hospital
with a neonatal intensive care unit (Iams et al., 2008; Mackeen
et al., 2011). However, tocolytics have a variety of side effects and
there is not enough evidence of benefit to the infant to justify their
use (Mackeen et al., 2011).

The mechanisms underlying the initiation of labor are poorly
understood, which has limited progress on therapies to maintain
pregnancy or stop preterm labor. The lack of a suitable animal
model has limited progress toward understanding human partu-
rition (Smith, 2007; Veliça et al., 2009; Hill et al., 2010; Nanjidsuren
et al., 2011). The roles of the placenta and other reproductive tis-
sues in parturition, as well as specific steroid and prostaglandin
metabolites, differ considerably between mammalian species. Fur-
thermore, the substrate specificities and expression levels of the
aldo–keto reductase (AKR) isoforms differ considerably between
species. Given the discrepancies in mechanism between species,
this review will focus on the AKRs and their substrates and
metabolites in human pregnancy.

Progestins play a critical role in human pregnancy, as demon-
strated by the efficacy of progesterone in maintaining pregnancy
and of the progesterone receptor (PR) antagonist mifepristone in
terminating pregnancy and initiating labor (McGill and Shetty,
2007; Iams et al., 2008; Kulier et al., 2011). In other species,
a decline in circulating progesterone levels, mediated by dis-
tinct pathways, precedes the onset of labor at term (Smith, 2007;
Zakar and Hertelendy, 2007). However, serum progesterone lev-
els do not decline during human pregnancies, suggesting that
a different mechanism determines the timing of labor. The
exact role of progesterone and its metabolites in determining
the timing of human labor remains a mystery. Proposed path-
ways include paracrine regulation through increased myometrial
expression of progesterone metabolizing enzymes and/or changes
in PR expression. In addition to direct actions of progesterone,
actions of its metabolites are likely involved. In particular, 5β-
dihydroprogesterone (5β-DHP) inhibits myometrial contractil-
ity (Kubli-Garfias et al., 1979; Grazzini et al., 1998; Thornton
et al., 1999; Sheehan, 2006). The activities of human AKR1D1
and AKR1Cs suggest they play critical roles in mediating these
processes.

Prostaglandins (PG) are also key mediators of parturition.
Upregulation of PGH2 synthase 2 occurs late in pregnancy, result-
ing in an increase in the synthesis of prostaglandins, particu-
larly the PGF2 isomers (Mijovic et al., 1999; Slater et al., 1999;
Mitchell et al., 2005; Lee et al., 2008b). Activation of the F
prostanoid (FP) receptor by prostaglandins stimulates cervical
ripening and the initiation of labor (Kelly et al., 2003). AKR1B1
and AKR1C3 are the enzymes that form the PGF2 isomers in
humans.
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AKR1D1 IN THE MAINTENANCE OF PREGNANCY
AKR1D1, human 5β-reductase, catalyzes the formation of 5β-
androstanes and 5β-pregnanes and contributes to the formation
of bile acids in the liver (Charbonneau and Luu-The, 2001; Chen
et al., 2011). Of particular relevance to pregnancy, AKR1D1 cat-
alyzes the conversion of progesterone to 5β-DHP (Figure 1; Char-
bonneau and Luu-The, 2001; Chen et al., 2011). 5β-DHP may be
a key mediator of the pregnancy maintaining effects of proges-
terone. While levels of progesterone do not decrease during the
final week of pregnancy, levels of 5β-pregnanes decline starting in
week 31 (Hill et al., 2007). This decline appears to be largely the
result of decreased 5β-reduction, although increased downstream
metabolism may also occur. Although 5β-DHP was proposed to
bind directly to the oxytocin receptor and antagonize oxytocin
binding (Grazzini et al., 1998), others have not been able to repli-
cate this finding (Burger et al., 1999; Astle et al., 2003). 5β-DHP
could also inhibit contractions through activation of the preg-
nane X receptor (Mitchell et al., 2005), allosteric modulation of
the GABA receptor (Putnam et al., 1991), or through some as yet
unknown mechanism. Although the mechanism is uncertain, it
is clear that 5β-DHP limits myometrial contractility; it is signifi-
cantly more potent than progesterone at inhibiting the contraction
of myometrial cells in vitro (Kubli-Garfias et al., 1979; Thornton
et al., 1999).

Elevated expression of AKR1D1 likely helps maintain human
pregnancy. The placenta appears to be the major site of AKR1D1
expression, although it is also expressed in the myometrium (Shee-
han et al., 2005). The decline in 5β-DHP levels during labor are
accompanied by a significant decline in AKR1D1 mRNA levels.
The effect was particularly pronounced in the myometrium, which
demonstrated a sevenfold reduction in AKR1D1 levels (Shee-
han et al., 2005). Decreased synthesis of relaxatory pregnanes by
AKR1D1 may play an important role in the onset of labor.

AKR1D1 exhibits potent substrate inhibition by Δ4-ene
steroids due to binding in a non-productive conformation (Di
Costanzo et al., 2008; Faucher et al., 2008; Chen et al., 2011),

FIGURE 1 | Progesterone metabolism by AKR1D1 and AKR1Cs in

pregnancy. AKR1D1 is likely to inhibit myometrial contractions through
formation of 5β-dihydroprogesterone, while AKR1C1, AKR1C2, and
AKR1C3 are likely to stimulate contractions through the elimination of
progesterone and 5β-dihydroprogesterone. AKR1D1 and the AKR1Cs might
also contribute to formation of neuroactive progesterone metabolites. The
AKR1Cs would have similar activities toward 5α-dihydroprogesterone (not
shown).

suggesting a second mechanism for the regulation of its activity.
The presence of other Δ4-ene steroids, particularly 11-deoxy-
corticosterone and 4-androstene-3,17-dione (Chen et al., 2011),
would be anticipated to potently decrease the formation of 5β-
DHP by AKR1D1. 4-Androstenedione levels are slightly elevated
during labor, while levels of its aromatase product estrone are very
high during labor (Hill et al., 2010). Given the permissive ligand
binding pocket of AKR1D1 (Di Costanzo et al., 2008; Faucher et al.,
2008), it is likely that steroids that are not substrates, including
estrogens, will serve as inhibitors. This inhibition might contribute
to the induction of labor by estrogens.

Although it is found in higher concentrations than 5β-DHP
throughout pregnancy, 5α-DHP formation does not appear
to contribute to the timing of labor. 5α-DHP is completely
unable to inhibit myometrial contractility in vitro (Kubli-Garfias
et al., 1979). Ratios of progesterone to 5α-DHP remain constant
throughout pregnancy and it appears that expression levels of 5α-
reductase enzymes remain elevated throughout pregnancy (Hill
et al., 2010). Much of the work that has investigated 5α-reduced
pregnanes in pregnancy has focused on their neuroendocrine
effects, including their anxiolytic and anesthetic effects in the
mother, and their important role in protecting the developing ner-
vous system of the neonate (Amin et al., 2006; Hirst et al., 2006;
Hill et al., 2011). Both 5α- and 5β-progestins, particularly allo-
pregnanolone and pregnanolone, act as allosteric modulators of
GABAA receptors (Reddy, 2010).

KETOSTEROID REDUCTION BY AKR1Cs IN PARTURITION
Members of the AKR1C subfamily are likely to help initiate labor
by catalyzing the formation of inactive progestin metabolites, lead-
ing to paracrine suppression of PR signaling (Figure 1). AKR1C1,
AKR1C2, and AKR1C3 eliminate progesterone, 5α-DHP, and 5β-
DHP through their 20-ketosteroid reductase activities (Penning
et al., 2000; Jin et al., 2011). Furthermore, they possess substantial
3-ketosteroid reductase activities that provide another pathway
for the metabolism of 5α-DHP and 5β-DHP (Jin et al., 2011).
The 20α-, 3α-, and 3β-hydroxy-progestin products of AKR1C
enzymes have reduced tocolytic activities and are substrates for
elimination through glucuronidation or sulfation. The 3-hydroxy
products, such as pregnanolone and allopregnanolone, are neu-
roactive and could contribute to analgesic and anxiolytic effects in
the mother and neuroprotection of the fetus (Steckelbroeck et al.,
2004; Amin et al., 2006; Hirst et al., 2006; Reddy, 2010; Hill et al.,
2011). The stereochemistry for the reduction of 3-ketosteroids
varies between AKR1C isoforms and between 5α-DHP and 5β-
DHP, while reduction of the ketone at the 20 position exclusively
forms the 20α-stereoisomer (Jin et al., 2011).

AKR1C1, AKR1C2, and AKR1C3 are expressed in reproduc-
tive tissues, including the placenta, myometrium, and cervix
(Nishizawa et al., 2000; Andersson et al., 2008; Lee et al., 2008a;
Hevir et al., 2011). Placental tissues obtained from pregnancies
at term reduce progesterone to 20α-hydroxyprogesterone at five
times the rate of placentas from the first trimester and there is a
further increase in activity with the onset of labor (Milewich et al.,
1978; Diaz-Zagoya et al., 1979). It is not known whether expres-
sion levels of the AKR1C enzymes correspond to the observed
activity. Expression of mRNA encoding AKR1C1 is elevated in
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the myometrium during spontaneous, but not oxytocin induced,
labor (Lee et al., 2008a). AKR1C1 has the highest catalytic activity
toward 20-ketosteroids, and this enzyme likely plays an impor-
tant role in the inactivation of myometrial progesterone during
spontaneous labor (Penning et al., 2000; Jin et al., 2011). Placen-
tal expression of AKR1C3 during pregnancy has primarily been
examined in the context of its prostaglandin metabolizing effects
and is discussed below. AKR1C2 expression in placenta is the low-
est of the three peripheral AKR1C isoforms (Nishizawa et al., 2000)
and the contribution of AKR1C2 to parturition may be less critical
than AKR1C1 and AKR1C3.

Andersson et al. (2008) used intact tissues from combined
hysterectomy and cesarean section to examine the role of AKR
mediated 20-ketosteroid reductase activity in cervical ripening.
They observed mRNA transcripts corresponding to AKR1C1,
AKR1C2, and AKR1C3 in cervix, with AKR1C1 exhibiting the
highest expression. Cervical tissue from patients in active labor
exhibited considerably faster progesterone 20-ketosteroid reduc-
tion relative to patients who were not in labor. However, cervical
expression of mRNA for the three AKR1C isoforms did not change
with labor onset. The increased reductase activity was proposed
to result from decreased expression of type 2 17β-hydroxysteroid
dehydrogenase, which catalyzes the opposing oxidation reaction
(Andersson et al., 2008).

PROSTAGLANDIN SYNTHASE ACTIVITIES OF AKRs
Prostaglandins also regulate parturition. A critical signal in deter-
mining the timing of parturition is the release of calcium due to FP
receptor activation. Unlike PGE2, which has receptors that inhibit
contractions and others that induce them, PGF2α has only labor
promoting effects (Brodt-Eppley and Myatt, 1999). The principle
phenotype of FP receptor knockout mice is the inability to deliver
young at term, which is rescued by the administration of oxytocin
(Sugimoto et al., 1997; Kawamata et al., 2008). A selective FP recep-
tor antagonist inhibits myometrial cell contractility in vitro (Friel
et al., 2005). Regulation of FP signaling is partially via control of
its expression levels and partially through the levels of its PGF2 lig-
ands, which are determined by the expression of PGH2 synthase
2, and AKR1B1 and/or AKR1C3 (Figure 2; Mijovic et al., 1999;
Slater et al., 1999; Mitchell et al., 2005; Lee et al., 2008b; Smith et al.,
2011;Watanabe,2011). Transcript for the FP receptor is suppressed

FIGURE 2 | Prostaglandin metabolism by AKR1C3 and AKR1B1 in

pregnancy. Both AKR1C3 and AKR1B1 form PGF2α from PGH2, while
AKR1C3 also forms 9α,11β-PGF2 and AKR1B1 may also contribute to the
formation of PGD2. Both PGF2 isomers will stimulate myometrial
contractions through activation of the FP receptor.

throughout pregnancy, declining with gestational age until imme-
diately before the initiation of labor, when expression levels spike
(Brodt-Eppley and Myatt, 1999; Olson et al., 2003). In sheep cor-
pus luteum and rat myometrium, expression of the FP receptor is
upregulated by estradiol administration, while progesterone has a
suppressive effect, suggesting that steroids may regulate receptor
levels during pregnancy (Hoyer et al., 1999; Dong and Yallampalli,
2000).

The traditional ligand for the FP receptor is PGF2α, although
its stereoisomer 9α,11β-PGF2 is also a potent ligand (Mitchell
et al., 2005). Levels of PGF2α in amniotic fluid are low through-
out the first 36 weeks of pregnancy before rising during the
last few weeks of pregnancy (Lee et al., 2008b). Samples from
patients at term indicated a substantial increase in PGF2α from
no labor (250 pg/mL) to early labor (640 pg/mL) and advanced
labor (4300 pg/mL), which was far greater than the increase in
PGE2 levels. These measurements were performed with a com-
mercial immunosorbent assay with an antibody against PGF2α,
but cross-reactivity with 9α,11β-PGF2 was not ruled out. Similar
levels of 9α,11β-PGF2 (400 pg/mL) were detected in amniotic fluid
samples from patients undergoing labor at term using an assay
with an antibody that had limited cross-reactivity with PGD2, but
not PGF2α, suggesting that both isomers may play an important
role in labor (Mitchell et al., 2005). Elevated levels of 9α,11β-
PGF2 (200 pg/mL) were detected in patients at term who were not
undergoing labor, while levels of this isomer were suppressed in
patients prior to 36 weeks, including those undergoing preterm
labor. The absence of increased 9α,11β-PGF2 in preterm labor
could be the result of low levels of PGD2 synthase or low AKR1C3
activity.

The enzymes responsible for the increased synthesis of PGF2

products at term have not been conclusively identified. However,
both of the proposed prostaglandin F synthases are aldo–keto
reductases (Smith et al., 2011; Watanabe, 2011). AKR1C3 forms
both PGF2 isoforms. AKR1C3 has substantially higher catalytic
activity for the reduction of PGD2 to 9α,11β-PGF2 relative to its
other endogenous substrates, while the conversion of PGH2 to
PGF2α is also faster than for its steroid substrates (Matsuura et al.,
1998; Suzuki-Yamamoto et al., 1999). Involvement of the AKR1B
family has only recently been recognized, with the bovine AKR1B5
isoform first shown to synthesize PGF2α (Madore et al., 2003). In
humans, AKR1B1 exhibits a higher catalytic activity for the con-
version of PGH2 to PGF2α than AKR1C3, but it is not involved in
the formation of 9α,11β-PGF2 (Kabututu et al., 2009). In addition
to synthesizing PGF2α, a recent report indicates that in the absence
of cofactor, AKR1B1 can catalyze the rearrangement of PGH2 to
form PGD2; AKR1C3 did not exhibit this activity (Nagata et al.,
2011).

AKR1B1 and AKR1C3 are expressed in reproductive tissues
during pregnancy and both likely synthesize PGF2 during preg-
nancy. Both AKR1B1 and AKR1C3 were cloned based on placental
DNA libraries (Grundmann et al., 1990; Dufort et al., 1999). Most
of the early work on AKR1B1 focused on its role in regulating
glucose metabolism, although it has many additional endogenous
substrates (Srivastava et al., 2005). Its roles in prostaglandin sig-
naling have only recently been described (Kabututu et al., 2009;
Bresson et al., 2011). AKR1C3 also catalyzes the reduction of a
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wide variety of substrates in addition to prostaglandins (Mat-
suura et al., 1998; Suzuki-Yamamoto et al., 1999; Byrns et al.,
2010).

Expression of AKR1B1 and AKR1C3 were recently examined
at the mRNA and protein levels in placenta (Breuiller-Fouché
et al., 2010). Based on immunohistochemistry, both enzymes were
expressed throughout the fetal membranes, but the highest expres-
sion was in chorionic trophoblasts and in decidual stromal cells.
Western blot and quantitative RT-PCR indicated that AKR1B1 was
primarily expressed in the choriodecidua, while AKR1C3 exhib-
ited similar expression levels in both choriodecidua and amnion.
Lipopolysaccharide stimulation did not upregulate either pro-
tein, suggesting that their expression levels do not contribute to
preterm labor induced by intrauterine infection. Changes in pla-
cental expression of these enzymes over the course of pregnancy
have not been examined.

CONCLUSION
Further research is needed to understand the contribution of the
AKRs to the induction of normal labor. Furthermore, very lit-
tle is known about the roles of the AKRs in mediating signaling
during preterm labor, which may be very different than what
occurs at term. Evidence supports a role for declining placental
and myometrial AKR1D1 expression in the initiation of labor.
Increased paracrine inactivation of progestins by AKR1Cs may
also be an important step in parturition. Formation of increased
levels of PGF2 isomers stimulates labor, although a major unre-
solved question is whether changes in the placental expression of
AKR1B1 and/or AKR1C3 contribute to this effect. Changes in lev-
els of steroid and prostaglandin products could also result from

changes in other enzymes involved in upstream and downstream
metabolism.

Although the contribution of AKR1C3 to labor initiation has
not been the subject of much research, its enzymatic activities
suggest an important role. Each of its enzymatic activities has the
potential to contribute to the initiation of parturition. AKR1C3
can eliminate progesterone and its 5α- and 5β-reduced products
and can synthesize estradiol and both prostaglandin F2 isomers
(Byrns et al., 2010; Jin et al., 2011). Furthermore, it is potently
inhibited by the tocolytic drug indomethacin (Byrns et al., 2008).
It is expressed in several reproductive tissues during pregnancy,
although it is not known whether expression levels change, except
in the cervix where it does not (Nishizawa et al., 2000; Andersson
et al., 2008; Breuiller-Fouché et al., 2010). Further investigation
into the role of AKR1C3 in parturition is needed.

It remains to be seen whether targeting AKRs can have benefits
in pregnancy. AKR1D1 inhibitors might be useful for inducing
cervical ripening or given along with oxytocin for the initiation
of labor. Inhibitors of the AKR1B and AKR1C enzymes might
have benefits for the maintenance of pregnancy or for tocolysis.
However, a number of potential pitfalls make developing phar-
macotherapies based on AKRs challenging. The lack of an animal
model makes testing these targets challenging. Given that mam-
mals have distinct mechanisms of parturition and AKR substrate
specificities, it is not clear that effects in animal models will apply
to human pregnancies. Another potential issue is that the AKR1C
and AKR1D enzymes contribute to the synthesis of neuroac-
tive steroids, such as allopregnanolone and pregnanolone. Given
the neuroprotective effects of these steroids, inhibition of these
enzymes in the fetal compartment may be undesirable.
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