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Abstract: When a satellite performs complex tasks such as discarding a payload or capturing a
non-cooperative target, it will encounter sudden changes in the attitude and mass parameters, causing
unstable flying and rolling of the satellite. In such circumstances, the change of the movement
and mass characteristics are unpredictable. Thus, the traditional attitude control methods are
unable to stabilize the satellite since they are dependent on the mass parameters of the controlled
object. In this paper, we proposed a reinforcement learning method to re-stabilize the attitude of
a satellite under such circumstances. Specifically, we discretize the continuous control torque, and
build a neural network model that can output the discretized control torque to control the satellite.
A dynamics simulation environment of the satellite is built, and the deep Q Network algorithm
is then performed to train the neural network in this simulation environment. The reward of the
training is the stabilization of the satellite. Simulation experiments illustrate that, with the iteration
of training progresses, the neural network model gradually learned to re-stabilize the attitude of
a satellite after unknown disturbance. As a contrast, the traditional PD (Proportion Differential)
controller was unable to re-stabilize the satellite due to its dependence on the mass parameters. The
proposed method adopts self-learning to control satellite attitudes, shows considerable intelligence
and certain universality, and has a strong application potential for future intelligent control of
satellites performing complex space tasks.

Keywords: deep reinforcement learning; satellite attitude control; dynamic environment; Deep Q
Network; parametric uncertainty

1. Introduction

Good attitude control methods are crucial for the stable on-orbit operation of satellites. During
the on-orbit operation of the satellite, the motion state and mass characteristics of the system will
change. Such changes include long-term consumption of fuel, changes in the configuration of the
spacecraft (such as the expansion of the solar panels or some large antennas), the capture and release
of the payloads on-orbit (such as the release of the satellite from a spaceship, the capture of the target,
the removing of orbital garbage, etc.), and the rendezvous and docking with other spacecrafts. Many
of these changes are violent (such as capture, release of the satellite, docking with the target, etc.) and
unpredictable (such as the operation of non-cooperative targets, the removal of orbital waste, etc.) [1].

Most existing attitude control algorithms rely on the mass parameters of the controlled object
(including mass, moment of inertia, etc.), and the mass parameters need to be identified by various
means [2]. In this case, it is difficult to provide accurate parameter identification [3]. The dynamic
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model of this kind of system is complex and has strong nonlinearity, which may easily lead to the failure
of the existing common attitude control systems [4]. Therefore, there is an urgent need for a highly
autonomous attitude control technology with a considerable intelligence to solve the high-performance
control problem of spacecraft under the on-orbit change of the mass characteristics of the spacecraft
that is difficult to control by traditional methods.

Aiming at the attitude control in such complex situations, Yoon H et al. proposed a novel control
law for a nonlinear Hamiltonian MIMO (Multiple-Input Multiple-Output) system, aiming at the
existence of inertial uncertainty in spacecraft attitude control [5]. Queiroz M S D et al. designed the
nonlinear adaptive control method using the dynamic model of the complete system and proved
that the global stability of tracking error of the closed-loop system converges when the interference
is unknown [6]. Miao et al. used an adaptive sliding mode control strategy to solve the vibration
problem in the process of maneuvering large flexible spacecraft [7]. However, the current attitude
control algorithms for spacecraft are lacking in modern computational intelligence tools as they are
usually designed for specific applications that do not have universal applicability. Therefore, with
the continuous increase in the complexity of space exploration missions, it is necessary to design an
attitude control method with considerable intelligence.

At present, the actual problems in satellite attitude control are external interference problems,
uncertainties in moment of inertia, and nonlinear problems of models [8]. Backstepping attitude control
is very effective for nonlinear system control, and the operation steps are simple; it can solve the
problem of difficult construction of the system Lyapunov function [9]. A nonlinear control approach
for satellite attitude stabilization maneuver is presented in [10]. The controller is developed by using
the backstepping control technique. External disturbances and actuator constraints are all considered
during the simulation. Simulation results revealed the control validity of the proposed controller. The
paper [11] designs an adaptive prediction backstepping controller (APBC) under the consideration
of estimation error of the moment of inertia, flexible vibration and disturbance torques. Compared
with the traditional PD (Proportion Differential) controller, the APBC has good control performance on
eliminating the effect of time delay and provides estimations of moment of inertia parameters online.

Deep reinforcement is a technique that directly learns control strategies from high-dimensional
raw data [12]. In order to solve the computer’s control problem from perception to decision-making,
and thus to realize universal artificial intelligence, it has been rapidly developed in the past two years
and has made break-throughs in the fields of video games, Go, and robotics [13]. Deep Q Networks
(DQNs) are one such deep reinforcement learning algorithm that combines neural networks and
Q-Learning, where the input is the original image data, and the output is the value evaluation (Q value)
corresponding to each action [14]. In 2013, DeepMind proposed a DQN algorithm [15] to train artificial
intelligence (AI) to play games on the Atari platform. The model surpassed the performance of
previous algorithms on 6 of the 7 games tested, with 3 of them exceeding the human level, showing
the great potential of such algorithms in intelligent decision-making.

Aiming at the problem of space satellite intelligent attitude control, this paper proposes a deep
reinforcement learning algorithm for autonomous controlling. The algorithm overcomes the limitation
of the existing method that relies on mass parameters and solves the problem of satellite attitude
instability encountered with sudden random disturbance.

The main research contributions of this work are as follows: (1) We proposed an intelligent attitude
control method, based on the deep reinforcement learning technology. This method brings the artificial
intelligence into the satellite control domain. The merit of the proposed method is twofold. First, the
method does not rely on the mass parameters of the satellite, and thus can solve the problem of sudden
changes in the attitude and mass parameters encountered by the satellite when performing complex
tasks, such as capturing an unknown target. Second, instead of being designed by experts, the control
law is learned by the algorithm itself. It can be easily adapted to solve other satellite control problems
or incorporated with other sensors, such as cameras, to further improve the control performance.
(2) We built a dynamic simulation environment to simulate the dynamic of the satellite while it is



Sensors 2018, 18, 4331 3 of 17

under unknown disturbances in its attitude and mass parameters. The simulation environment can be
used to train the artificial intelligence algorithm within it, and to validate the existing control methods.

The remaining sections are organized as follows. In the next section, a satellite intelligent attitude
control method subject to parametric uncertainty has been designed. The method is composed of
two parts: the construction of the dynamic environment and the building and training of the deep
reinforcement model. Numerical simulation and results analysis are demonstrated in Section 3. Finally,
Section 4 concludes this paper.

2. Satellite Attitude Control

The satellite intelligent attitude control problem addressed in this paper is defined formally
as follows:

Given a satellite that maintains a stable attitude angular velocity on the orbital coordinate system, how can
we re-stabilize the satellite attitude back to the initial state after it has encountered an unknown disturbance both
in attitude and mass parameters?

To simulate such a process, we build a simulation environment in which a random disturbance
torque is applied to the satellite based on the dynamic model, and the moment of inertia is randomly
changed to simulate changes in satellite mass parameters at the same time. The proposed method
based on deep reinforcement learning should continuously output control torque in this state to control
the satellite to restore a stable flight attitude.
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Figure 1. Sketch map of satellite attitude control method based on deep reinforcement learning.

The traditional satellite control method such as PD controllers struggle to re-stabilize the satellite
after it encounters unknown perturbation because of their strict reliance on the mass parameters. In this
paper, we use deep reinforcement learning to solve this problem. The process can be divided into two
steps: first, to construct a dynamic environment, which models the dynamics of the spacecraft flying
in near-earth space. The inputs of this model are the control torques, and the outputs of the model
are the attitude angular velocities of the spacecraft. The second is to use a DQN algorithm to perform
deep reinforcement training of the control torque. The design process is shown in Figure 1. The sensor
is fixedly connected to the simulation environment and provides the intelligent controller with the
required measurement input information such as attitude angular velocity and attitude quaternions.
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The proposed satellite attitude stabilization method is a learning-based method, with the learning
phase performed on the ground. After the learning phase, the neural network model is obtained,
and this model can be used to stabilize the satellite on board. Concretely, we have established a fully
connected neural network as the agent. The agent takes the attitude angular velocity and attitude
quaternion of the satellite as input and the control torque of the satellite as the output. Then the agent
is trained within the satellite’s dynamic simulation environment, the parameters of the neural network
model are continuously updated in the training phase. After the training, we get a trained agent
and this can be applied to the satellite. The agent will act as the brain to control the flight attitude of
the satellite during the flight. In this paper, the effectiveness of the trained agent is validated in the
dynamic simulation environment.

Figure 2 shows the visualization results of a typical process from our simulation environment,
where the capturer spacecraft is capturing a non-cooperative object in space. The object usually has
an unknown flight state, possibly spinning with unknown angular velocity, and unknown mass
parameters. After the capturer spacecraft has successfully captured the object, the combined objects
have unknown angular velocity, and the mass parameters, such as the centroid of the combination, will
become unknown as well. The proposed method tries to re-stabilize the combination in such situations.
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2.1. Construction of Dynamic Environment 

Figure 2. Example of a spacecraft capturing a non-cooperative object.

2.1. Construction of Dynamic Environment

In order to study the problem of satellite attitude control, the dynamic of the satellite in space is
built based on the orbital coordinate system; that is, the origin of the coordinates is at the centroid of the
satellite, the Z axis points to the earth center, the Y axis is along the negative normal line of the orbital
plane of the satellite, with the X, Y and Z axes constituting a right-handed system. Simultaneously, in
order to describe the motion of a satellite attitude under the action of external torques, correct attitude
dynamics and kinematics models must be established [16].
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(1) Establishing differential equations for attitude dynamics to solve the attitude angular velocity of
the satellite.

The dynamic model of the satellite can be described by the Euler dynamic equation of a single
rigid body as follows:

.
ω = I−1(T −ω× (I ·ω)), (1)

where T =
[

Tx Ty Tz

]T
is the control torque acting on the centroid of the rigid body,

I ∈ R̂{3× 3} is the moment of inertia matrix of the rigid body, which reflects the mass parameters
of a spacecraft, and I is a symmetric matrix with a positive and largest diagonal elements.

ω =
[

ωx ωy ωz

]T
is the attitude angular velocity of the rigid body.

.
ω is the first derivative

of ω. If the initial value of the attitude angular velocity is known as ω0, given control torque T,
and setting I to a fixed value, it is possible to obtain the attitude angular velocity of the satellite
at any time by solving the upper formula.

(2) Establishing differential equations for attitude kinematics to solve the attitude quaternion of
the satellite.

According to Euler’s finite rotation theorem, any angular displacement of a rigid body around a
fixed point can be obtained by turning an angle around an axis passing through the point. Thus,
the attitude parameter between two coordinate systems can be described by a unit vector e in
the reference coordinate system and the angle Φ around this axis. The unit vector e has three
components in this coordinate system, and these four parameters form the Eulerian axis/angle
parameters

(
Φ, ex, ey, ez

)
.

The quaternion can be obtained as Q =
[

q0 q1 q2 q3

]T
by transforming the Euler

axis/angle parameter concept. The relationship between the two is as follows:

q0= cos
Φ
2

, q1 = ex sin
Φ
2

, q0 = ey sin
Φ
2

, q0 = ez sin
Φ
2

As with other attitude parameters, quaternions have three independent parameters. The fourth
parameter is non-independent and satisfies constraints q2

0 + q2
1 + q2

2 + q2
3 = 1.

Because the attitude of the satellite can be described by the attitude quaternion, the quaternion is
used to characterize the change of the attitude of the satellite that the human eyes can observe.
The following equation is the quaternion-based attitude kinematics equation of the satellite,

ω =
[

ωx ωy ωz

]T
is the attitude angular velocity of the satellite. q =

[
q0 q1 q2 q3

]T

is the quaternion of the satellite,
.

Q =
[ .

q0
.
q1

.
q2

.
q3

]T
is the first derivative of Q =[

q0 q1 q2 q3

]T
. If the satellite is known at its initial attitude quaternion Q0, the attitude of

the satellite can be represented at any time by integrating.
.
q0.
q1.
q2.
q3

 =
1
2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
ωx

ωy

ωz

, (2)

(3) Constructing dynamic environment.

According to the spacecraft dynamics model, the dynamic environment in which the control
torque and satellite attitude feedback to each other is constructed as follows. In particular, to
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simulate normal disturbances such as gravity, radio, and electromagnetic radiation in space, we
add constant disturbance torque to the dynamics model which is described by random function.

Step 1: Randomly initialize the attitude angular velocity ω0, attitude quaternion Q0 of the satellite;
Step 2: Given a random disturbance torque TS;
Step 3: Equations (1) and (2) are integrated sequentially to solve the attitude angular velocity ωi

and attitude quaternion Qi;
The attitude angular velocity and attitude quaternion are used as the input of the neural network

for subsequent deep reinforcement learning training.

2.2. Construction of DQN Training Process

Intelligent attitude control of the satellite is a complex, high-dimensional issue. The neural
network is regarded as the control agent which decides how much control torque should be given based
on the current motion state of the satellite. As mentioned previously, a two-layer fully connected neural
network is used as the calculation component, the inputs of this network are the satellite’s current
attitude angular velocity and attitude quaternion, the outputs of this network are the probabilities of
each possible actions (e.g., a certain control torque). The actual action is chosen from all these actions
according to the probabilities. The probabilistic strategy of sampling actions will encourage the action
that leads to good results and suppress the action that leads to bad results. In summary, the deep
reinforcement training process based on DQN is as the following Algorithm 1:

Algorithm 1. Control torque training process based on Deep Q Network (DQN) algorithm

1. Initialize the capacity of the experience pool D for N, which is used to store training samples;
2. Use the deep neural network as the Q-value network to initialize weight parameters θ;
3. Set the total number of control task training as M, loop start:
Initialize the network input state x1, and calculate network output a1.
1) Randomly select the action at with probability epsilon (decreasing with the number of iterations) or the
maximum Q value argmax

a
Q(xt, a; θ) output through the network;

2) After performing at in the environment, get reward rt and input xt+1 for the next network;
3) Save the parameter vector (xt, at, rt, xt+1) as D at the moment (D holds the state of N moments);
4) When D accumulates to a certain degree, the minibatch states are randomly taken out of D after each
execution of 1–3 steps;

5) Calculate the target value for each state
(

xj, aj, rj, xj+1

)
:

yj =

{
rj, xj+1 terminates the task

rj + γmax
a′

Q
(

xj+1, a′; θ
)

, xj+1 does not terminate the task

When the terminal in the randomly selected minibatch
(

xj, aj, rj, xj+1

)
is true, that is the deviation between

the actual attitude angular velocity and the desired attitude angular velocity of the satellite falls into a
predefined range. Then we think xj+1 terminates, vice versa. γ is discount factor;
6) The network weight parameter is updated through SGD and the loss function is defined using the mean

squared error
(

yj −Q
(

xj, aj; θ
))2

.
Loop execution of the above 1–6 steps, continuous training model.
4. Multiple training to get the model.

2.3. Establishment of Deep Reinforcement Training

In this section, we use the deep reinforcement learning algorithm—Deep Q Network, to perform
the intelligent autonomous attitude control training for the satellite in the dynamic environment
described in the previous section. We built a fully connected neural network as the intelligent agent,
which takes the attitude of the satellite as input, and outputs the control torque for the satellite. Unlike
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a convolutional neural network, each neuron is connected to only a small number of neurons [17], and
the fully connected neural network is connected to all neurons in the upper layer. The input layer of the
fully connected neural network has 7 nodes, corresponding to the 7-dimensional representation of the
satellite attitude. The hidden layer has two layers; the first layer has 1024 nodes, and the second layer
has 2048 nodes. The output layer has 7 nodes, corresponding to the seven types of value vectors after
the control torque is discretized. Weight matrix and offset are corresponding values and the weight
parameters of the fully connected neural network are obtained by using the DQN algorithm. As shown
in Figure 3, at each time step, the control torque is sent back into the dynamic environment, and the
dynamic environment continues to output the attitude of the satellite to feed the neural network for
continuous deep reinforcement training.
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By continuous self-learning and self-evolution, the weight value of the policy network is constantly
updated. It is mainly divided into the following steps:

(1) Discretization of Control Torque

DQN is a discrete control-oriented algorithm; that is, the output of the action is discrete. DQN
cannot handle continuous action, because the update of the Q value needs to be achieved by
seeking the largest action. However, in the problem of spacecraft controlling, the control torque
is continuous and high-dimensional and cannot be solved directly using the DQN method.
Therefore, the control torque’s output is discretized here.

The control torque of the spacecraft is assumed to be a three-dimensional vector T ∈ R3, with
a possible value range 1.0e−2 × {−1, 0, 1} of each direction component in T =

[
Tx, Ty, Tz

]T ,
that is only one direction component of control torque has only one certain value in the set of
1.0e−2 × {−1, 0, 1} for each maneuver, and the other components have a value of zero. There
are 7 kinds of torque distribution methods according to the above range of values, with the flag
vector for each of which set as [1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1], respectively. These vectors can represent the
control torque for an iterative update of the Q value. Among them, [1, 0, 0, 0, 0, 0, 0] represents
that the control torque of the agent output is zero, that is, the spacecraft has no external torque
applied, and only relies on its original angular velocity to continue to rotate. The correspondence
between the control torque and flag vector is shown in the following Table 1.

Actually, one kind of attitude control is discontinuous, i.e., jet propulsion. Thus, discretization of
control torque is reasonable. The problem in satellite control is called phase plane. One example
of practical application with 7 × 2 × 3 = 42 control modes is widely used in the field of attitude
control for both large and small spacecrafts where phase plane control laws are applied. However,
the number 42 is just the result of permutations and combinations for all the jet propulsion
engines equipped on spacecrafts. In fact, each of the 7 kinds of control modes proposed in this
paper could be the orthonormal basement of any discontinuous attitude control law for 3-aixs
rigid body, including phase plane and others as long as the control step-size is small enough.
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Table 1. Discretization of control torque.

Direction Component of Control Torque T Flag Vector

Tx = Ty = Tz = 0 [1, 0, 0, 0, 0, 0, 0]
Tx = −1.0e− 02, Ty = Tz = 0 [0, 1, 0, 0, 0, 0, 0]
Tx = 1.0e− 02, Ty = Tz = 0 [0, 0, 1, 0, 0, 0, 0]

Tx = 0, Ty = −1.0e− 02, Tz = 0 [0, 0, 0, 1, 0, 0, 0]
Tx = 0, Ty = 1.0e− 02, Tz = 0 [0, 0, 0, 0, 1, 0, 0]
Tx = Ty = 0, Tz = −1.0e− 02 [0, 0, 0, 0, 0, 1, 0]
Tx = Ty = 0, Tz = 1.0e− 02 [0, 0, 0, 0, 0, 0, 1]

(2) Design of Reward Function and Terminating Condition

The goal of deep reinforcement training is to output the optimal control torque of the satellite,
so that the deviation between the initial attitude angular velocity ω0 and the satellite attitude
angular velocity ωi obtained through the dynamic model is almost zero. However, the goal of
the training is to get as much reward as possible. Therefore, the reward function needs to have
the nature of a decreasing function, where the smaller the angular velocity difference (defined as
ωi − ω0) is, the greater the reward. In this paper, we use the Gaussian function to construct the
reward function:

g(ωi −ω0) =
1√
2π

e−
1
2 (ωi−ω0)

2
, (3)

We have also set the terminating condition of the training process of the DQN algorithm.
The criteria of whether to complete the training is dependent on whether the torque can control the
satellite to restore to a stable attitude. Here, we calculate the deviation between the actual attitude
angular velocity and the desired attitude angular velocity of the satellite at each iteration, when
the deviation falls into a predefined range, the training process is terminated. The predefined
range is the deviation of the satellite attitude angular velocity in the three-directional components
being less than 1.0e− 06.

3. Simulation Experiment and Results Analysis

To verify the effectiveness of the proposed method, simulation experiments were performed.
Firstly, the dynamic model based on constant disturbance is used to simulate the movement of satellites
in space. Then, to simulate the tasks such as target capture or payload release performed by satellites,
an instantaneous burst random disturbance torque is applied to the satellite based on the above
dynamic model, and the moment of inertia has randomly been changed to simulate changes in satellite
mass parameters at the same time. The proposed method subject to parametric uncertainty should
continuously output control torque in this state to control the satellite to restore a stable flight attitude.
In this paper, I ∈ R̂{3× 3} is the moment of inertia matrix of the satellite, which reflects the mass
parameters of the satellite, and I is a symmetric matrix with a positive and largest diagonal elements.
To simulate changes in satellite mass parameters, I is randomly been changed by adding a lower order

3 × 3 random symmetric matrix based on a basic matrix

 2.0257 0.6498 1.1226
0.6498 0.7998 0.1833
1.1226 0.1833 1.2753

, each element in

the random symmetric matrix is drawing from an uniform distribution with range of [0,1].
Before the start of each simulation, the satellite initial attitude quaternion and angular velocities

are initialized randomly, and the entire satellite attitude maneuvering process is observed based on
sensor acquisition information. When the attitude quaternion and angular velocity deviation no
longer decrease with time, the attitude maneuvering process is considered to be finished, and the
attitude accuracy and stability of the attitude control system are evaluated based on the final angular
velocity deviation.
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First, we define the mass of the satellite to be m = 5 kg, randomly initialize the attitude angular
velocity ω0, attitude quaternion Q0 and the moment of inertia matrix I of the satellite. Then, to simulate
ubiquitous disturbances such as gravity, radiation, and pressure of the sunlight, etc., we add ubiquitous
random disturbance torque to the dynamics model of the satellite, this disturbance is described by
random function TS = 1.0e−3r × [−1, 0, 1]T , where r is a random variable subject to a uniform
distribution, which ranges [0,1]. Specifically, an instantaneous burst random disturbance torque which
simulates the tasks such as target capture performed by satellites is defined as TR = 1.0e−2 ×
[r1, r2, r3]T , where r1, r2, r3 are randomly generated numbers. The expected experiment results should
be, after this disturbance, the attitude control algorithm continuously outputs the control torque, so
that the satellite’s attitude angular velocity can converge to a certain value, and the deviation between
this value and the desired attitude angular velocity tends to zero, indicating that the attitude control
algorithm is effective. For comparison, this paper also tests the traditional attitude control method
based on PD controller. The algorithm is implemented using the Anaconda3 software package and
TensorFlow deep learning software framework.

3.1. Attitude Control Experiment Based on DQN Training

The definition of the number of iterations is 3000, the capacity of the experience pool is 500, and the
discount factor is 0.99. The initial value of the neural network weight parameter is 0.01. The dynamic
model based on constant disturbance is taken as the environment, and the moment of inertia matrix is
randomly selected to perform deep reinforcement training based on the DQN algorithm.

To verify that the intelligent algorithm based on deep reinforcement learning can achieve attitude
stabilization efficiently when performing spatial non-cooperative target capturing, the algorithm has
been tested several times in the simulation environment.

We calculate the average results of the reward value per 100 iterations in different experiments
and show the changing trend of reward. As shown in the Figure 4, we can see that from the 500th
iteration, the average reward is increasing rapidly. When the 2000th iteration is reached, the reward
value has stabilized and has only small fluctuations. The fluctuations are mainly caused by constant
disturbance. After entering the stationary period, there is not much improvement, which shows that
the training is converged after about 2000 iterations.
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The attitude angular velocity and its error were calculated and recorded per 100 iterations, and
the training result of the 3000 iterations is shown in the figure below.
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Figure 5. Iteration process of the attitude angular velocity. Please note, the iteration number in this
figure reflects the time span of the experiment.

As seen in Figure 5, the period in which the iteration number is between −10 and 0 is when
DQN algorithm has not been applied. At that time, the satellite is running smoothly under constant
disturbance, so the attitude angular velocity is showing a random change. After the instantaneous
burst random disturbance torque is loaded in the satellite, the attitude angular velocity is increasing
instantaneously. Then the deep reinforcement algorithm DQN starts the process of training torque
control of the satellite.

As the number of iterations increases, the attenuation change of attitude angular velocity in the
three-directional components indicates that the satellite’s attitude of the three-directional components
all decrease and converge, indicating that the satellite attitude reaches a steady state, and the
DQN-based attitude control method subject to parametric uncertainty is effective.

If there is no constant disturbance, the attitude angular velocity of the satellite after DQN training
will return to the initial stable value after the convergence is stabilized, that is, at the 2000th iteration.
However, due to the existence of constant disturbance, the attitude angular velocity will still fluctuate
within a certain range, and the range of amplitude variation will be reduced by a little before the
occurrence of the instantaneous disturbance under the action of DQN.

We have shown the iterative process of the attitude angular velocity in Figure 5. The numerical
results of time histories of state variables such as attitude quaternion and control torque are shown in
Figures 6 and 7 below.
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Figure 7. Iteration process of the control torque. Please note, the iteration number in this figure reflects
the time span of the experiment.

Figures 8–10 show the iterative process of the attitude angular velocity deviation in the
three-directional components under four simulation experiments. It can be seen from all tests that as
the number of iterations increases, the mean value of the deviation in the x, y and z axes all shows a
downward trend and gradually converges to a stationary state, indicating that the DQN-based attitude
control method has the performance advantage of stabilizing the attitude of the satellite in the case
that the parameters are difficult to identify.
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3.2. Attitude Control Experiment Based on PD Controller

The PD controller strictly depends on the mass parameter, i.e. the moment of inertia I of the
controlled object. In the figures below, the attitude angular velocity and its deviation of the satellite
over 3000 iterations is shown when I takes a random disturbance.

Figure 11 demonstrates that the attitude angular velocity gradually increases as the number of
iterations increases, failing to converge. This divergent deviation between the attitude angular velocity
and the desired attitude angular velocity shown in Figure 12 indicates that the satellite cannot maintain
the attitude stabilization.
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Considering the uncertainties of the mass parameters such as the moment of inertia matrix, the
comparison with Section 3.1 also verifies that deep reinforcement learning technology still has the
advantage of stabilizing satellite attitude under random parameter changes.

It can be seen that the optimal intelligent output of the control torque is obtained as the attitude
angular velocity tends to be stable as a reward. The space-enhanced satellite attitude control-based
deep reinforcement learning algorithm has been able to autonomously stabilize satellite attitude after
sudden random disturbance and is superior to conventional PD controllers in maintaining satellite
attitude stabilization.

3.3. Attitude Control Experiment Based on Backstepping Controller

To further validate the effectiveness of proposed method, we compared the proposed method
with a kind of robust attitude control method based on backstepping. This method uses the adaptive
control theory to stabilize the satellites, and the effectiveness of this method can be proved analytically
with the Lyapunov method. The experiment results of this method for the same problem are shown in
Figures 13–15.

The results show that the backstepping controller has robustness against mass parameter
uncertainty. However, the backstepping controller can only handle the constant control cycle; when the
control cycle is constant, iteration process of the attitude angular velocity, attitude angle and control
torque can converge. When the control cycle changes during the iteration process, it becomes divergent.
Compared with the backstepping controller, our method based on deep reinforcement learning has
competitive performance, while it allows the control cycle changes during iteration. That is, regardless
of whether the control cycle changes or not, our method can control the satellite to restore a stable
flight attitude.
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Figure 14. Iteration process of the attitude angle in backstepping controller. Please note, the iteration
number in this figure reflects the time span of the experiment.



Sensors 2018, 18, 4331 16 of 17
Sensors 2018, 18, 4331 17 of 18 

 

 

Figure 15. Iteration process of the control torque in backstepping controller. Please note, the iteration 

number in this figure reflects the time span of the experiment. 

4. Conclusions 

Aiming at the problem of sudden changes in satellite attitude encountered when performing 

complex tasks, this paper uses deep reinforcement learning technology to restore the attitude of the 

satellite. A dynamic model of mutual feedback of control torque and attitude angular velocity was 

established, setting the attitude dynamics environment for deep reinforcement learning training. 

The attitude control problem is applied to the updating of the Q value in the DQN algorithm by 

discretizing the control torque output. The optimal intelligent control torque output is obtained by 

taking the attitude angular velocity as stability. Simulation results illustrate that the proposed 

method can restore the satellite after its motion and mass state were changed to an unknown state, as 

contrasted with the traditional PD controller, which failed to solve this problem. The proposed deep 

reinforcement learning method is an adaptive control method that solves the problem of satellite 

attitude control, Furthermore, it paves a way for many other complex space tasks, such as 

non-cooperative target capturing, and maneuvering near a small celestial body whose gravity field 

is unknown, etc. For future work, we plan to train and validate the method on a semi-physical 

simulation platform consisting of a three-dimensional turntable and an actuator under the complex 

space simulation environment. 

Author Contributions: Conceptualization, Zhong Ma; Data curation, Yidai Yang; Formal analysis, Zhong Ma, 

Yuejiao Wang, Yidai Yang and Zhuping Wang; Investigation, Yuejiao Wang and Yidai Yang; Methodology, 

Zhong Ma and Yuejiao Wang; Project administration, Zhong Ma, Zhuping Wang and Lei Tang; Resources, Lei 

Tang; Software, Yue-jiao Wang; Writing – original draft, Yuejiao Wang; Writing – review & editing, Zhong Ma 

and Stephen Ackland. 

Funding: This work was supported by the National Natural Science Foundation of China, grant number 

61702413, and the Technology Innovation Funds for the Ninth Academy of China Aerospace, grant number 

2016JY06. 

Figure 15. Iteration process of the control torque in backstepping controller. Please note, the iteration
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4. Conclusions

Aiming at the problem of sudden changes in satellite attitude encountered when performing
complex tasks, this paper uses deep reinforcement learning technology to restore the attitude of
the satellite. A dynamic model of mutual feedback of control torque and attitude angular velocity
was established, setting the attitude dynamics environment for deep reinforcement learning training.
The attitude control problem is applied to the updating of the Q value in the DQN algorithm by
discretizing the control torque output. The optimal intelligent control torque output is obtained by
taking the attitude angular velocity as stability. Simulation results illustrate that the proposed method
can restore the satellite after its motion and mass state were changed to an unknown state, as contrasted
with the traditional PD controller, which failed to solve this problem. The proposed deep reinforcement
learning method is an adaptive control method that solves the problem of satellite attitude control,
Furthermore, it paves a way for many other complex space tasks, such as non-cooperative target
capturing, and maneuvering near a small celestial body whose gravity field is unknown, etc. For future
work, we plan to train and validate the method on a semi-physical simulation platform consisting of a
three-dimensional turntable and an actuator under the complex space simulation environment.
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