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Abstract

We hypothesized that specific activation of a single retinoic acid receptor, RARα without direct 

and concurrent activation of RARβ and γ, will inhibit mammary tumor oncogenesis in murine 

models relevant to human cancer. Fifty uniparous MMTV-neu and 50 nuliparous MMTV-wnt1 

transgenic mice were treated with RARα agonist, (retinobenzoic acid, Am580) added to the diet 

for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared anti-tumor effects was the 

inhibition of epithelial hyperplasia, a significant increase (p<0.05) in tumor-free survival, and a 

reduction in tumor incidence and in growth of established tumors. In both models the mechanisms 

responsible for these effects involved inhibition of proliferation and survival pathways, and 

induction of apoptosis. The treatment was more effective in the MMTV-wnt1 model in which 

Am580 also induced differentiation, both in vivo, and in 3D cultures. In these tumors Am580 

inhibited the wnt-pathway, measured by loss of nuclear β-catenin, suggesting partial oncogene-

dependence of therapy. Am580-treatment increased RARβ and lowered the level of RARγ, an 

isotype whose expression we linked to tumor proliferation. The anti-cancer effect of RARα 

together with the newly discovered pro-proliferative role of RARγ, suggests that specific 

activation of RARα and inhibition of RARγ might be effective in breast cancer therapy.
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Introduction

Vitamin A maintains the differentiated state of adult epithelia (Wolbach and Howe 1978). 

Its functional derivative, retinoic acid (RA), acts by binding to retinoid (RAR) and rexinoid 

(RXR) family of nuclear receptors which belong to a superfamily of ligand-dependent 

transcription factors. RARs and RXRs (each a family of 3 genes, α, β and γ, which give rise 

to multiple isoforms) function cooperatively through heterodimerization, actively repressing 
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or activating target gene transcription (Chambon 1996). Retinoids have been shown to 

suppress cancer cell growth and prevent mammary cancer in carcinogen rodent models 

(Moon and Mehta 1990, Sporn et al 1976), but success in clinical trials of breast cancer has 

been minimal at best (Astrom et al 1990, Hong et al 1990, Lotan 1995, Shin et al 2001, Wu 

et al 2001). The only exception is the remarkable efficacy of atRA in acute promyelocytic 

leukemia (APL) where durable remissions and increased survival have been achieved 

(Collins 2008, Patatanian and Thompson 2008, Warrell et al 1993). In this cancer, atRA 

specifically targets a fusion protein (PML-RARα) which, when present, functions by 

blocking normal differentiation (Wolf and Smas 2000). This suggests that once the functions 

of specific RARs in the context of defined oncogenic environment become identified, 

retinoids might become more broadly effective.

One such recently reported example shows that treatment of MMTV-neu mice with atRA 

was not only ineffective but was counterproductive, increasing mammary tumor incidence 

and growth (Schug et al 2007). The authors concluded that the outcome (cell growth arrest 

and differentiation versus cell proliferation) is determined by a balance between two atRA 

chaperones CARBP-II and FABP5; predomination of the latter leads to activation of 

PPARβ/δ and cancer cell proliferation and survival.

In keeping with this idea and supported by a recent publication (Purton et al 2006), we 

propose that RARγ, under certain conditions has a pro-proliferative role and that its 

activation by atRA might be responsible for the limited success of retinoid treatment in 

human cancers. Thus, rather than using atRA, an activator of all 3-RAR isotypes, we tested 

the RARα agonist Am580, which has a 10 fold greater affinity for RARα than β, is almost 

inactive against RARγ (Delescluse et al 1991) and is resistant to degradation by CYP26A1-

P450 (Osanai and Petkovich 2005, White et al 1997), for its effect on mammary carcinomas 

in two transgenic mouse models, MMTV-neu and MMTV-wnt.

Neu (HER2/ErbB2) encodes a tyrosine kinase receptor which is amplified in ~30% of 

human breast cancer and is associated with poor prognosis (Slamon et al 1987). The 

activation of neu leads to a cascade activation of kinases such as the src family, focal 

adhesion kinase (FAK), PI3K/Akt, MAPK and possibly others, inducing cell growth and 

tumor formation (Dankort and Muller 2000, Marcotte and Muller 2008). The MMTV-wnt1 

is believed to target the mammary stem/progenitor compartment as evidenced by tumors in 

which both epithelial and myoepithelial cells are present (Li et al 2003). Wnt gene encodes a 

family of secreted glycoproteins that bind to specific membrane receptors. Activation of the 

wnt pathway leads to stabilization of β-catenin and its translocation to the nucleus where it 

interacts with TCF/LEF transcription factor inducing gene expression, including genes 

involved in cell proliferation and survival such as c-myc (Nelson and Nusse 2004). The wnt 

family pathways, which are important in mammary development and renewal of stem cell in 

the adult tissue (Brennan and Brown 2004, Clevers 2006), are often perturbed in tumors. 

Aberrant activation of the wnt pathway and epigenetic downregulation of wnt inhibitors has 

been reported in many tumors, including breast carcinomas (Bukholm et al 2000, Lin et al 

2000, Ryo et al 2001, Veeck et al 2008a, Veeck et al 2008b). The effect of RA signaling on 

wnt, although complex suggest some inhibitory effect (Easwaran et al 1999).
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We found that Am580 treatment strongly inhibited the neu and wnt1 induced mammary 

gland hyperplasia, the incidence of microscopic tumors, tumor growth and, in the neu 

model, strongly inhibited lung metastases, leading to a significant increase in tumor-free 

survival in both models. In addition to inhibiting tumor cell proliferation and increasing 

apoptosis, mechanisms responsible for the AM580 inhibition of oncogenesis in both models, 

Am580 also induced differentiation, but only in MMTV-wnt1. This difference provides a 

potential explanation for the increased magnitude of the tumor-free survival found in 

MMTV-wnt1.

Overall, our data suggest that in 2 different models of mammary oncogenesis, by targeting 

specific RARs, it is possible to achieve anti-tumor effects which are partially universal and 

partially oncogene-specific. These effects are, most likely, the result of activation of an 

inhibitory RARα and simultaneous reduction in RARγ, which we showed to be pro-

proliferative. We propose that treatment of breast cancer patients selected on the basis of 

oncogene-activated pathway with RAR-specific retinoids might overcome the current 

difficulties with retinoid therapies.

Results

Am580 treatment reduces tumorigenesis in wnt1 and neu transgenic models

We used an RARα agonist retinobenzoic acid Am580 (Kagechika et al 1988), a compound 

with a 10X fold lower affinity for RARβ (Delescluse et al 1991) and no detectable affinity 

toward RARγ, to treat transgenic mice with mammary cancer induced by wnt1 or neu 

(Muller et al 1988, Tsukamoto et al 1988). We hypothesized that by evading RARγ 

activation, we will lessen skin toxicity (Chapellier et al 2002) and avoid the potential pro-

proliferative tumor effects of RARγ (Purton et al 2006).

A dose of 0.3mg/kg/day of Am580, (suggested by Dr. Koichi Shudo, who supplied the drug) 

was tested by treating 10 FVB mice for 4 months; no overt toxicity was found in liver, 

lungs, kidney, and spleen, (Results not shown). This dose of Am580, contained in the diet, 

was used to treat MMTV-neu and MMTV-wnt1 transgenic mice. (Control mice were fed the 

same diet without Am580). The mice were palpated twice weekly, the tumor appearance 

was recorded and the data was used to generate Kaplan Meier tumor free survival curves. 

Figs. 1A and B show that tumor-free survival was significantly (log-rank test) increased in 

both MMTV-neu (p<0.05) and MMTV-wnt1 (p<0.01) mice treated with Am580; a dose of 

0.1mg/Kg/day produced similar but somewhat weaker effects (Results not shown). The 

effect was more profound in the MMTV-wnt1 model in which 50% of the untreated mice 

had palpable tumors at ~22 weeks, while in the treated group as late as week 35, fewer than 

50% mice had tumors (Fig. 1B). The difference between the control and treated MMTV-neu 

mice was smaller, but even in this group the treatment increased the % of tumor-free mice 

from <10% in control to 30% in the treated group (Fig.1A). The pronounced effect of 

Am580 past week 35 in the neu-model might be due to the unique biology of the later 

appearing tumors or longer duration of the treatment.

Once palpable, the tumors in control and Am580 treated mice (MMTV-neu: 40 control and 

33 treated; MMTV-wnt1: 35 control and 26 treated) were measured weekly and the mice 
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were sacrificed when tumors reached ~1.5gm. As shown in Fig. 1C and D, in which zero 

represents the time the tumor was first palpable, the Am580 treatment significantly (p<0.01 

and p<0.001 for neu and wnt, respectively) retarded tumor growth in both transgenic 

models. In approximately 80% of the MMTV-wnt1 treated mice, the tumors grew to ~0.5 g, 

at which time they showed cycles of partial regression and re-growth (Fig. 1D), possibly due 

to development of cysts that burst and re-grow; in about 10% the palpable tumors 

completely regressed (Results not shown).

We found that neu-mice have relatively high incidence of lung metastases and thus 

examined whether Am580 treatment, in addition to inhibiting tumorigenesis, will also affect 

the incidence of lung metastasis. As shown in Fig. 1E, in a randomly selected group of 20 

control and 20 treated mice, the treatment reduced the incidence of lung metastases from 

75% down to 35%. Because, at the time of metastasis evaluation, the average size of the 

treated tumors was lower than control, it is impossible at this time to conclude that the 

observed metastasis reduction was a direct Am580 effect on this process.

Mechanisms that mediate the antitumor effects of Am580

To determine the mechanism through which Am580 reduces tumor growth and possibly 

increases tumor-free survival, we tested tumor sections for markers of proliferation and 

apoptosis. Sections from 10 control and 10 treated tumors were stained for pRb as a marker 

of proliferation, and for p27, which is known to increase during cell cycle arrest and has 

been shown to accumulate in response to RAR activation (Borriello et al 2006, Radu et al 

2008). P27 is a regulator of pRb phosphorylation (Vidal and Koff 2000). As shown in Fig. 

2A, in both models, the Am580 treated tumors have a significantly higher p27 (p<0.001) 

levels and a significantly reduced level of pRb, (p<0.01), suggesting a degree of 

proliferative arrest in both tumor models. However, while the reduction in pRb was 

observed in all the tested, Am580-treated wnt1 tumors sections, it was detected in only 6/10 

sections from treated neu tumors, suggesting a more consistent effect on MMTV-wnt1 

tumors.

We used caspase-3 activation and TUNEL assay as markers of apoptosis and Akt 

phosphorylation as a measure of pro-survival pathway. A significant increase (p<0.01 and 

p<0.001, for neu and wnt, respectively) in caspase-3 activation by Am580 (Fig. 2B), 

confirmed by TUNEL assay (Results not shown) was found in both tumor types. However, 

while in MMTV-neu, caspase-3 was distributed randomly across the tumor tissue, in 

MMTV-wnt1 tumors, it was more localized to lumens of acinar looking structures, 

suggesting a possibility of cavitation and thus, differentiation (Fig. 2B). This was confirmed 

in 3D cultures of MMTV-wnt1 cells that were incubated with 50nM AM580, or with 

medium alone for 13 days and stained for caspase-3. The treatment increased caspase-3 

expression in all of the colonies, and in 30% of the colonies induced acinar-like cavitation 

(Fig.2D). We quantified the Am580 effect on apoptosis using EtBr staining (Gantenbein-

Ritter et al 2008) and showed that the treatment caused a significant increase (Fig. 2E, t-test, 

p<0.001).

To examine the effect of Am580 treatment on survival pathway, protein extracts of 

randomly selected 12 tumors/per group (neu-control and treated and wnt control and treated) 
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were prepared and analyzed for total Akt and P-Akt levels. Fig.2C, which shows 3 

representative samples of these tumors, indicates that the treatment reduced P-Akt/Akt ratio 

by ~50%, suggesting that the survival of tumor cells might be compromised by the 

treatment.

Oncogene-dependent effect of Am580

As shown in Figs.1A and B, Am580 treatment had a more profound effect on tumor-free 

survival of MMTV-wnt1 mice, the effect being noticeable even in early appearing tumors. 

To test whether this was a reflection of Am580 treatment modifying more effectively the 

pre-malignant wnt-expressing glands, we examined whole mounts of those wnt and neu 

glands that, at the time of euthanasia for tumor removal, were deemed tumor free by 

palpation. Both MMTV-neu and MMTV-wnt1 glands showed signs of focal hyperplasia, 

appearing as small patches, or as large areas that sometimes involved the entire mammary 

gland (Fig. 3A, top). An analysis of the whole mounts (n=40 per group) indicated that 

Am580 treatment reduced substantially and equally the level of hyperplasia in both 

transgenic glands (Fig. 3A, bars; Fisher’s Exact test, neu: *p<0.001, wnt1: **p<0.0001). 

Analysis of whole mount glands also revealed the presence of small, microscopic tumors 

(Fig.3B top) which could not be detected by palpation; the total number of glands with small 

tumors (5 for wnt control, and 14 for neu control) and of glands with multiple small tumors 

(< 2mm in diameter) (0 for wnt and 4 for neu) was also significantly reduced by the Am580 

treatment (Fig. 3B, bars; Fisher’s Exact test, neu: *p<0.001 and wnt: **p<0.01). The 

similarity in the level of hyperplasia reversion and the reduction, by Am580, of percent of 

mice with microscopic tumors in both tumor models suggest that these effects are, most 

likely, not responsible for the more profound tumor-free survival effect of wnt1-mice.

We repeatedly noticed that sections of wnt-induced tumors, and especially Am580-treated 

wnt tumors, appear to be more differentiated than the neu tumors. H&E sections of untreated 

MMTV-neu showed the typical, poorly differentiated solid nodules with little stroma (Fig.

3C, left upper panel), which were not changed by Am580 treatment, but for some necrotic 

areas (Figure 3C, left lower panel). In contrast, sections of untreated MMTV-wnt1 tumors 

(Fig. 3D, upper left panel) showed luminal and myoepithelial components with a large 

stromal compartment and areas of glandular differentiation. As indicated by large areas of 

acinar differentiation with cell remnants inside the lumen, likely the result of anoikis, 

differentiation was further enhanced by the Am580 treatment (Fig. 3D, lower left panel, 

arrows). Some MMTV-wnt1 tumors from treated mice showed multiple cysts of different 

sizes (Fig.3D). As already mentioned, the differentiation of MMTV-wnt1 tumor cells by 

Am580 in 3D cultures (Debnath et al 2003), induced lumen formation, most likely due to 

cavitation, in about 30% of the colonies, while no cavitation was detected in the control 

colonies. Moreover, this morphogenetic effect induced by the activation of RARα by 

Am580 was reversed by the RARα antagonists Ro-415253 (Results not shown), indicating 

the central role RARα plays in the reversion of the transformed phenotype induced by wnt. 

Together, these results suggest that in the MMTV-wnt1 tumors, in addition to inhibiting 

proliferation, Am580 treatment also initiates a RARα-dependent process of differentiation.
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Tests of additional markers of differentiation confirmed these conclusions. For example, 

although the treatment reduced the overall level of CK-14, a basal cell marker, in MMTV-

neu tumors (Figs. 4A and 4B), only in the MMTV-wnt1 tumors it led to its relocalization to 

the basal surface of acini which appeared to have undergone cavitation (Fig. 4A). Similarly, 

Am580-treated MMTV-wnt1 tumors, which showed acinar differentiation (Fig.4C), had 

properly polarized CK-6, a luminal marker. Finally, CRBP-1, a RARα target gene highly 

expressed in the luminal cells of the normal mammary gland, was expressed in both tumor 

types, (Figs.4A and 4B), but in MMTV-wnt1 treated with Am580, it appeared to be 

localized to cells surrounding acini-like structures (Fig. 4A). Although, not clearly evident 

from the immunohistochemical staining, the expression of the specifically localized CRBP1 

in Am580-treated wnt tumors must be very high, as indicated by its increased level in the 

immunoblots (Fig. 4B).

In searching for a possible mechanism for the observed oncogene-dependent difference of 

Am580 effect, we considered the published evidence implicating activated RAR in wnt-

pathway inhibition (Mulholland et al 2005), predominantly through interference with β-

catenin function (Easwaran et al 1999). Activation of β-catenin pathway is reflected, among 

others, in its accumulation in the nucleus (Polakis 2000). To test whether Am580 affected 

this pathway, cells obtained from MMTV-wnt1 tumors were cultured in 3D conditions and 

treated with either 50nM AM580, or vehicle control and stained for β-catenin. In the control 

colonies, which showed no signs of cavitation, β-catenin was localized to cell membrane, 

but also present in the nuclei (Fig.4D). Am580 treatment produced mostly cavitated colonies 

and profoundly reduced nuclear β-catenin (Fig.4D). This finding suggests that over-

expressed wnt-driven pathways might be normalized by the Am580-treatment allowing 

tumor differentiation by Am580.

Thus, as evidenced by reduction in pRb, increase in p27, reduction in P-Akt and activation 

of caspase-3, Am580 induces cell cycle arrest and apoptosis in both tumor types. In addition, 

in MMTV-wnt1 tumors, the treatment induces differentiation as indicated by proper 

localization of CK-14, CK-6 and CRBP-1, and induction of cavitation of acinar structures. 

One of the induced gene, CRBP-1, is a known target of RAR, and p27 accumulation is 

highly sensitive to RAR activation (Radu et al 2008).

Is evading RARγ activation the reason for anti-tumor effect of Am580?

To test the status of RARs and their signaling in tumors of Am580-fed mice, we measured 

RARα, β, and γ protein content in extracts of tumors derived from MMTV-neu and MMTV-

wnt1 mice. As shown in Fig.5A, the level of RARβ2, a known retinoid target gene, was 

increased in both tumor types, indicating that RAR-mediated signaling was active. However, 

the RARγ-protein level was strongly reduced in both tumor types treated with Am580 (Fig.

5A).

Since atRA treatment, which activates all 3-RARs, was shown to stimulate the growth of 

MMTV-neu tumors (Schug et al 2007), while we showed RARα-agonist to be inhibitory 

and to reduce the level of RARγ (Fig.5A), we wondered whether it was the RARγ that, 

when activated by atRA, produced the deleterious effects. Immunohistochemistry of RARγ 

in sections of MMTV-wnt1 tumors showed homogenously distributed expression throughout 
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the tumor tissue (Fig.5B); in Am580 treated tumor sections, with the exception of strong 

staining in the normal skin adjacent to the tumor, there was almost no RARγ staining. This 

suggests different regulation of RARγ by Am580 in normal and tumor tissue.

We attempted to probe the role of RARγ in wnt1 and neu tumor derived cells by knock 

down or overexpression experiments but so far, we did not find conditions which allowed 

for consistent RARγ downregulation or overexpression. However, using immortalized 

human breast cell line, MCF-10, in which we overexpressed RARγ (Fig.6A), we showed 

that RARγ overexpression significantly increased the proliferation rate (Fig.6B) and, 

importantly, rendered the cells resistant to the well known atRA-mediated down-regulation 

of pRB and upregulation of p27 (Borriello et al 2006) (Fig.6C). Thus, like in wnt1 and neu 

tumors, the anti-proliferative effect of Am580 in human cells appears to be counteracted by 

over-expression of RARγ. Thus, in addition to the published mechanism of atRA 

enhancement of neu-tumor growth through increase in FABP5 (Schug et al 2007), we 

identified RARγ activity as another possible contributor to this effect. Importantly, we found 

that unlike atRA (Schug et al 2007), Am580 neither increased the level of FABP5 protein 

nor induced PPAR activation in a PPRE-luc assay, (Fig.S1 Supplement).

Discussion

This work was designed to determine whether different RAR isoforms differ in their ability 

to provide protection from oncogene induced mammary carcinogenesis and whether this 

effect is oncogene dependent. We conclude that activation of RARα by a specific agonist, 

Am580, significantly diminished mammary gland tumorigenicity of two oncogenes, wnt1 

and neu. Moreover, we found that inhibition of proliferation and induction of apoptosis 

occurred in both oncogene-induced tumors but that induction of differentiation was 

oncogene-specific and only detected in wnt1 induced tumors. This is important, because the 

overall effect on tumor incidence was more pronounced in the MMTV-wnt1 model, 

suggesting that treatment that combines growth inhibition, induction of apoptosis and 

differentiation might be most effective.

Our data is more relevant when considered in the background of the poor retinoid 

performance in clinical trials (Paik et al 2003), and the recent publication by Schug et al., 

(Schug et al 2007) indicating that treatment of MMTV-neu mice with atRA, a non-selective 

RAR activator, enhances neu-mammary tumor incidence and growth (Schug et al 2007). 

Treatment with atRA was shown to change the proportion of FABP5/CRABP-II causing 

PPARβ/δ activation at the expense of RARs and increased proliferation and cell survival, a 

finding not confirmed in cells treated with Am580 (Suplemental Fig.S1). Thus, although 

PPARβ/δ can bind several ligands (Berry and Noy 2007, Noy 2007), Am580 does not appear 

to function as its activator, a fact that provides a possible explanation for the pro-

proliferative atRA effect and the inhibitory Am580 effect in MMTV-neu tumors. Another 

advantage of Am580 over atRA is its resistance to degradation by CYP26A1 P450 

cytochromes involved in atRA catabolism to its oxo-derivatives (White et al 1997). These 

cytochromes are overexpresed in several tumor cell lines and human tumors leading to atRA 

resistance (Klaassen et al 2001, Ozpolat et al 2002, Van heusden et al 1998). Thus, the use 
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of a retinoid resistant to CYP26 regulation might help to overcome the development of 

retinoid resistance.

However, based on our own data and on published evidence (Purton et al 2006, Schneider et 

al 2000) we propose that active RARγ is pro-proliferative and as such responsible for the 

enhancing atRA effect. Our findings that RARγ over-expression interferes with atRA-

induced expression of p27 and reduction in pRb (Fig.6C), support this notion. Moreover, we 

showed that RARγ level is reduced in Am580-treated tumors while its level in the 

neighboring skin remains unaffected (Fig.5B) suggesting a tumor-specific-RARγ regulation 

by RARα-specific agonist. It also shows that treatment with RARα agonist might both 

bypass RARγ activation and reduce its level. We have not yet investigated the mechanism of 

RARγ reduction by Am580. Published evidence shows that by inhibiting PI3K, retinoids 

lead to p38 activation which in turn phosphorylates RARγ and leads to its degradation 

(Gianni et al 2002, Kim et al 2001). Whether this pathway mediates the loss of RARγ in 

tumors from Am580-treated mice remains to be seen. The observed pro-proliferative role of 

RARγ is in agreement with the finding in SK-BR-3 human breast cancer cell line in which 

treatment with an RARγ agonist, CD437, induced growth (Schneider et al 2000). Purton et 

al. (Purton et al 2006) have shown that the high RARγ level present in primitive 

hematopoietic precursors wanes during cell maturation simultaneously with an increase in 

RARα and β. Bone marrow of RARγ knockout mice exhibited markedly reduced numbers 

of HSCs associated with increased numbers of more mature progenitor cells, suggesting that 

RARγ in these cells serves self-renewal and anti-differentiation functions (Purton et al 

2006). Although, it is too early to extrapolate from hematopoietic to mammary biology, it 

remains theoretically possible that during cycles of proliferation and involution of the 

mammary epithelium a similar regulation in the expression of RARs exists in the stem/

progenitor cells compartment. atRA treatment, by activating RARγ, could perturb the 

equilibrium between progenitors and differentiated cells, increasing tumorigenicity. The 

observed ability of Am580 to reverse mammary gland hyperplasia, lends support to this 

hypothesis. It should be noted, however, that growth inhibitory effects of RARγ have been 

described (Su and Gudas 2008, Walkley et al 2007) suggesting that individual RARs might 

have unique roles in specific tissues.

Another important aspect of our findings is the observed partial oncogene-dependent 

responsiveness to Am580 treatment regarding tumor incidence (Kaplan-Meyer Figs.1A and 

B) and tumor growth (Figs.2B and C); both were more profoundly affected in the MMTV-

wnt1 model. This suggests that for better responses to retinoid therapy in breast cancer 

patients they might have to be stratified according to oncogenic pathways that are activated. 

We propose that induction of differentiation contributes to the increased responsiveness of 

wnt-1 tumors to Am580. Among the indicators of Am580-induced differentiation are 

formation of acini-like structures with signs of anoikis of the cells in the lumen, more 

normal-looking acini, proper localization of cytokeratins and redistribution of CRBP1 (Figs.

3 and 4) Thus, although not causing full differentiation, partial differentiation by Am580 

might explain its stronger anti tumor effect on wnt1-induced tumors. We postulate that 

normalization of the mammary morphology (differentiation) in these tumors is affected 

through the inhibition by Am580 of the wnt-pathway, as determined by relocalization of β-

catenin from the nucleus to the membrane (Fig.4D)

Lu et al. Page 8

Oncogene. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Taken together, our data document that two mammary carcinoma models, MMTV-neu and 

MMTV-wnt1 are responsive to Am580 treatment and that this response is only partially 

oncogene-dependent. The fact that Am580, a RARα agonist insensitive to P450 cytochrome 

degradation is effective in 2 cancer models relevant to the human disease and in a human 

breast cell line, has potentially important clinical implications. Based on these observations 

and the novel role of RARγ, we suggest that better understanding of the specific roles of 

individual RARs in cancer cell differentiation, proliferation and apoptosis will help develop 

rational chemopreventive and, possibly, chemotherapeutic retinoid-based approaches to 

breast cancer. Combinations of selective RARα agonists with RARγ antagonists may prove 

to be one such successful approach.

Materials and Methods

AM580 treatment

Four months old uniparous (1 pregnancy/lactation cycle) MMTV-neu and 6 weeks old 

nulliparous MMTV-wnt1 female mice (50 mice/group) were treated with the RARα agonist 

AM580 (0.3 mg/kg body weight per mouse per day) in the diet (Purina 5053) prepared by 

Purina-TestDiet, Richmond, IN, by adding 1.5mg AM580 per kg of Purina 5053 diet. Mice 

that developed tumors within the first month of treatment were removed from the study. 

Mice were palpated twice a week and tumor appearance was recorded. Once palpable, the 

size of the tumors was measured weekly. Tumor-free survival was calculated from Kaplan-

Meier curves and statistical significance was determined by the Log-rank test for the 

survival studies and t-test for the tumor growth studies. Metastasis was evaluated by 

removing the lungs of all the anesthetized mice, selecting randomly 20 mice per group and 

inspecting the lung surface for lesions using a stereoscope (Nikon SMZ800 stereoscope X3 

to 5).

Mammary Gland Whole Mounts

Mammary glands were excised, fixed in Carnoy’s fixative and stained in carmine alum 

solution as described in http://mammary.nih.gov/tools/histological/Histology/index.html.

Immunohistochemistry

Tumor samples were fixed in 10% buffered formalin for 24hrs, transferred to 70% ethanol 

and kept at 4°C until use. Sections were prepared from 10 tumors/group, subjected to 

standard antigen retrieval and incubated with p27 (BD Transduction Labs, NJ, USA), pRB, 

activated caspase-3 (Cell Signaling, MA, USA), CK-14 (Santa Cruz Biotechnology), CK-6 

(Covance, NJ, USA) or RARγ antibodies (Abcam, MA, USA), final concentration of 

1μg/ml, overnight at 4°C. The sections were processed using VectaStain ABC Elite Kit 

(Vector Laboratories, CA, USA), the signal was detected using Metal Enhanced DAB 

Substrate Kit (Pierce Laboratories, IL, USA) and the sections counterstained with Harris 

Hematoxylin Solution (Sigma Diagnostics, MO, USA).

Immunoblotting

Tumor homogenates (total protein 25 to 50μg) boiled in Laemmli buffer with β-

mercaptoethanol were electrophoresed on 10-15% SDS polyacrylamide gels, then 

Lu et al. Page 9

Oncogene. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mammary.nih.gov/tools/histological/Histology/index.html


transferred to PVDF Membranes (Hybond-P, Amersham Biosciences, NJ, USA), blocked 

with 5% non-fat dried milk and incubated with the primary antibody in 3% non-fat dry milk 

solution diluted as specified; anti-RARα, β and γ 1:500 (Abcam), anti-Akt and p-Akt 1:1000 

(Cell Signaling,) anti-CK-14 and CK-18 1:1000 (Santa Cruz Biotechnology), anti-FABP5 

1:500 (BioVendor, NC, USA), anti-Tubulin and anti-Vinculin (1:3000) (Sigma). Some 

membranes were stripped and re-probed.

Cell lines and 3D cultures

MMTV-wnt1 cell lines were generated from fragments of tumors from untreated MMTV-

wnt1 mice after digestion with collagenase (1.5mg/ml collagenase, 25mg/ml BSA in PBS 

with Ca2+ and Mg2+) at 37°C for 30-45min with gentle agitation. The 3D cultures were 

prepared and maintained as describe by Debnath et al. (Debnath et al 2003). MCF-10A cells 

generously provide by Dr. Brugge and maintained as described by Debnath et al. (Debnath 

et al 2003) (for details see Supplementary data). The apoptotic index was performed by 

etidium bromide (Gantenbein-Ritter et al 2008) (for details see Supplementary data).

Proliferation assay

MCF-10A (2×104) control cells or overexpressing RARγ were seeded in triplicates in 6-well 

culture dishes. After 24hrs, cells were washed with PBS, incubated in 2ml of DMEM-F12 

culture medium, detached and counted every 24hrs. Statistical significance was determined 

by t-test. pRB and p27 expression was tested by immunofluorescence analysis of control 

MCF-10A monolayers and monolayers stably transfected with pSG5-RARγ expression 

vector, using the same antibodies described for the IHC analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Am580 effect on tumor-free survival and tumor growth in MMTV-neu and MMTV-
wnt1 and metastasis in neu-mice
Fifty MMTV-neu (A) and MMTV-wnt1 (B) transgenic mice were treated with Am580 in the 

diet as described in Methods. Kaplan-Meier curves show significant (Neu: p<0.05; Wnt: 

p<0.01, Log-rank test) increase in tumor-free survival in Am580-treated transgenic mice. 

Tumor size (±SE) in MMTV-neu (C, ANOVA p<0.01) and MMTV-wnt1 (D, ANOVA 

p<0.001) was determined by twice weekly measurements; appearance of palpable tumors is 

considered time zero. The experiment was terminated when the untreated tumors were 

~1.5gm. (The variation in wnt-tumor volume with time is most likely due to development of 

fluid-filled cysts that burst and refill). E) Surface lung metastases were counted using a 

stereoscope at the end of the experiment described in C. Twenty randomly selected 

untreated and 20 Am580-treated MMTV-neu mice were evaluated (t-test, p<0.001).
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Figure 2. Effect of Am580 treatment on markers of cells cycle, apoptosis and survival
A) Ten sections each of neu and wnt1 tumors from untreated and Am580 treated mice were 

immunostained for p27 and pRB (scale bars, 100μm), and 3-400x fields in 10 sections each 

were used for the quantification shown in the bar graphs. (t-test, p27: p<0.001 and pRB: 

p<0.01). B) Sections of MMTV-neu and MMTV-wnt1 shown at 100X (upper panels) and 

400X (lower panels) magnification, from untreated (left, top and bottom) or Am580 treated 

(right, top and bottom) tumors were stained for activated caspase-3. In wnt-1 section, 

caspase-3 appears concentrated in the center of an acinus which might be undergoing 

cavitation (lower right panel). The increase in activated caspase-3, quantified as in B, was 

statistically significant (t-test, neu: p<0.01, wnt1: p<0.001). C) Immunoblots of total Akt 

and P-Akt in lysates of tumors from 3 untreated and 3 Am580 treated neu transgenic mice 

(left panel), and 3 untreated and 3 Am580-treated wnt1 mice (right panel) (Reduction of P-

Akt/Akt ratio by treatment ~50%). D) 3D cultures of MMTV-wnt1 cells (see Methods) 

grown for 13 days without or with 50nM AM580 were stained for caspase-3 as described in 

Methods. Note the cavitated acini and increased caspase-3 staining in the treated cultures. 

Scale bars, 50μm. E) Apoptosis of MMTV-wnt1 3D colonies in Matrigel, control (treated 

with DMSO (Ctrl)) or Am580-treated (50nM for 7 days), quantified by EtBr staining. Data 

of 3 independent experiments, each in quadruplicate, n=12 samples/group, t-test; p<0.001.
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Figure 3. Am580 treatment reduces hyperplasia and microscopic neu and wnt tumors
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A) Forty number four (#4) mammary glands (n=40), considered tumor-free by palpation at 

the time of euthanasia for tumor growth experiment, were retrieved, and examined as whole 

mounts for hyperplasia. The photographs show examples of severe (red barcode), high grade 

(orange) and low grade (green) hyperplasias. Bars; Reduction in the degree of hyperplasia in 

tumor-free neu and wnt glands treated with Am580, as percent of total glands tested. 

(Fisher’s Exact test *p<0.00, **p<0.0001, for neu and wnt glands, respectively). B) The 

same glands as in A but with microscopic tumors. The arrowhead - a microscopic tumor. 

LN=lymph node. Bars show the percent of glands with a single tumor and glands with 

multiple tumors (Fishder’s Exact test neu: *p<0.001, wnt1: *p<0.01). C) Tissue sections of 

neu-tumors from untreated (left upper and lower panels) and Am580 treated (right upper and 

lower panels) mice stained with H&E. D) Sections of wnt-tumors from untreated mice (left 

top and lower panels) and Am580-treated (right top and lower panels). Top panels, scale 

bars 100μm; bottom, scale bars, 10μm. Sections of neu and wnt-1 tumors show previously 

described characteristic histopathology (Cardiff and Wellings 1999).
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Figure 4. Am580 treatment induces differentiation of MMTV-wnt1 tumors
Immunohistochemistry (A and C, scale bar, 50μM) and immunoblotting (B) of tumors 

obtained from untreated or Am580 treated MMTV-neu or MMTV-wnt1 mice for markers of 

differentiation (CK-14, CK-6 and CRBP1). D) 3D cultures of MMTV-wnt1 cell line 

(passage #3), untreated, or treated with 50nM AM580, immunostained for β-catenin (red). 

Arrows indicate cells with nuclear staining of β-catenin. β-catenin is membrane localized in 

Am580 treated cells (upper right panel). Scale bar, 50μm.
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Figure 5. Am580 treatment reduces RARγ

A) RARα, β and γ level in tumor homogenates from untreated or Am580-treated MMTV-

Neu and MMTV-Wnt1 mice determined by immunoblotting. Shown 3 representative 

sections of 10 total tested/group. B) Immunostaining of MMTV-wnt-1 tumor sections for 

RARγ (untreated-left panel; Am580-treated, right panel). The tumor section from an 

untreated mouse has darkly stained nuclei (RARγ). Scale bar, 50μm.
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Figure 6. Pro-proliferative role of RARγ in human MCF-10 cells
A) RT-PCR of RARγ of MCF-10A cells stably transfected with RARγ (OE, 

overexpression), or control (Ctrl) plasmids. B) Monolayers of MCF-10A cells (control or 

RARγ OE, 4 wells/group) detached and counted daily for 3 days, ANOVA *p<0.001. C) 

MCF-10A cell cultures, untreated or treated overnight with 1μM atRA were analyzed by 

confocal immunofluorescence using anti p27 and anti-pRB antibodies. Scale bar, 100μm. 

Overexpressing RARγ cultures, control and treated, have lower proportion of p27-positive 

and higher proportion of pRb positive cells than their untransfected counterparts.
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