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Unsupervised topological learning 
approach of crystal nucleation
Sébastien Becker1,2, Emilie Devijver2, Rémi Molinier3 & Noël Jakse1*

Nucleation phenomena commonly observed in our every day life are of fundamental, technological 
and societal importance in many areas, but some of their most intimate mechanisms remain however 
to be unravelled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon 
undercooling, initiates at the atomic level on nanometre length and sub-picoseconds time scales and 
involves complex multidimensional mechanisms with local symmetry breaking that can hardly be 
observed experimentally in the very details. To reveal their structural features in simulations without 
a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent 
homology concepts is proposed. Applied here to monatomic metals, it shows that both translational 
and orientational ordering always come into play simultaneously as a result of the strong bonding 
when homogeneous nucleation starts in regions with low five-fold symmetry. It also reveals the 
specificity of the nucleation pathways depending on the element considered, with features beyond 
the hypothesis of Classical Nucleation Theory.

Understanding homogeneous crystal nucleation under deep undercooling conditions remains a formidable issue, 
as crystallization is essentially heterogeneous in nature and initiated from impurities, surfaces, or near grain 
boundaries that often hinder its occurrence1,2. Unreachable until very recently, experimental observations of early 
stages of nuclei was achieved by a tour de force using time tracking of three-dimensional (3D) Atomic Electron 
Tomography3 of metallic nanoparticles. Those complex phenomena remain to date out-of-reach experimentally 
for bulk systems, thus hindering our theoretical understanding. This line of research still belongs mostly to the 
domain of atomic-level simulations and more particularly to molecular dynamics (MD) with generic interac-
tion models4,5. To reach statistically meaningful events, large scale simulations are required. This still remains 
challenging as only few studies are providing now million-to billion-atom simulations for monatomic metals2.

To identify translational and orientational orderings during homogeneous nucleation in MD simulations, an 
unsupervised learning approach6 based on topological data analysis (TDA) signatures was developed through 
persistent homology (PH)7,8. PH is an intrinsically flexible, yet highly informative, tool which detects meaningful 
topological features deduced from atomic configurations. It was successfully applied very recently to characterise 
structural environments in metallic glasses9, ice10 and complex molecular liquids11. Always used as a structural 
analysis in these studies, the originality here is to use PH as a translational and rotational invariant descriptor 
to encode the local structures required for the clustering method. For the latter a model-based method is used, 
namely Gaussian Mixture Models (GMM)12, (already used with success to analyse MD simulations13) and its 
estimation by an Expectation Maximization (EM) algorithm14. The number of clusters (The word ‘cluster’ is used 
for groups detected by the machine learning method throughout the text.) is selected by Integrated Completed 
Likelihood (ICL15), a refinement for clustering of Bayesian Integrated Likelihood (BIC16). The inferred model 
from the method called hereafter TDA-GMM, is used to identify and describe the structural and morphological 
properties of the nuclei as well as their liquid environment at various steps of the crystal nucleation.

Results and discussion
With this unsupervised approach, the homogeneous nucleation process was studied in three monatomic metals 
chosen for the variety of their underlying crystalline phase, namely body-centered cubic (bcc) for Ta, face cen-
tred-cubic (fcc) for Al, and hexagonal-closed packed (hcp) for Mg. Large-scale molecular dynamics simulations17 
comprising one and ten million atoms were performed with a similar procedure used in our preceding work on 
pure Zr18 and described in more details in “Methods” section. Figure 1 depicts the methodology applied here to 
Ta. A rapid quenching at constant pressure brings the liquid from T = 3300 K down to T = 1900 K close to the 
time-temperature-transformation (TTT) nose. Crystal nucleation is observed along an isothermal process during 
which a configuration of the simulation is chosen for the clustering. As it contains many nuclei with different 
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sizes and a substantial amount of liquid, it is considered as representative of the phenomenon. From its inherent 
structure19, a training set of 5 000 non overlapping local spherical structures within a cutoff radius of 6.8 Å was 
sampled for the unsupervised learning (see Supplementary Information), with the constraints of covering the 
entire simulation box uniformly and randomly. Among all possible sets upon applying the GMM, the one with 
6 clusters shown in Fig. 1d was automatically inferred to be representative of the system based on the minimum 
ICL criterion Fig. 1c. The snapshot of the simulation box in Fig. 1a displays only atoms of type C1 and C2 , as they 
show clearly a crystalline order, refraining at this stage from characterising it. They reveal all nuclei as it will be 
seen below, along with their structure, size and morphology out of the simulation box displayed in Fig. 1b. From 
this model, each atom of each configuration generated by the MD simulation can be assigned to one of the six 
clusters (the one with the highest probability). Such a clustering training is performed independently for each 
metal and shows that more than 99.99 % of the structures have a probability to belong to the most probable 
Gaussian component greater than 0.999, even for structures not in the initial training set.

Figure 2 shows typical homogeneous nucleation events in undercooled Ta and Al during an isothermal 
process close to the nose of the TTT, which can be done by standard MD simulations without the need of an 
accelerated methods such as the Forward-flux sampling method20. The liquids above the melting point TM were 
first quenched down at ambient pressure to the glass transition sufficiently rapidly to avoid nucleation (see 
Table S1 in Supplementary Information). From stored configurations during cooling, the TTT curves in the 
vicinity of the nose were built from observation of the nucleation along several isotherms as shown in Fig. 2c,d. 
An isotherm slightly above the TTT nose is chosen for the analysis, i.e. T = 1900 K for Ta and T = 650 K for Al. 
From chosen configurations during the nucleation and growth process, the clustering is obtained from applica-
tion of the corresponding trained model as described above. For all metals considered here, strongly growing 
fraction of mainly two clusters, concomitant to the sharp drop of the energy, is observed. For Ta and Al, only local 
structures belonging to these clusters are drawn in Fig. 2a,b, revealing evidently the nuclei and their evolution in 
time, recalling that solely the topological vector is describing the local structure. The nuclei morphologies show 

Figure 1.   Unsupervised learning of homogeneous nucleation. Snapshot of a 10-million atom MD simulation 
of Ta during nucleation along the T = 1900 K isotherm (a,b). Independent local atomic structures within a cut-
off-radius of 6.8 Å form a train set represented in the descriptor space by 215 PH components up to dimension 
2. (c) Evolution of the ICL criterion as a function of the number of clusters is used to get autonomously the 
optimal number of clusters shown in (d). In (a) the snapshot is represented only with atoms in cluster C1 and 
cluster C2 revealing all nuclei (see text), while in (b) atoms of all clusters are displayed showing that those in 
cluster C3 are located mainly at the border of the nuclei and C4 , C5 and C6 correspond to the surrounding liquid 
with various topological characteristics.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3195  | https://doi.org/10.1038/s41598-022-06963-5

www.nature.com/scientificreports/

globular shapes that are rather spherical, characteristic of high �T , although obviously not strictly as revealed 
more quantitatively from a convex hull analysis. Interestingly, atoms from one of the two clusters (coloured in 
red) are mainly located inside the nuclei while atoms from the second one (coloured in pink) steadily remain 
essentially at the border upon growing. They stay finally at grain boundaries after full solidification of the simu-
lation boxes. Its appearance inside the nuclei reveals also the presence of defaults, as it will be examined below.

The simulations of homogeneous nucleation shown in Fig. 2 were performed with 10 and 1 million atoms for 
Ta and Al, respectively. In both cases, the vast majority of the embryos dissolve back to the liquid while those 
attaining the critical size are rare and grow. The larger simulation box for Ta allows to follow the nucleation 
process for a longer time, sufficient to observe more secondary nucleation events21. Direct estimation of the 
critical size is still unreachable by experiment, as nuclei can be detected only at larger size3. This is also scarcely 
studied by MD simulation as it is not easy to define their boundary from the surrounding liquid22,23, especially 
in the case of non-spherical or ramified shape24. Here, the size distribution of nuclei was obtained by counting 
the number of atoms in overlapping structures identified as red and pink clusters within the cut-off radius. An 
estimation of the critical size was inferred from the size of the nuclei that persist between the first and second 
configurations shown in Fig. 2, at least without loosing atoms they contained initially. As it can be seen for 
Ta on Fig. 1d, the local structures of the two clusters forming the nuclei are unambiguously crystalline (with 
only a slight distortion for structures from cluster C2 ) giving a clear definition of them. This is repeated in the 
subsequent consecutive pairs of configurations to refine statistics, and the results for all metals are gathered in 
Table S1 in Supplementary Information. For Ta, embryos with size less than 120 atoms always dissolve back to 
the liquid while the few nuclei found with size larger that 150 atoms always grew. Similar values of the critical 
radius were determined very recently for bcc Fe and fcc Cu25 and fcc Zn26 in similar high �T regime. For Al and 
Mg the simulations were performed at lower �T yielding obviously larger critical nuclei which are consistent 
with the Lennard–Jones case5,22 and also with Al but somewhat lower with respect to recent MD simulations27.

The nucleation process is characterized at least by two order parameters, the translational order (TO) and 
the crystalline ordering called hereafter the bond-orientational order (BOO). A dedicated representation of the 

Figure 2.   Homogeneous nucleation in Ta and Al undercooled liquids. Snapshots of the molecular dynamics 
simulations for Ta (a) and Al (b) with respectively 10 and 1 million atoms, during isothermal nucleation at 
different times at temperatures close to the nose of the Time-Temperature Transformation (TTT) for Ta (c) and 
Al (d). From stored configurations during fast cooling (blue curves), nucleation events along several isotherms 
were observed by monitoring the sharp drop of the internal energy (insets in (c,d)). The average nucleation 
times τN (symbols) were determined from 5 independent simulations for each temperature giving the TTT 
curves in the vicinity of the nose (orange lines).



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3195  | https://doi.org/10.1038/s41598-022-06963-5

www.nature.com/scientificreports/

TO is the number density. It is primarily applied to the embryos and the nuclei at different stage of the growth, 
through the radial partial atomic density profiles ρi(r) = Ni(r)/

4π
3 [(r +�r)3 − r3] as a function of distance r of 

the estimated centre of the nucleus, Ni(r) being the number of atoms belonging to cluster Ci in a spherical shell of 
radius r and thickness �r = 1 Å. Considering the nucleation process of Ta as an illustration, Fig. 3a depicts the 
density profiles ρi(r) for all 6 clusters for the largest nucleus shown in Fig. 2a and its surrounding liquid at time 
2.7 ns. The corresponding slice of the nucleus through its centre is drawn in Fig. 3b. Thus, the nucleus is defined 
by atoms belonging to clusters C1 and C2 as described above, atoms of C1 forming the centre of the nucleus, while 
atoms of C2 being mainly located at its border, as can be easily confirmed visually. It should be noted that atoms 
of cluster C3 are mainly located at the boundary of the nucleus, but they cannot be considered as being part of it, 
as they are also present in the entire box. From the total density profile of the nucleus ρN (r) = ρ1(r)+ ρ2(r) , it 
can be seen clearly that the density of nucleus has already reached at this stage the one of the bulk crystal at the 
same temperature. Defining the remaining clusters ( C3 to C6 ) as belonging to the liquid yields to a total density 
profile ρL(r) =

∑6
i=3 ρi(r) showing that even in the vicinity of the nucleus the liquid is negligibly influenced by 

its presence, keeping the density of the bulk undercooled liquid.
Figure 3c shows the evolution of the density profile ρN (r) at different times of the growing process. The 

average radius rN of the nucleus is taken as the value of r at half-maximum of ρN (r) and its evolution with time 
is shown in the inset, displaying a linear behaviour in agreement with CNT2. Whatever the size of the nuclei, 
the density of the inner part is close to the bulk crystal. More importantly, this is all the more true for all the 
embryos below the critical size up to a single local structure of type C1 or C2 corresponding to the minimal size 
of about 65 atomic structures identified by the TDA-GMM given the chosen cutoff radius (see Supplementary 
Information). This feature appears to be general as similar results are found for Al and Mg as shown in the Sup-
plementary Information.

The BOO of each cluster is identified through the Common-Neighbour Analysis (CNA)28, chosen as a well-
known and robust tool. The CNA signature30 given in Fig. 3d reveals that structures from clusters C1 and C2 
possess respectively a perfect and slightly distorted bcc crystalline ordering confirming the above analysis of 

Figure 3.   Translational and bond-orientational order parameters for Ta. (a) Radial density profile of the 
largest nucleus during the growth at 2.7 ns along the T = 1900 K isotherm. The red and blue dashed horizontal 
lines correspond respectively to the average bulk crystalline density and average bulk undercooled liquid 
without nucleation events, both being simulated at T = 1900 K at ambient pressure. (b) Corresponding slice 
of the nucleus through its centre and the surrounding liquid where atoms have been coloured according to 
the cluster they belong to (see Fig. 1d). (c) Total radial density profile of the largest nucleus during growth at 
times corresponding to Fig. 2 before solidification. Inset: time evolution of the radius of the nucleus. (d) Bond-
orientational order in terms of bonded pairs of the Common-Neighbor Analysis28 for each cluster of the model.
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nucleation and growth in terms of topological descriptors. Structures from clusters C4 , C5 and C6 display various 
high degrees of five-fold symmetry (FFS) characteristic of the liquid state together with a small but non negligible 
degree of bcc ordering, while structures from cluster C3 retains both FFS and bcc order in similar proportions. As 
shown in the Supplementary Information file, the use of Steinhardt parameters29 leads to a similar result. Such 
a BOO of the four clusters associated to the liquid agrees well with ab initio molecular dynamics simulations31 
and was interpreted as compatible with the A15 crystalline phase. This analysis in terms of CNA highlights and 
confirms that the TDA-GMM unsupervised learning approach is a powerful method to capture the structural 
picture in its finest details.

The peculiar spatial distribution of structure of type C3 shown in Fig. 3a deserves further attention. Firstly, 
its location at the boundaries of the nuclei could suggest the existence of a new type of ordering like in nuclea-
tion of ice32. However, here it is consistent with the mixed bcc and FFS orderings. This is then seen as an effect 
of the TDA-GMM procedure that picks up structures covering a part of the nucleus and of the liquid in the 
configuration used for the training. As a matter of fact, increasing the number of clusters in the GMM reveal 
several clusters with various crystalline and FFS ordering as shown in Supplementary Information file using a 
Principal Component Analysis (PCA)12. More interestingly, its presence in the whole simulation box indicates 
that in the undercooled liquid, some regions with higher bcc ordering might develop apart from the vicinity 
of the growing nuclei. Figure 4a shows a snapshot of the simulation at the onset of nucleation when the first 
nucleus starts to grow, all atoms being coloured according to the cluster they belong to. Figure 4b depicts a table 
of the concurrent p-values obtained, for each cluster, on the projection of atomic positions on the 3 directions 
of space, from a Kolmogorov–Smirnov test33 against the uniform distribution. For a level 0.01, the test is always 
rejected in at least one direction, which proves that the distribution of the clusters in the box is not uniform, i.e. 
their heterogeneity. Focusing on atoms of type C4 (green) and C6 (yellow), which represent more than 90 % of 
the atoms at this stage (58% for C4 and 34% for C6 ), it clearly shows that the undercooled liquid embodies struc-
tural heterogeneities with varying degree of FFS. Moreover, higher bcc ordering characterized by structures of 
type C3 appears in localized regions of lower FFS (green) from which, in most of the cases, embryos formed by 
structures from clusters C1 and C2 emerge. The same conclusion of structural heterogeneity is obtained for Mg 
and Al, with particularly low p-values for Mg (see Supplementary Information).

The question whether the onset of nucleation is initiated primarily by translational or by orientational order-
ing is still open2,34 and was debated during the last decade with a controversy essentially centred on the hard 
sphere and associated colloidal systems35–37. For Ta, the small emerging embryos at the onset of nucleation, cor-
responding to one structure of 55 to 70 atoms belonging to C1 or C2 with bcc crystalline BOO, show bond lengths 
of their bcc lattice close to the density of the bulk crystal at T = 1900 K, a feature that also holds for the other 
metals investigated here. This provides evidence for the size of embryos that can be detected here: translational 
and bond-orientational orders appear simultaneously and rule out the scenario in which homogeneous nuclea-
tion is driven by BOO first35,38 for pure metallic systems. For more complex metallic alloys like Al–Ni34, it was 
shown, using Steinhardt parameters, that nucleation is initiated by orientational ordering, followed by density 
ordering. However, our results are consistent with the fact that, at least for pure metallic systems with strong 
bonding, unlike hard spheres, are more energy driven rather than entropy driven systems.

All these features allow us to propose a nucleation pathway for the metals considered here, guided by their 
electronic structure characteristics and underlying stable crystalline structure. For Ta, our findings show a single 

Figure 4.   Early nucleation stage for Ta. (a) Snapshot of the simulation with 1 million atoms along isotherm 
T = 1900K showing the onset of nucleation when the first nucleus starts to grow (highlighted by the black 
circle). Atoms have been coloured according to the cluster they belong to (see Fig. 1d). (b) p-values computed 
on the projection of atomic positions on each direction of the box from a Kolmogorov–Smirnov test against the 
uniform distribution.
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step process with an onset of homogeneous nucleation taking place in low FFS domains of the heterogeneous 
liquid, where emerging bcc embryos have simultaneously the density of the bulk solid. After reaching the criti-
cal size, the nuclei grow in a rather globular shape with a bcc structure, a small amount of defects, and a diffuse 
interface with decreasing bcc ordering. During the growth the surrounding liquid keeps the bulk liquid density. 
This single-step nucleation might be explained by the strong stability of the bcc structure of Ta coming from its 
half filled 5d-band structure with one of the highest cohesive energy47. A similar one step nucleation pathway 
also holds for Al in which embryos emerge from the low FFS regions directly with the fcc bond ordering. The 
growing nuclei have here a more patchy morphology and a significant amount of fcc stacking faults. For Mg, a 
two steps process is identified as can be seen in the Supplementary Information: an onset of nucleation showing 
embryos having mainly a bcc ordering followed by growth of nuclei with a mixed fcc/hcp structure and some bcc 
ordering at the surface of the nuclei. The difference in the nucleation pathways might be surprising as the fcc and 
ideal hcp structures displayed by Al and Mg have identical first and second neighbors atoms47,48. In describing 
these sp-valent metals within the second-order perturbation theory, it was shown49,50 that their structural energy 
difference come from more distant neighbors and is small, and even smaller for Mg. Nevertheless, the relative 
stability with respect to the bcc structure is ∼ 3 times larger for Al than for Mg47,48. This might explain why the 
onset of nucleation is a one-step nucleation process due to the higher fcc stability, while it is a two-step process 
for Mg, starting with in the first step with embryos having locally preferred high symmetry bcc structure, due 
to the much smaller structural difference with respect to the hcp. The presence of defective hcp structures in 
fcc Al nuclei and fcc local structure in hcp Mg nuclei may result from the very small hcp-fcc energy difference. 
For Mg,, the scenario is more akin to the Lennard–Jones case5,22 following the Landau Theory in which the bcc 
precursor is favoured in the early stages of crystal nucleation39 as well as the Ostwald step rule40 for which the 
primary crystal phase nucleating from the liquid is not necessarily the thermodynamic stable one.

Conclusion
The present unsupervised learning approach was shown to be a powerful tool to unravel the atomic scale mecha-
nisms of crystal nucleation in monatomic metals. It allowed us to reveal general aspects in the homogeneous 
nucleation process as well as specificities depending on the metallic element under consideration. Our results are 
in line with the emerging idea that heterogeneities which exist in the undercooled liquid37 play the foremost role 
in the onset of nucleation. For all metals, nucleation have been found to start in low FFS regions, which is consist-
ent with Frank’s argument41 and also observed for Al–Ni alloys34. For pure metals, translational and orientational 
ordering taking place simultaneously in emerging embryos. Given the fact that metals considered here have dif-
ferent crystalline ordering, this feature is induced by the bonding character of interactions. Moreover, embryos 
as well as nuclei during the growth possess the bulk crystal density driven by the metallic bond length while the 
surrounding liquid keeps the bulk liquid density in accordance with the classical nucleation theory2. However, our 
analysis reveals also some aspects beyond the CNT, such as nuclei having a diffuse interface with the surrounding 
liquid and metals possessing their own nucleation pathways, involving e.g. for Mg a two step mechanism40. This 
may trigger further theoretical developments, and for instance in the diffuse interface approach2. The complexity 
and richness found here for metals and in other systems22,36,37 underline the future challenges in stepping forward 
in our theoretical understanding beyond the CNT. This promising methodology more generally opens the door 
to a deeper and autonomous investigation of atomic level mechanisms in materials science.

Methods
Simulation method.  Molecular dynamics simulations were performed with the lammps code17 in a fully 
periodic situation. Verlet’s algorithm in the velocity form for the numerical integration of the phase space trajec-
tory was used with a time step of 2 fs for Ta with a number of atoms N = 107 ( 106 for the training) and 1 fs for 
Al and Mg with N = 106 . Interatomic interaction were taken in the Embedded Atom Model form and chosen 
for their ability to reproduce the liquid and solid properties as described in the Supplementary Information. 
Control of the thermodynamic conditions was done with the Nosé–Hoover thermostat and barostat42 was used 
to maintain the ambient pressure whatever the temperature. The time-temperature transformation curves were 
first built for each metal following the procedure established recently18. The procedure to compute the TTT 
curves follows the one from our previous work on Zr18. Along an isotherm located slightly above the TTT nose, 
6 configurations of interest were selected for the purpose of monitoring the crystal nucleation process. The 
unsupervised method is applied to the inherent structures19 of the chosen configurations. The latter are obtained 
from a minimization of the energy by means of a conjugate gradient algorithm to bring the system in a local 
minimum of the potential energy surface. In this manner, the thermal noise is removed and allows us to reveal 
the genuine structural features. This is an important aspect for the unsupervised method used here, either for the 
construction of the topological descriptor or for the clustering. It avoids identifying several clusters with similar 
structural characteristics in the same local minimum of the PEL. With the system size considered here neither 
partial criystallisation nor change in the nucleation process were observed by applying the minimization.

Definition of the local structures.  Figure  5 shows schematically the pair-correlation function g(r) of 
the undercooled liquid and crystalline states of Ta at T = 1900 K with the respective mean structure assigned 
to the clusters C4 (preponderant liquid) and C1 (preponderant bcc). A cut-off radius of 6.8 Å was set to capture 
topological informations with the help of the Python package gudhi43 and ripser.py44 up to the second 
neighbour shell. The local atomic structures were extracted with Python package pyscal45.

In the context of classical descriptors like the averaged bond-orientational order analysis it was shown29 that 
information from the second neighbour shell increase the accuracy in the discrimination of local structures, but 
at the expense of a loss in the spatial resolution. This is also observed in the topological descriptors set up here 
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which give rise to more H0 and H1 components as well as H2 components which appear only when considering 
more than just one neighbour shell. It should be pointed out that when increasing further the cut-off radius up 
to the third neighbour shell and beyond, the benefit gained in topological information is counterbalanced by a 
too large spatial extension leading to a loss of resolution in the Gaussian Mixture Model (GMM) clustering. This 
compromise between the accuracy and the spatial resolution bring us the optimal choice of the second neighbour 
shell to define local structures consistently with earlier findings29.

Persistent homological descriptors’ space (TDA).  The unsupervised learning in the MD configura-
tions is performed in terms of the local atomic environment of each atom (called the local structure) within a 
cut-off radius defined as the second minimum of the pair-correlation function g(r) in the liquid, as described in 
Fig. S1 of Supplementary Information. The use of two atomic neighbour shells to represent the local environ-
ment was shown to optimize the local structural information of descriptors at the expense of a loss of the spatial 
resolution29. In Persistent Homology7,8, components of homological dimensions H0 , H1 and H2 are then used 
in the form of a topological vector of dimension nPH to represent each local structure. Its components are cal-
culated from the Persistent Diagrams (PD) representing the birth and death characteristics of each topological 
component, as shown in Fig. 6. More precisely, for each pair of points (x, y) in a PD, D, the values of the topologi-
cal vector components are calculated, except for the infinite point, for a fixed level of homology8 by

where d�(·) denotes the ℓ∞ distance to the diagonal. The number of H0 is fixed by the number of neighbour 
atoms and the number of components of H1 and H2 is inferred from a subsampling approach as described in46 
to remove the noise.

Clustering using a Gaussian mixture model (GMM).  In order to build a training set for the learning, 
a sampling of 5000–7000 structures, that covers the entire simulation box by means of their central particles at 
least separated by two times a cut-off radius are extracted from a million atoms configuration chosen during the 
nucleation.

From the built topological descriptors’ space as described above, a mixture of M Gaussian distributions 
(φ( · ;µm,�m))1≤m≤M of weights (αm)1≤m≤M is written as

(1)mD(x, y) = min{�x − y�∞, d�(x), d�(y)},

(2)
M∑

m=1

αmφ( · ;µm,�m),

Figure 5.   Cut-off radius for the clustering based on the g(r) function with the second minimum leading to 
structures with two neighbors shells with the one associated in Ta to the preponderant liquid in green (a) and 
the one to bcc ordering in red (b).
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where µm is the position of the mean and �m the covariance matrix of the mth Gaussian distribution. The number 
of Gaussian components is set using the ICL criterion15 and full covariance matrices with 3 000 K-means initiali-
zations are used to construct a model for applications on configurations along the nucleation process. Doubling 
manually the number of clusters to be identified, even if it is not optimal in the sense of the ICL, leads to the 
same evolution of the CNA of the clusters as in Fig. 3d with additional clusters having intermediate orderings 
displaying a “more continuous” evolution as shown in the Supplementary Information file.
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