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Mild traumatic brain injury (mTBI) accounts for over onemillion emergency visits each year in the United States.
The large-scale structural and functional network connectivity changes ofmTBI are still unknown. This studywas
designed to determine the connectome-scale brain network connectivity changes inmTBI at both structural and
functional levels. 40 mTBI patients at the acute stage and 50 healthy controls were recruited. A novel approach
called Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs) was applied for
connectome-scale analysis of both diffusion tensor imaging and resting state functional MRI data. Among 358
networks identified on DICCCOL analysis, 41 networkswere identified as structurally discrepant between patient
and control groups. The involved major white matter tracts include the corpus callosum, and superior and infe-
rior longitudinal fasciculi. Functional connectivity analysis identified 60 connectomic signatures that differentiate
patients from controls with 93.75% sensitivity and 100% specificity. Analysis of functional domains showed de-
creased intra-network connectivity within the emotion network and among emotion-cognition interactions,
and increased interactions among action-emotion and action-cognition as well as within perception networks.
This work suggests that mTBI may result in changes of structural and functional connectivity on a connectome
scale at the acute stage.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Traumatic brain injury (TBI) is a significant public health care bur-
den in the United States (US) and worldwide (Kay, 1993; National
Institutes of Health, 1999). TBI has also gained national awareness be-
cause it has become the “signature wound” of soldiers in the antiterror-
ism wars in Iraq and Afghanistan (Zoroya, 2007) and because of the
damage to both youngsters and adults caused by sports injuries. Most
TBI patients have mild TBI (mTBI), with an incidence of over 1.2 million
cases annually in the US (Kay, 1993;National Institutes of Health, 1999).
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Despite the term “mild,”mTBI causes a constellation of physical, cogni-
tive, and emotional symptoms that significantly impact the patients'
quality of life and cost the nation $16.7 billion each year (Bazarian et
al., 2005; CDC, 2003; Ruff, 2005). In the emergency department (ED),
themajority ofmTBI patients have negative findings on clinical imaging,
including computed tomography (CT) and conventional magnetic reso-
nance imaging (MRI), such as at T1, T2*, and fluid attenuation inversion
recovery (FLAIR) sequences, (Belanger et al., 2007; National Academyof
Neuropsychology, 2002) despite a constellation of clinical presentations
in their emergency stay.

To date, there are no properly sensitive tools to detect the underly-
ing pathophysiological changes in the brain after mTBI at the acute
stage. It has been reported thatmTBI patients have bothmicrostructural
damage inmajorwhitematter tracts, detected by diffusion tensor imag-
ing (DTI) (Kou and VandeVord, 2014; Kou et al., 2010; Niogi and
Mukherjee, 2010; Niogi et al., 2008b), as well as functional network al-
terations, detected by functional MRI (fMRI) (Iraji et al., 2015; Johnson
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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et al., 2012; Mayer et al., 2011; Stevens et al., 2012). For microstructural
damage, the most susceptible white matter tracts include the corpus
callosum (CC), superior coronal radiata, cingulate bundle, superior and
inferior longitudinal fasciculi, and accurate fasciculus (Kou et al., 2012;
Kou and VandeVord, 2014; Kou et al., 2010). The damage in these tracts,
measured by fractional anisotropy (FA) on DTI, has been reported to be
associated with mTBI patients' neurocognitive symptoms or post-con-
cussive syndrome (PCS) scores. Irimia et al. used a connectogram ap-
proach to investigate structural connectivity among different
functional parcellations of the brain in three moderate to severe TBI pa-
tients and suggested large scale structural network damages in TBI pa-
tients (Irimia et al., 2012). However, the study only investigated a
handful of cases. To date, there is still a lack of data to investigate how
brain injury affects the brain structural network connectivity at large
scale or connectome-scale.

In addition tomicrostructural injury, alterations in functional activi-
tymay also occur aftermTBI, either due to direct injury to the functional
networks or the remodeling response to the microstructural injury.
Therefore, an investigation of the brain's functional activity is also im-
portant for a further understanding of brain alterations. Task-based
fMRI demonstrates functional alterations of mTBI patients' memory
(Chen et al., 2012; McAllister et al., 1999) and language (Morgan et al.,
2013; Tivarus et al., 2012) networks. Though task-based fMRI has
been used to identify activity related to specific brain regions for years
(Ogawa et al., 1992), functional brain activity is more complicated
than is disclosed by investigating the brain during tasks. The brain in-
cludesmany functional networks, such asmemory,motor, attention, vi-
sion, and auditory networks, etc., that work together. It is impracticable
to investigate all of these brain functional networks using multiple
tasks, and in many scenarios, it is often not possible to perform task-
based fMRI, due to subjects' health conditions or age. Furthermore, the
output of task-based fMRI is vulnerable to subjects'willingness or ability
to cooperate.

As an alternative, resting-state fMRI (rsfMRI) has been suggested to
complement task-based fMRI (Kou and Iraji, 2014; Shimony et al.,
2009). rsfMRI has the ability to simultaneously investigate several
brain networks and to explore functional connectivity between brain
regions (Damoiseaux et al. 2006; Iraji et al., 2016). Several studies inves-
tigating alterations in rsfMRI data in various brain disorders andmental
conditions have shown its ability to differentiate patients from healthy
subjects (Jafri et al., 2008; Sorg et al., 2007; Calhoun et al., 2008; Chen
et al., 2015; Iraji et al., 2016). rsfMRI studies have reported several net-
work alterations in mTBI, including the default mode network (DMN)
(Iraji et al., 2015; Johnson et al., 2012; Mayer et al., 2011; Zhou et al.,
2012), thalamus network (Tang et al., 2011) and others (Messe et al.,
2013). Instead of looking at individual networks by using seed region
based analysis, Stevens et al. (Stevens et al., 2012) used independent
component analysis (ICA) to investigatemTBI data and reported several
network alterations of thewhole brain. In a longitudinal study,Messe et
al. have shown that functional connectivity in temporal and thalamic re-
gions was increased at the sub-acute stage in patient with post-concus-
sion syndrome; however, it was decreased in frontal areas at sixmonths
after injury (Messe et al., 2013). Mayer et al. investigated the dynamic
functional connectivity along with static functional connectivity in
mTBI patients, and although their analysis did not show group differ-
ences after multiple comparisons correction, the static and dynamic
functional connectivity shows trends of reduction in the DMN (Mayer
et al., 2015), which is aligned with a previous study by the same
group (Mayer et al., 2011) on static functional connectivity. Despite
promising progress, these investigations of brain functional networks
all focused on a limited number of brain networks and it is still unclear
howmTBI changes the brain functional networks on a large-scale level,
particularly at the connectome level.

The aforementioned evidence suggests that brain injury affectsmore
than one or even several brain networks in both structural and function-
al connectivity. Instead, mTBI may cause large-scale network
disruptions or alterations both structurally and functionally. A better as-
sessment of the scale of structural disruptions and functional alterations
of brain networks after mTBI may help physicians better diagnose brain
injury and order appropriate rehabilitation. However, the field is still
short of investigations on connectome-scale brain network changes, in
both structural and functional connectivity, after mTBI.

When measuring the brain's structural and functional connectivity
at large-scale network level, the choice of regions of interest (ROIs)
plays a pivotal role in analysis. ROIs serve as a structural basis for mea-
suring the connectivity between one brain region and others both struc-
turally and functionally. The selected ROIs should not only be specific to
individual brains but also be consistent and robust enough across the
population for large-scale comparison (Zhu et al., 2013). Despite the
promising abilities of rsfMRI, there are still several barriers and limita-
tions that need to be resolved in the selection of functional nodes. The
limitations can be divided in two general categories:

1) Inability to identify an appropriate ROI due to unclear functional
and/or cytoarchitectonic boundaries between cortical regions
(Brett et al., 2002; Li et al., 2010a; Liu, 2011; Zhuet al., 2011). Consid-
ering the fact that a slight change in an ROI location can cause dra-
matic effects on results, the importance of identifying ROIs as
precisely as possible has become clear (Li et al., 2012; Liu, 2011;
Zhu et al., 2011). At the same time, each sulcus and gyrus can be in-
cluded in several functions and be involved in several brain fiber
bundles connections (Zoroya, 2007); therefore, current methods
that use brain structure such as sulci and gyri are suboptimal to de-
termine the most appropriate ROIs.

2) Significant structural and functional variations among subjects (Zhu
et al., 2011). Even if the complexity of cytoarchitecture and disagree-
ment of the boundaries of cytoarchitectonic areas are addressed, due
to notable brain morphological variations between subjects (for in-
stance, in the prefrontal cortex), it is difficult to identify regions
with similar structural and functional connectivity across individuals
(Brett et al., 2002). The complex shape of the cortexmakes it hard to
find corresponding regions among individuals. Despite several mag-
nificent efforts to identify common brain structures, we still lack re-
liable and consistent functional landmarks. All of this evidence of
brain complexity brings up the question of reliability in using brain
anatomy to identify corresponding meaningful functional regions
among individuals.

To overcome the aforementioned problems, Zhu et al. identified a set
of group-wise consistent brain landmarks based on common fiber con-
nection profiles called Dense Individualized Common Connectivity-
based Cortical Landmarks (DICCCOLs) (Zhu et al., 2014). In DICCCOL
framework, the common cortical areas are defined based on fiber tracts
derived fromDTIfiber tractography– the common area carries common
fiber tracks across individuals. Therefore, DICCCOL is a predictive frame-
work for brain network regions. Instead of seeking one-to-one corre-
spondence in brain image registration or whole-brain parcellation into
sub-units, the DICCCOL system aims to identify themost common corti-
cal landmarks based on the criteria of group-wise consistent DTI-de-
rived fiber connections emanating from the corresponding landmarks.
With a data driven approach, Zhu et al. explored and identified 358 con-
sistent brain landmarks evenly distributed on the cortical surface. These
landmarks have been shown to be highly reproducible across individ-
uals (Zhu et al., 2014). Moreover, the functional role of each DICCCOL
has been extensively examined (Yuan et al., 2013; Zhu et al., 2014).
Based on the connectionalfingerprint concept suggested by Passingham
(Passingham et al., 2002), that each brain's cytoarchitectonic area has a
unique set of extrinsic inputs and outputs that largely determines the
functions that each brain area performs, and because eachDICCCOL pre-
serves consistent structural connectivity, its functional role in brain net-
works can also be determined. In previous extensive studies, it has been
shown that DICCCOLs serve as a better landmark system than the tradi-
tionally used Brodmann map to investigate structural and functional
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connectomic abnormalities on a large scale (Li et al., 2013;Morgan et al.,
2013; Zhu et al., 2014). The DICCCOL system can effectively address the
aforementioned limitations. Unclear functional and/or cytoarchitectural
boundaries and the nonlinear properties of cortex are appropriately sat-
isfied by the search procedure, and group-wise consistency is used as a
constraint of optimization. Structural and functional brain variations
among individuals were addressed by maximizing group-wise consis-
tency of fiber connections. Additionally, this method has the important
advantage of the prevention of errors caused from image registration.

In this paper, we hypothesize that mTBI results in large-scale brain
network connectivity changes. This study was designed to determine
the large scale, or connectome scale, brain network connectivity chang-
es in mTBI at both structural and functional levels. On the one hand, TBI
is heterogeneous and complex, and each TBI patient is unique in terms
of injury severity, location, biomechanical impact scenario and patho-
physiology; on the other hand, the reported imaging investigations
did report the common patterns of certain brain regions or major
whitematter tracts susceptible to injury, and cognitive neuroscience in-
vestigations also suggest several common functional domains that are
susceptible to alterations. This study focuses on the common patterns
of structural and functional connectivity changes after injury that are
shared among patients to evaluate the utility of the DICCCOL analytical
approach to brain injury research at the group level. The summary of
processing steps (schematic of the pipeline) can be found in Fig. 1. Brief-
ly, we first estimated the initial location of DICCCOL nodes by co-regis-
tering individual subjects onto a DICCCOL template to find initial
DICCCOL node locations, then optimized the individual node locations
to maximize the group consistency for each node. Next, we identified
two sets of cortical landmarks in mTBI: common DICCCOLs and
Fig. 1. Schematic of the data analysis pipeline. The olive green boxes indicate general steps, and
references to color in this figure legend, the reader is referred to the web version of this article
discrepant DICCCOLs. The common DICCCOLs have the consistent and
similar fiber bundle patterns emanating from their corresponding
DICCCOLs amonghealthy individuals andmTBI patients. In contrast, dis-
crepant DICCCOLs have significant group difference between patients
and controls in their extracted fiber bundle patterns emanating from
their corresponding DICCCOLs. In other words, discrepant DICCCOLs re-
fers to those DICCCOLs for which we could find group-consistent fiber
bundle structures in control group but not in patient group, after ex-
haustive search for the optimal location within 5 mm radius range in
our search algorithm. Therefore, the discrepant DICCCOLs could serve
as a potential surrogate biomarker to identify the pathophysiological
or structural abnormality in those affected white matter tracts. We
also extracted and verified robust functional connectomic signatures
that identify the cortical areas that have altered functional connectivity
after brain injury despite having normal structural connectivity. These
functional connectomic signatures can distinctively characterize mTBI
patients from healthy subjects.

2. Methods

2.1. Participants

This study was approved by both the Human Investigation Commit-
tee of Wayne State University and the Institutional Review Board of the
Detroit Medical Center. Written informed consent was obtained from
each subject before enrollment. A cohort of 40 mTBI patients were pro-
spectively recruited from the ED of Detroit Receiving Hospital, a Level-1
trauma center which is an affiliated hospital of the Detroit Medical Cen-
ter. Patient eligibility was based on themTBI definition by the American
blue boxes provide details and particular procedures of each step. (For interpretation of the
.)
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Congress of Rehabilitation Medicine (American Congress of
RehabilitationMedicine, 1993)with the following inclusion criteria: pa-
tients aged 18 or older with an initial Glasgow Coma Scale (GCS) score
of 13–15 in the ED with any loss of consciousness b30 min or any post
traumatic amnesia b24 h, or recorded change of mental status (con-
fused, disoriented or dazed). All patients required a CT scan as part of
their clinical evaluation. All of themwere able to speak English. The ex-
clusion criteria included patients under the age of 18 years, pregnant
woman, and patients with any medically documented history of brain
injury, neurological disorders or psychoactive medications, history of
substance abuse, computed tomography (CT) indication of any metal
in the brain and body, known contraindication to MRI such as a pace-
maker or other non-MR compatible implanted device as defined by
metal screening procedure, and patients without a clear history of trau-
ma as their primary event (e.g., seizure and epilepsy). In the acute stage,
a patient'smental status change or amnesiamay lead to errors in the re-
port of their medical history, thus the patient's record was retrospec-
tively screened as well to exclude any patient who does not fit our
inclusion criteria. Additionally, we also recruited a cohort of 50 healthy
controls without history of head injury or antecedents of central ner-
vous system disease from the local community and patients' family
members and relatives to match their demographics. The patients and
healthy controls were not matched on a subject-to-subject basis; that
is, a healthy control recruited from a specific patient's family was not
chosen based on a close match to that specific patient, but rather to at-
tempt to keep the groups relatively similar in terms of socioeconomic
status, education, and other factors.

Our dataset includes 50 healthy subjects (age: 29.88/10.75 mean/
std, male/female: 38/12) and 40 patients (age: 38.03/13.69 mean/std,
male/female: 24/16) withmTBI, recruited at the acute stage. The rsfMRI
data was not acquired for 8 patients; therefore, functional connectivity
analysis was performed with 32 patients. Demographic information
has been shown in Table 1. There was no significant gender difference
between mTBI patients and healthy subjects; however, race and age
are significantly different between two groups. The median time be-
tween injury and MRI scan is 20 h (Table 1).

2.2. Image acquisition

MRI data were collected on a 3-Tesla Siemens Verio scanner with a
32-channel radiofrequency head-only coil. Both DTI and rsfMRI images
were acquired, in addition to baseline T1, T2, fluid attenuated inversion
Table 1
Demographic characteristics of patients and healthy controls.

Characteristic Patients with mTBI
(n = 40)

Control
subjects
(n = 50)

Gender
Female 16 12
Male 24 38

Age
Mean ± SD 38.03 ± 13.69 29.88 ± 10.75
Median/range 35/(73 ~ 19) 26/(66 ~ 19)

Race
African American 29 5
White 8 30
Asian 0 5
Others 3 10

Time since injury (hours)
Mean ± SD 74.43 ± 103.37 –
Median/range 20/(446 ~ 2) –

Glasgow Coma Scale
Mean ± SD, range 14.95 ± 0.22,

(14–15)
–

MRI diagnosis
Traumatic bleeding and lesions 3 0
Non-specific hyperintensities on
FLAIR

10 11
recovery (FLAIR), and susceptibility weighted imaging (SWI). The total
data acquisition protocol was about 40min. Specifically, diffusion imag-
ingwas acquired using a gradient echo EPI sequencewith b=0/1000 s/
mm2 in 30 diffusion gradients directionswith the followingparameters:
TR (repetition time)=13.300ms, TE (echo time)=124ms, slice thick-
ness = 2 mm, pixel spacing size = 1.333 × 1.333 mm, matrix size =
192× 192, flip angle=90°, and number of averages (NEX)=2. Resting
state functional imaging was performed using a gradient echo EPI se-
quence with the following imaging parameters: TR/TE = 2000/30 ms,
slice thickness = 3.5 mm, slice gap = 0.595 mm, pixel spacing size =
3.125× 3.125mm,matrix size=64× 64,flip angle=90°, 240 volumes
for whole-brain coverage, NEX = 1, acquisition time of 8 min. During
resting state scans, subjects were instructed to keep their eyes closed,
stay awake and not focus on anything in particular.

All structural MRI data, from both patients and controls, were
reviewed by our board certified neuroradiologist (CZ) to identify any
abnormalities. The neuroradiologist was blinded to all subjects' clinical
information. Structural MRI findings are summarized in Table 1.
Among 40 mTBI patients, twenty-seven of them experienced loss of
consciousness for b30min. Three patients had positive structural imag-
ing findings: one patient had a left temporal lobe hemorrhagic contu-
sion and left ventricular hemorrhage on MRI, but only skull fracture
and no parenchymal hemorrhage on CT; the second patient had small
hemorrhagic foci in the ventricle and left lingual gyrus onMRI, but neg-
ative CT; and the third patient had small petechial hemorrahges on the
right parietal cortical surface on MRI and bleeding and scalp edema on
CT. This adds some level of heterogeneity to our data, which could po-
tentially impact the group-level analysis. However, the third subject
was excluded from the rsfMRI analysis as they were one of the eight
subjects lacking fMRI data discussed above. Ten patients and 11 controls
also had non-specific white matter hyper-intensities on structural MRI.
Structural MRI and its role in mTBI detection and outcome prediction at
the acute stage will be addressed in other works. This paper focuses on
the large-scale network connectivity changes of the brain after head
injury.

2.3. Image preprocessing

Preprocessing for both diffusion data and resting-state datawas per-
formed using the FSL software (Jenkinson et al., 2012) (http://www.
fmrib.ox.ac.uk/fsl/). Diffusion data preprocessing included brain extrac-
tion, motion correction, and eddy current correction. The cortical sur-
face was reconstructed based on the segmented fractional anisotropy
(FA) image of white matter (Liu et al., 2007; Liu et al., 2008) (see Fig.
2). Since the surface is reconstructed upon an FA map of white matter,
it marks the boundary between the white and graymatter. This reduces
the impact of the cortical characteristics (i.e. thickness or shape) on the
optimization process and identification of the optimized locations for
DICCCOLs. This approach has been validated as effective in the DICCCOL
modeling paper (Zhu et al., 2012). Fiber tracking was performed via
MedINRIA (http://med.inria.fr/). For resting-state data, the first five vol-
umes were excluded due to magnetization equilibrium. Brain extrac-
tion, motion correction, slice-time correction, spatial smoothing
(FWHM = 5 mm), temporal prewhitening, grand mean removal, and
temporal high-pass filtering were then applied on rsfMRI data accord-
ingly. The preprocessed data were used to predict DICCCOLs as de-
scribed below.

2.4. Prediction of DICCCOLs

The DICCCOL system (Zhu et al., 2014) is a cortical landmark predic-
tion framework that contains 358 landmarkswith consistent structural/
functional roles across individuals. In this approach, all DICCCOLs were
identified on the cortical surface based on their consistent white matter
fiber connection profiles derived from DTI tract fibers. Prediction of
DICCCOLs in a group of subjects is a process of searching optimal cortical

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://med.inria.fr


Fig. 2. Examples of reconstructed cortical surfaces of (a) a healthy control subject and (b)
an mTBI patient subject using fractional anisotropy (FA) data.
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regions in each subject from which the emanating fiber bundles share
similar connectivity profiles within the group. In this approach, one
key step is to quantitatively compare the fiber bundle connectivity pro-
files with each other. To do this, a fiber bundle shape descriptor called
trace-map algorithm has been developed and utilized (Zhu et al.,
2012). Briefly, the fiber bundle originating from an ROI is extracted by
using the deterministic tractography algorithm (Fig. 3a). Next, the con-
nection orientation profile for each fiber streamline is calculated (Fig.
3b), and projected onto a unit sphere (Fig. 3c). The result is the distribu-
tion of orientation vectors on the sphere (Fig. 3d). Next, the unit sphere
is divided to 144 regions and the number of projected pointswas count-
ed for each region. The result is a vectorwith 144 values represented the
direction profile of fiber bundle connected to the ROI. The advantage of
the trace-map algorithm is that it can be used to compare overall shape
of different fiber bundles with tolerance of small variations among
individuals.

In the process of predictingDICCCOLs, cortical landmarkswere iden-
tified based on reconstructed cortical surface and fiber tracks were re-
constructed from diffusion images with publicly available tools
(http://dicccol.cs.uga.edu/). DICCCOL tools contain DICCCOL templates
with DICCCOLs' locations (Fig. 3e) and trace-map feature vectors. The
b0 image of diffusion data was aligned with DICCCOL templates using
a linear registration with 12 degrees of freedom (DOF), and the initial
location of DICCCOLs on the surface was obtained by alignment as illus-
trated in Fig. 3f. In the next step, for each DICCCOL, the optimized loca-
tion has been identified by searching the neighborhood of up to 10mm
cortical distance (Zhang et al., 2012; Zhu et al., 2014) from the initial lo-
cation to minimize the dissimilarity of fibers passing through the
DICCCOL between a subject and the templates (Fig. 3g). Our previous
comparison between DICCCOL prediction of functional nodes and
task-activated functional locations demonstrated that the optimized lo-
cations are mostly within 5 mm of the predicted locations (Zhang et al.,
2012; Zhu et al., 2014). Therefore, a radius of 10 mm search range will
be a safe zone to identify optimal DICCCOLs. The processing pipeline is
detailed in (Zhu et al., 2011).

2.5. Structural abnormality and discrepant DICCCOLs

In this study, “structural abnormality” does notmean gross structural
damage, but instead refers to the situation in which the DTI determinis-
tic tractography of the DICCCOL analysis fails. This could be caused by
any source of structural abnormality in white matter connectivity that
disables the tractography step of the DICCCOL analysis to identity the
proper location for these DICCCOLs. The failure of the white matter
fiber extraction step could be caused by several pathophysiological
mechanisms after brain injury incident. Furthermore, most disruptions
in white matter after mTBI might resolve during the recovery process.
Thus, the structural abnormality does not indicate permanent structural
damage. Therefore, discrepant DICCCOL is used to refer to those
DICCCOLs forwhich the shape of connectedfiber bundles is significantly
different in patients as compared to healthy controls.

2.6. Classification of discrepant and common DICCCOLs

The DICCCOL system was designed to identify those regions with
group-consistent structural connectivity patterns. After brain injury,
water diffusion properties of white matter tracts can be changed due
to various pathophysiological conditions. The DTI deterministic
tractography of these white matter tracts will result in disrupted fibers.
Despite the fact that these white matter tracts may not be physically
disrupted or damaged, the “disrupted” fiber tractography certainly
serves as a surrogate biomarker of the pathophysiological or structural
abnormality in these affected white matter tracts. By comparing the
fiber connectivity profiles between patients and controls, we could clas-
sify theDICCCOLs into two groups: commons vs. discrepantDICCCOLs. A
common DICCCOL shares similar fiber connectivity patterns between
patients and controls. However, in a discrepant DICCCOL, the fiber con-
nectivity patterns reach statistical difference between patient and con-
trol groups. Since the trace-map represents the shape of fiber bundles
connected to a DICCCOL, it can be used to find the DICCCOLs that have
alterations in connected fibers in the patient group. The trace-map dis-
tance parameter measured by Euclidean distance can be used to mea-
sure similarity of structural connectivity patterns between two trace-
maps (Eq. (1)). A lower value for the trace-mapdistance parameter rep-
resents greater similarity between two trace-maps.

D T1; T2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X144
i¼1

T1
i −T2

i

� �2

vuut ð1Þ

where T1 and T2 are two trace-map vectors, i is the index of a 144 di-
mension feature vector which describe the trace-map.

For each DICCCOL, the trace-map distance parameter has beenmea-
sured compared to the average trace-map vector of healthy subject
group. A two-sample t-test (p-value = 0.01) has been applied to the
trace-mapdistance parameters to compare structural connectivity char-
acteristics between healthy subject and patient groups. The DICCCOLs
that show significant differences between the two groups are consid-
ered discrepant DICCCOLs, i.e. structurally discrepant between patient
and healthy control groups. The rest of the DICCCOLs are identified as
common DICCCOLs, which means they have similar fiber connections
patterns in patient and healthy subject groups. Identifying correspond-
ing anatomical locations among subjects of both groups in common

http://dicccol.cs.uga.edu


Fig. 3. Illustration of trace-map calculation and DICCCOL prediction. (a)–(d): trace-map calculation. (a) The fiber bundle emanating from a selected ROI; (b) visualization of two single
streamlines of the fiber bundle and calculation of the connection orientation profiles; (c) projection of directions onto unit spheres; and (d) visualization of distribution of orientation
vectors on the sphere (trace-map). (e)–(g): DICCCOL prediction. (e) DICCCOL templates with DICCCOL locations. (f) Subject surface and the initial location of a single DICCCOL. (g)
Optimization process: Minimizing the dissimilarity of fibers passing through the DICCCOL between a subject and the templates.
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DICCCOLs gives us ability to assess functional connectivity patterns,
which could still be affected in common DICCCOLs.

2.7. fMRI analysis

Only common DICCCOLs have been used for functional connectivity
analysis. Our rationale is that patients could have variations in function-
al connectivity in spite of intact structural connectivity. Therefore, we
expected to see alterations on functional connectivity among DICCCOLs
that have similar structural connectivity in healthy subject and patient
groups. In analysis, rsfMRI data was directly registered to the b0 image
of diffusion data using a 6 DOF affine transformation. Both fMRI and dif-
fusion data were collected in EPI sequence, and they distort in the same
way (Li et al., 2010b). The 6 DOF affine transformation will be adequate
for image registration as reported in (Li et al., 2010b; Penny et al., 2011).
Since DICCCOLs are on the surface that was reconstructed using diffu-
sion data, they are located on the interface between white matter and
gray matter rather than on the surface of the gray matter. Therefore,
the time series of the closest gray matter voxel has been assigned to
the DICCCOL for functional analysis. Spatial smoothing has already
been applied on functional data to improve signal-to-noise ratio. Our
preliminary data demonstrated that this is an effective method for
prediction of functional nodes (Zhang et al., 2012; Zhu et al., 2014).
Functional connectivity has been calculated by measuring the Pearson
correlation value between each pair of common DICCCOLs.

In order to find the most discriminate functional connectivities,
whichwill be referred to as features,we have applied a two-step feature
selection procedure. First, a two sample t-test (p-value=0.01)was per-
formed to exclude those features that could not reveal a statistically sig-
nificant difference between the mTBI patient group and the healthy
subject group (remove the true negative). In the second step, the corre-
lation-based feature selection (CFS) was used to find the most distinc-
tive features by minimizing the degree of redundancy among features
(Zhu et al., 2011). The selected functional connectivities are the most
distinctive and discriminative characteristic features to distinguish be-
tween healthy subjects and patients in our dataset.

In order to assess the ability of these functional connectivities to dif-
ferentiate between two groups, supervised and unsupervised learning
procedures were used. Specifically, a supervised learning procedure
was performed using a support vector machine (SVM) classifier with
10-fold cross-validation to measure the specificity and sensitivity of
the selected functional connectivities. At the same time, in order tomea-
sure the similarity within each group and dissimilarity between two
groups, we used an unsupervised learning method. In other words, we
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are interested in seeing how well the data of each group belongs to the
same category. XMeans clustering has been used to evaluate this simi-
larity (Pelleg and Moore, 2000).

2.8. Meta-analysis

BrainMap (http://www.nitrc.org/projects/brainmap/) (Laird et al.,
2009) is an accessible database of published neuroimaging literature,
which allows us to identify the function of a specific brain region and
compare the result of our study with reported literature. Use of this data-
base can significantly enhance the reliability of neuroimaging studies.
BrainMap includes the coordinate and the associated metadata of brain
regions which are identified across a collection of studies (Laird et al.,
2009). In our previouswork,we have used it to identify the possible func-
tional roles for each DICCCOL using meta-analysis (Yuan et al., 2013).

Briefly, the locations of DICCCOLs from our templates were regis-
tered to the MNI atlas, then a neighborhood with a radius of 3 mm
around each DICCCOL was selected in order to assign a Brodmann area
and determine a related functional role using the BrainMap software.
110 fMRI publications and their reported activation regions in the
BrainMap database were examined to identify related functional roles
for each DICCCOL (Yuan et al., 2013). Therefore, all selected DICCCOLs
were categorized in five general classes, based on published fMRI data
set in Brain Map Database: “Action,” “Perception,” “Cognition,”
“Interoception,” and “Emotion”.

At the same time, the strength of functional connectivity between
two DICCCOLs can represent the strength of functional connectivity be-
tween their networks. For instance, if DICCCOL Awas identified as “Cog-
nition”, and DICCCOL B was identified as “Action” then we can interpret
that the strength of functional connectivity between DICCCOLs A and B
is related to the strength of functional connectivity between “Cognition”
and “Action”. Therefore, if the functional connectivity between two cat-
egories of DICCCOLs changes, we can conclude that the interaction be-
tween their networks has been affected. For example, if the majority
of the strengths of functional connectivity betweenDICCCOLs belonging
to “Cognition” with DICCCOLs belong to “Action” is changed due to a
specific health condition, we can conclude that the interaction between
“Cognition” and “Action” has been affected.

The interaction between brain networks was measured using five
general functional categories: “Action,” “Perception,” “Cognition,”
“Interoception,” and “Emotion”. Since “Interoception” is not significant-
ly involved in connectomic signatures, it has been eliminated from this
analysis step.

Two general conditions occur to the functional connectivity between
each pair of DICCCOLs:

1. Each DICCCOL designates to only one network. In this case, the corre-
lation value between two DICCCOLs indicates the connectivity be-
tween two functional roles. For example, if DICCCOL A and DICCCOL
B were respectively labeled as “Action” and “Cognition” functions,
the correlation value between DICCCOL A and DICCCOL B associates
to a “Action-Cognition” network interaction.

2. One or both DICCCOLs designate to two ormore networks. In this sit-
uation, the functional connectivity between theDICCCOL pair is asso-
ciated to each pair of networks. For instance, if DICCCOL A was
identified as “Action”, and DICCCOL B was identified as “Action”
and “Cognition”, the correlation value between DICCCOL A and
DICCCOL B associates to both “Action-Action” and “Action-Cognition”
network interactions.

The interaction between DICCCOLs can also be divided in two
categories:

1. Within network interactions in which the same network is assigned
to interactive DICCCOLs, like a “Perception-Perception” interaction.

2. Between networks interactions in which two different networks in-
teract with each other, like “Perception-Action”.
3. Results

3.1. DICCCOL prediction

DICCCOLs have been predicted on the cortical surfaces for all 50
healthy subjects and 40 mTBI patients. An example of DTI-derived axo-
nal fiber bundles connected to a randomly selected common DICCCOL
for 20 healthy subjects' brain and 20 patients' brain are shown in Fig.
4a and Fig. 4b. The corresponding trace-map distances are shown in
Fig. 4c and Fig. 4d accordingly. By visual inspection, the shape patterns
of fiber bundles are relatively consistent across individuals for both pa-
tients and healthy subjects. The trace-map distance similarity between
patients and healthy subjects can also be observed in the trace-map dis-
tance obtained for the same common DICCCOL (Fig. 4c and Fig. 4d).

On the other hand, Fig. 4e and Fig. 4f demonstrate the connected fi-
bers to a randomly selected discrepant DICCCOL. By visual inspection,
the connection pattern of this DICCCOL is still consistent in healthy sub-
jects; however, as highlighted by the red boxes, it is obvious that the
structural connectivity profile of the selected discrepant DICCCOL varies
across patients' brains. This could be caused by any source of structural
or pathophysiological abnormality in white matter tracts, which chang-
es the water diffusion characteristics and consequently affect their fiber
shapes in tractography reconstruction. Moreover, the trace-map dis-
tance for this discrepant DICCCOL has been demonstrated for the same
20 healthy subjects and 20 patients in the Fig. 4g and Fig. 4. Results
show that patients have higher trace-map distances than that of con-
trols. At the same time, the trace-map of fiber bundles for the common
and discrepant DICCCOLs for these 20 healthy subjects and 20 patients
also showed similar results.

In total, 41 discrepant DICCCOLs were identified among total 358
DICCCOLs using statistical analysis on trace map distance. The quantita-
tivemeasurement for trace-map distance is shown in Fig. 5. Fig. 5a dem-
onstrates the average and standard deviation of the trace-map distance
of all discrepant DICCCOLs for both groups. As we can see, patients in
general have the higher trace-map distance. Their p-values indicate sta-
tistical difference between two groups in Fig. 5b. Examining discrepant
DICCCOLs reveals that the somatosensory association cortex (Brodmann
area 7) and visual cortex (Brodmann area 17, 18, 19) have been affected
most, as determined by the number of discrepant DICCCOLs. The distri-
bution of the discrepant DICCCOLs in the brain is shown in Fig. 6. Fur-
thermore, by using these discrepant DICCCOLs as ROIs, fiber
tractography can visualize the difference between a randomly chosen
control and randomly chosenmTBI patient (see Fig. 7). In Fig. 7, the yel-
low spheres are the discrepant DICCCOL landmarks. Despite the nega-
tive findings on the mTBI patient's structural MRI, the patient's white
matter structure shows significant difference in the white matter bun-
dles emanating from these 41 discrepant DICCCOL landmarks. Of partic-
ular note, the sharp contrast of their fiber tractography between the
mTBI patients and controls may not be due to physical disruption or
loss of white matter tracts in the mTBI patient. Instead, it could be due
to white matter abnormalities that change water diffusion properties
in the affected tracts and consequently show “disrupted” fibers in the
tractography representation of these 41 discrepant DICCCOL networks.
Fiber tracking using these discrepant DICCCOLs would result in much
sparser representation of the WM tracts. In comparison, the discrepant
DICCCOLs in the healthy control were intact and widely distributed
throughout the whole brain. Since each DICCCOL is involved one or
more major WM tracts, fiber tracking using these 41 DICCCOLs in a
healthy control brain would show the WM tracts across almost the
whole brain.

Our visual inspection of the connected white matter tracts of each
discrepant DICCCOL also found white matter pathways that are struc-
turally different between two groups in their fiber tractography presen-
tations, which is confirmed in a group comparison using the trace-map
algorithm. Table 2 demonstrates the locations of discrepantDICCCOLs in
Brodmann areas and their connected major fibers. The superior and

http://www.nitrc.org/projects/brainmap/
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inferior longitudinal fasciculi, the corpus callosum, the arcuate fibers,
and the cingulate bundle are themost commonly affected white matter
tracts. This finding is consistent with the summary of published litera-
ture regarding the white matter fibers most susceptible to injury (Kou
and VandeVord, 2014). Importantly, the DICCCOL-based analysis offers
fine-granularity dissection andmeasurement of such coarse-granularity
fiber pathways.

3.2. Functional connectivity analysis

Functional disruption has been reported in mTBI patients with nor-
mal looking structural MRI (Iraji et al., 2015; Johnson et al., 2012;
Mayer et al., 2011; Stevens et al., 2012). Therefore, it is possible there
can be alterations in brain activity as seen via changes in functional con-
nectivity of common DICCCOLs despite their normal-looking structural
connection patterns of white matter tracts. For this analysis, functional
connectivity between each pair of common DICCCOLs was calculated
to evaluate common functional alterations among mTBI patients. A
symmetric 317 × 317 matrix of functional connectivities was created
using the 317 common DICCCOLs for each individual. The 41 discrepant
DICCCOLs have been excluded in functional connectivity analysis since
the DICCCOL method could not identify their accurate anatomical loca-
tions. Despite searchingwithin 10mmradius scope, the optimized loca-
tions for these discrepant DICCCOLs still could not produce group-
consistent fiber patterns. The inclusion of these DICCCOLs for functional
connectivity analysis could induce false positives.

In the feature selection step, the feature reduction was performed
using two-sample t-tests to exclude those features that could not reveal
a statistically significant difference between two groups (p-value =
0.01). As a result, 385 connectivities out of the 50,086 features survived.
To further control the false positives in these 385 features, in the second
step, the CFSwas utilized to select features (i.e. connectomic signatures)
while minimizing the degree of redundancy among functional connec-
tivities. CFS selected 60 out of 385 functional connectivities as the
most distinctive and discriminative features of our data to differentiate
patients from healthy control subjects. After controlling for the effect of
age with an analysis of covariance (ANCOVA), 58 out these 60 connec-
tions were still significantly different between the two groups (p-
value b 0.05). These were labeled as connectomic signatures for further
analysis.

3.3. Sensitivity and specificity evaluation

The sensitivity, the probability of classifying a real patient correctly
(a true positive), and the specificity, the probability of classifying a
healthy subject correctly (a true negative), were calculated using a
SVM classifier with 10 fold cross-validation. Classification using these
60 connectomic signatures correctly identified 80 out of 82 total sub-
jects (50 controls and 32 patients with fMRI data), giving 97.56% classi-
fication accuracy. In fact, all healthy subjects were classified correctly
(100% specificity), and only 2 mTBI patients were misclassified into
the control subjects group (93.75% sensitivity). XMeans clustering has
been used to evaluate the similarity between subjects in each group
and the dissimilarity between subjects from different groups. Only one
patient among 32 patients was incorrectly clustered in healthy control
group; however, 5 healthy subjects among 50 healthy control subjects
were incorrectly clustered in the patients' cluster (Incorrectly clustered
instances = 7.32%). The clustering result demonstrates that
Fig. 4. Joint visualization of a commonDICCCOL (#178, yellow arrows) and a discrepant DICCCO
lines) connected to the common DICCCOL on the cortical surface for 20 patients and 20 contro
bundles across individuals for both patients and healthy subjects. (c) and (d) respectively show t
can see, healthy subjects and patients have similar trace-map distance values for the common
connected to the discrepant DICCCOL # 19 on the cortical surface for the same 20 patients and 2
(red outlines) in these randomly chosen 20 samples, which drive the group difference between
#19 for same subjects shows that patients in general have a higher trace-map distance. The sa
distances of discrepant DICCCOLs across groups. (For interpretation of the references to color i
connectomic signatures identified are truly different between groups.
And together, they are a decent discriminant marker to categorize
mTBI patients for this dataset.

3.4. Meta-analysis

TheBrodmannareas of discrepantDICCCOLs are exhibited in Table 2.
The results shows that the structural connectivity of the somatosensory
association cortex (BA 7) and secondary visual cortex (BA 18) are
disrupted the most. In our functional connectivity analysis using com-
monDICCCOLs, 85 DICCCOLs involved in the 60 connectomic signatures
have been identified.

Among these 85 DICCCOLs, the ones which have been affected the
most are DICCCOL #73, which appears in 5 connectomic signatures
and belongs to the angular gyrus (BA 39); DICCCOL #92, which appears
in 5 connectomic signatures and belongs to the parahippocampal gyrus
(BA 36); DICCCOL #93, which appears in 5 connectomic signatures and
belongs to the fusiform gyrus (BA 37); and DICCCOL #271, which ap-
pears in 5 connectomic signatures and belongs to the caudate, (Supple-
mentary Table 1).

At the same time, organizing the affected functional connectivity
DICCCOLs based on their Brodmann areas reveals that the premotor
area (BA 6) appears 10 times in 5 connectomic signatures, the
temporopolar area (BA 38) appears 10 times in 5 connectomic signa-
tures, and the angular gyrus (BA 39) appears 7 times in 5 connectomic
signatures are themost commonly associated Brodmann areas (Supple-
mentary Table 2). The affected connectivities for these regions include
the following:

For Brodmann area 6, the affected connectivities are with Brodmann
areas 18, 19, 37, 39, 44, and 47. For Brodmann area 38, the affected con-
nectivities arewith Brodmann areas 7, 11, 22, 32, and 47. For Brodmann
area 39, the affected connectivities are with Brodmann areas 6, 8, 9, and
27. For a better understanding of the brain's response to injury, we
should consider both structural and functional disruptions together.
Therefore, by considering the results of common and discrepant
DICCCOLs together, we can explain the alterations in the brain in a
more appropriate way. Table 3 demonstrates the most affected
Brodmann areas. Distribution of affected DICCCOLs has been shown in
Fig. 8. The red spheres are discrepant DICCCOLs. The connectomic signa-
tures are demonstrated by gray lines, and their related DICCCOLs are
identified with blue spheres.

3.5. Connectivity meta-analysis

Results show that most of possible network interactions have been
affected. Among them, the intra-emotion network interactions have
been altered themost, with a significant decrease in the connectivity in-
side this network (by N27%). The “Emotion-cognition” interaction also
shows decreased connectivity (by 4.8%). On the other hand, intra-per-
ception, “Action-Emotion,” and “Action-Cognition” interactions reveal
increased functional connectivity, by 22.97%, 14.01%, and 12.11%, re-
spectively. These results can explain a strong disruption in emotion
and perception in patients during the acute stage (Fig. 9).

For further functional analysis, the roles of individual DICCCOLswere
evaluated more specifically. In this step, the functional roles of
DICCCOLs have been categorized in 53 classes using meta-analysis
(Yuan et al., 2013). Among all functional roles “Emotion”, “Cognition/at-
tention”, and “Action/execution” are involved more in connectomic
L (#19, yellow arrows). (a) and (b) show the connectedDTI-derived axonalfibers (colorful
l subjects, respectively. Visual inspection reveals the relatively consistent patterns of fiber
he trace-map distance for 20 healthy controls and 20patients selected in (a) and (b). Aswe
DICCCOL # 178. (e) and (f) show the connected DTI-derived axonal fibers (colorful lines)
0 control subjects as (a) and (b), respectively. Several patients have different fiber shapes
patients and controls. At the same time, measuring the trace-map distances for DICCCOL
me scale has been used at (g) and (h) to make it visually easy to compare the trace-map
n this figure legend, the reader is referred to the web version of this article.)



Fig. 5. (a) Trace-map distances of the discrepant DICCCOLs for the healthy control group (mean value in blue and standard deviation in green) and patient group (mean value in red and
standard deviation in yellow). (b) p-values from two-sample t-tests, which show the difference between the two groups in discrepant DICCCOLs. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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signature than others, with 25, 23, and 23 DICCCOLs each, respectively
(see Fig. 10 and Supplementary Table 3).

4. Discussion

To the best of our knowledge, this is the first effort towards a
connectome-scale assessment of structural and functional brain con-
nectivity changes after mild TBI. Our work demonstrates that a) mTBI
can render the structural abnormality in major white matter tracts
that provide structural support of important functional networks; and
b) connectivity alterations in functional networks happen across the
whole brain, including both increased and decreased functional connec-
tivity in large-scale networks. We identified 60 functional connectivity
patterns that differentiate mTBI patients from controls in our data.
This work confirms our hypothesis that brain connectivity changes, in-
cluding both structural and functional changes, happen at the whole
brain connectome level. This finding could have significant implications
in mTBI diagnosis in the acute setting as well as in understanding of
brain recovery after TBI. A better understanding of the extent of com-
mon structural abnormalities and functional alterations of brain net-
works in mTBI could help physicians order proper rehabilitation plans
to address specific domains of brain functions for speedy recovery.

4.1. Structural abnormality

Our tractography inspection of the white matter tracts that give rise
to discrepantDICCCOLnodes revealed thatmostmajor brainwhitemat-
ter tracts are involved, including corpus callosum, inferior/superior lon-
gitudinal fasciculi, and inferior/superior fronto-occipital fasciculi,
projection fibers, arcuate fasciculus, cingulum, and uncinate fasciculus.
Particularly, the discrepant DICCCOLs are those DICCCOLs for which a
similar shape of connected fiber bundles could not be identified due to
its structural abnormality, which does not necessarilymean gross struc-
tural damage or disruption. Among functional domains that the discrep-
ant DICCCOL nodes belong to, “action” and “cognition” are the most
affected. This finding is well consistent with the published literature



Fig. 6. Visualization of location of discrepant DICCCOLs (red sphere) and the rest DICCCOLs (green sphere) on cortical surface. ID numbers are shown for discrepant DICCCOLs. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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on DTI structural analysis (Kou and VandeVord, 2014; Niogi and
Mukherjee, 2010). Major white matter tracts, including the corpus
callosum, the major tract that connects the two hemispheres; the
Fig. 7.White matter fiber tractography of a randomly chosen control subject (a) and a random
points. Despite the negative findings on themTBI patient's structural MRI, the patient's white m
with controls. Of particular note, the differences in the major white matter tracts between the
instead, it is that these discrepant networks fail the fiber tractography algorithm when using
color in this figure legend, the reader is referred to the web version of this article.)
cingulum; long association fibers, including superior and inferior longi-
tudinal fasciculus; andwhite matter structure in the frontal and tempo-
ral lobes are well studied in an mTBI population.
ly chosen mTBI patient (b) by using the 41 discrepant DICCCOLs (yellow spheres) as seed
atter structure shows significant differences in the 41 discrepant networks in comparison
control and the patient are not because of the loss of white matter tracts in the patient;
the selected DICCCOL landmark as seed regions. (For interpretation of the references to



Table 2
Locations of discrepant DICCCOLs and their Brodmann areas and connected major fiber
tracts.

DICCCOL ID BA CC ILF IFOF SFOF SLF PF AF Cing UF

2 18 ✓ ✓

6 18 ✓ ✓ ✓

7 17 ✓ ✓ ✓

11 18 ✓ ✓

16 19 ✓ ✓ ✓

18 17 ✓ ✓

19 18 ✓ ✓ ✓

20 18 ✓ ✓

21 18 ✓ ✓

22 18 ✓ ✓ ✓

28 19 ✓ ✓

37 39 ✓ ✓

44 7 ✓ ✓

49 7 ✓ ✓ ✓

59 7 ✓ ✓

67 7 ✓ ✓ ✓

81 7 ✓ ✓ ✓

85 ✓ ✓

95 5 ✓ ✓ ✓

102 ✓ ✓

124 42 ✓

135 22 ✓

141 3 ✓

144 36 ✓

148 3 ✓ ✓

152 2 ✓

158 38 ✓ ✓

165 40 ✓

168 3 ✓ ✓ ✓

181 4 ✓ ✓ ✓

189 43 ✓

198 41 ✓

212 6 ✓

242 38 ✓ ✓

270 ✓

277 8 ✓ ✓

281 44 ✓

302 9 ✓ ✓ ✓

323 10 ✓

340 10 ✓ ✓

Area total 25 18 10 6 6 6 5 3 1

BA: Brodmann Area; CC: corpus callosum; ILF: inferior longitudinal fasciculus; IFOF: infe-
rior fronto-occipital fasciculus; SFOF: superior fronto-occipital fasciculus; SLF: superior
longitudinal fasciculus; PF: projection fibers; AF: arcuate fasciculus; Cing: cingulum; UF:
uncinate fasciculus.

111A. Iraji et al. / NeuroImage: Clinical 12 (2016) 100–115
Structural abnormality in many of these white matter tracts has
been shown to be associated with symptoms. The corpus callosum,
the largest white matter fiber bundle in the brain, is highly susceptible
to injury during rotationalmotion of the brain in the sagittal and coronal
planes, as it strikes the falx cerebri and tentorium cerebri (Blumbergs,
1997). Autopsy studies show that even mTBI patients could have
disrupted axons in the corpus callosum, as evidenced by axonal retrac-
tion balls (Blumbergs et al., 1994, 1995). Injury of the callosal fibers has
been reported to be associated with post concussion symptom (PCS)
scores in both adolescent (Wilde et al., 2008) and adult mTBI patients
Table 3
The most affected Brodmann areas identified by the combination of structural and func-
tional DICCCOL analyses.

Most effected Brodmann area (BA) Common Discrepant

BA 38 (temporopolar area, most rostral part of the
superior and middle temporal gyri)

10 2

BA 6 (secondary motor cortex) 10 1
BA 18 (secondary visual cortex) 4 7
BA 39 (angular gyrus) 7 1
BA 7 (somatosensory association cortex) 2 5
BA 19 (associative visual cortex) 5 2
BA 36 (parahippocampal gyrus.) 6 1
(Bazarian et al., 2007) at the acute stage. Similarly, Treble et al.'s
(Treble et al., 2013) DTI study of pediatric TBI suggested that reduced
microstructural integrity of the CC, particularly in the sub-regions
connecting the parietal and temporal cortices, may act as a neuropath-
ologicalmechanismcontributing to long-termworkingmemory deficits
(Treble et al., 2013). Injury at the temporal white matter tracts or in the
cingulum bundle has been reported being associated with memory
problems. Niogi et al. (Niogi et al., 2008a) reported that reduced FA in
the uncinate fascilulus correlated with memory performance. Wu et
al. (Wu et al., 2010) reported that the fractional anisotropy of the left
cingulum bundle correlated with delayed recall. Baek et al.'s (Baek et
al., 2013) study of chronic TBI patients reported that the integrity of
the basal forebrain and cingulum are associated with patients' overall
cognition and memory. Regarding the long association fibers, Messé et
al. (Messé et al., 2011) reported that mTBI patients with poor outcomes
showed significantly higher mean diffusivity values than both controls
and good-outcomemTBI patients in the corpus callosum, the right ante-
rior thalamic radiations, the superior longitudinal fasciculus, the inferior
longitudinal fasciculus and the fronto-occipital fasciculus. Fig. 7b dem-
onstrates tractography of the white matter fibers by using these dis-
crepant nodes as seed regions. It shows that the white matter
structural abnormality happens across the brain instead of at just one
or two tracts.

4.2. Alternations in functional network connectivity

Our data identified 60 functional networks that were altered in the
mTBI group in comparisonwith controls. These networks span through-
out the whole brain.

Using meta-analysis and comparing our finding with previous func-
tional and structural studies reveal that the four major functional do-
mains, perception, emotion, cognition and action, are involved in the
connectomic signatures. Among these four functional domains, our
data shows reduced connectivity between cognition and emotion net-
works as well as in intra-emotion networks. It further shows increased
functional connectivity among other network domains. This result is
consistent with the collective evidence from different groups who in-
vestigated different functional networks. Several groups who investi-
gated the DMN of mTBI patients at the subacute and chronic stages
have reported decreased connectivity among different regions of DMN
and increased connectivity of DMN regions with other networks (Iraji
et al., 2015; Johnson et al., 2012; Mayer et al., 2011; Stevens et al.,
2012). In addition to in the DMN, hyper-connectivities in the
thalamocortical network have also been reported in mTBI patients
(Messe et al., 2013; Tang et al., 2011), including amore distributed thal-
amus correlation map as compared to the healthy controls (Tang et al.,
2011). Our data further support the evidence reported by Stevens et al.
that multiple resting state networks could have functional abnormali-
ties after mTBI (Stevens et al., 2012), who reported diminished func-
tional connectivity in the patient group in the DMN and in many other
networks, as well as greater connectivity in the precuneus connectivity
map. This suggests that the brain tends to respond to head injury by
recruiting a cohort of networks in a global manner instead of just one
or two networks.

4.3. Combining structural and functional information

Structural information has been used to identify corresponding ana-
tomical locations across individuals to compare functional connectivity
between two groups. Thus, for the discrepant DICCCOLs which did not
have identifiable corresponding anatomical locations in the mTBI pa-
tient group, we cannot perform functional analysis. Therefore, we are
unable to identify the functional alteration in structural abnormal
DICCCOLs although it would be ideal to combine brain structural and
functional alterations.



Fig. 8. Visualization of discriminative functional connectivities (gray lines) betweenmTBI patients and healthy subjects and the location of related DICCCOLs. DICCCOLswere represented
by color-coded spheres (blue: DICCCOLs related to discriminative functional connectivities, red: discrepant DICCCOLs, green: common DICCCOLs not related to discriminative functional
connectivities). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.4. The uniqueness and advantage of DICCCOL approach

The determination of DICCCOL functional nodes is based on the con-
cept of a “connectional fingerprint”which provides an anatomical basis
of functional localization from basic neuroscience findings (Passingham
et al., 2002). The approach consists of several key steps (Zhu et al.,
2014): i) initial determination of DICCCOL nodes based on a template,
ii) quantification of fiber tracts for each structural network using a
trace-map algorithm, iii) optimization of individual node locations to
make them group-wise consistent, and iv) determination of functional
nodes at the cortex. As a result, eachDICCCOLnode is individually differ-
ent in their anatomical locations but group-wise consistent in their con-
nectional finger prints across the population (Zhu et al., 2014). Further
validation of major functional nodes by using a task-oriented fMRI
benchmark demonstrated a remarkable consistency between the pre-
diction of a functional region and actual activation with the location
Fig. 9. Changes in network interactions. Negative values indicate decreases in network
interaction in patient group. Color-bar indicates the percent change. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
error b5 mm on average (Zhang et al., 2012). The 10 mm range for
the search algorithm in our work is very likely to find the optimal
node location. This would allow researchers to determine large-scale
functional networks with high confidence. In comparison, a template-
based approach does not account for individual difference, hand-
drawn ROIs are susceptible to inter-rater variability, and task-oriented
ROIs are not suitable for large-scale network determination. Similar to
published data, most of ourmTBI patients have normal structural imag-
ing findings, making the DICCCOL approach particularly suitable for
mTBI data analysis. Furthermore, the predicted functional nodes are lo-
cated on the overlap of the reconstructed cortical surface and the real
cortex, which makes it less likely to be affected by the susceptibility ef-
fect of any hemorrhages on the cortical surface or in the subdural space.
However, traumatic hemorrhages at the junctionof gray andwhitemat-
ter could induce strong susceptibility artifacts that potentially affect the
determination of functional nodes at these locations.

4.5. Limitations and future work

To date, alterations in the brain's structural and functional connec-
tivity after mTBI are still unclear considering the high level of complex-
ity in several factors, such as the time between injury and scan,
individual subject-specific features, different mechanisms of injury,
and other sources of heterogeneity (Eierud et al., 2014; Ilvesmaki et
al., 2014; Sharp and Jenkins, 2015). Moreover, the lack of investigations
of large-scale connectivity analysis further hinders our understanding of
brain injury phenomena. Therefore, our findings, particularly the identi-
fied discriminant features in this work, should be independently tested
in separatemTBI datasets as a reproducibility study. Additionally, group
studies like ours are made more difficult by the heterogeneity of mTBI,
which is largely due to: 1) differentmechanisms of injury (e.g. vehicular
collision vs. sports) which results in different scenarios of biomechani-
cal loading (strain and stress); 2) different injury pathologies (e.g. neu-
ronal injury vs. axonal injury vs. vascular injury); and 3) different
subject samples with different pre-existing conditions and demograph-
ic characteristics (age, gender, and education level) (Eierud et al., 2014).
One important category of heterogeneity which confounds group-level
connectome study is gross structural abnormalities, which can be seen
in structural MRI and CT modalities. In our data, three mTBI patients
had positive structural imaging findings, one of whom did not have
rsfMRI data and therefore it was not included in functional connectivity



Fig. 10. Functional roles of connectomic signatures. The affected DICCCOLs were divided in 5 categories with 53 sub-categories using meta-analysis. Meta-analysis reveals that the
“Emotion”, “Cognition/attention”, and “Action/execution” categories are involved in more connectomic signature than others, with 25, 23, and 23 DICCCOLs each, respectively. The
vertical axis is number of DICCCOLs associated with each functional role.
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analyses. The structural abnormalities of these two patients (positive CT
and/or structuralMRI)might be a confounding factor that drives the pa-
tient group (n = 32) apart from the control group (n = 50) in their
functional connectivity. In future investigations, excluding these pa-
tients with structural abnormalities by focusing on the patients with
normal structure findings might yield a more convincing conclusion.
In our dataset, given the relative size of the number, these two patients
might not play a significant role in the whole group of 32 patients.
Moreover, by investigating only the common DICCCOLs in our function-
al connectivity analysis, we attempted to minimize the effect of struc-
tural damage.

In contrast with group analysis, an individual-level analysis is also
required to properly identify specific brain connectivity alterations, es-
pecially personalized alterations. Unlike group-level analysis, which is
related to the common alterations of brain functions among a group of
individuals, individual-level analysis is personalized and related to the
origin and location of the injury of each individual. Due to the heteroge-
neous characteristic of each individual patient and the close relationship
between the alterations of structural and functional connectivity, com-
bining the structural and functional connectivity analyses together
could allow us to characterize the interplay between structural and
functional connectivities after brain injury. A combined structural and
functional analysis could have the potential to ameliorate the clinical
management ofmTBI patients in the future, which should be investigat-
ed in future studies with a large number of subjects.

Another potential confounding factor is the race difference between
patients and controls in our data sample. To our best knowledge, there is
no rsfMRI study specifically investigating or ever reporting the effect of
race on functional connectivity. Instead, different studies across the
world reported similar patterns of resting state brain networks, particu-
larly in the DMN, though their recruited local populations are different
in race (Biswal et al., 2010). Considering our limited number of patients,
we did not include race as a control factor in our analysis to avoid
overfitting. In future studies, race could also be included as a control fac-
tor in a large number of data sample.

The current work also has several other limitations to be addressed
in future work. One is the relatively small number of subjects (40
patients and 50 controls) in comparison with a large number of net-
works. Moreover, the patients' emotional alterations at the acute
stage, such as pain, stress, anxiety or sadness, could significantly affect
their functional connectivity results. Inclusion of orthopedic controls
in future studies could help to control for this potential problem. Anoth-
er limitation of the currentwork is that it does not include a longitudinal
analysis of patients' recovery. It is our future plan to analyze the
connectome-scale network changes longitudinally to investigate pa-
tients' recovery and brain plasticity patterns. Finally, given the magni-
tude of large-scale functional network changes, correlation of imaging
findings with patients' functional assessment and interpretation of the
imaging findings with clinical data is still a challenge to be addressed.
In our ongoing longitudinal analysis in collaboration with psychologists
and statisticians, we are in the process of evaluating the relationship of
mTBI patients' neuropsychological testing outcomes with DICCCOL pa-
rameters. The results will be reported in the near future.

5. Conclusions

In summary, our work demonstrated that mTBI renders changes in
brain network connectivity on a large scale despite normal clinical im-
aging findings in most cases. These changes include both structural net-
work disruption, which involves major white matter tracts, and
connectivity changes in functional networks at different domains. Fur-
ther work is needed to determine their clinical correlates and functional
recovery over time.
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