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Abstract: Selenium, a trace element fundamental to human health, is incorporated as the amino acid
selenocysteine (Sec) into more than 25 proteins, referred to as selenoproteins. Human mutations
in SECISBP2, SEPSECS and TRU-TCA1-1, three genes essential in the selenocysteine incorporation
pathway, affect the expression of most if not all selenoproteins. Systemic selenoprotein deficiency
results in a complex, multifactorial disorder, reflecting loss of selenoprotein function in specific
tissues and/or long-term impaired selenoenzyme-mediated defence against oxidative and endo-
plasmic reticulum stress. SEPSECS mutations are associated with a predominantly neurological
phenotype with progressive cerebello-cerebral atrophy. Selenoprotein deficiency due to SECISBP2
and TRU-TCA1-1 defects are characterized by abnormal circulating thyroid hormones due to lack
of Sec-containing deiodinases, low serum selenium levels (low SELENOP, GPX3), with additional
features (myopathy due to low SELENON; photosensitivity, hearing loss, increased adipose mass
and function due to reduced antioxidant and endoplasmic reticulum stress defence) in SECISBP2
cases. Antioxidant therapy ameliorates oxidative damage in cells and tissues of patients, but its
longer term benefits remain undefined. Ongoing surveillance of patients enables ascertainment of
additional phenotypes which may provide further insights into the role of selenoproteins in human
biological processes.
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1. Introduction

Dietary selenium (Se) is absorbed as inorganic Se (e.g., selenate; selenite) or organic Se
(e.g., Se-methionine; selenocysteine) and metabolized to hydrogen selenide (H2Se) before
incorporation into the amino acid selenocysteine (Sec) [1]. Selenocysteine is different from
other amino acids in that, uniquely, it is synthesized on its own tRNA, (Sec-tRNA[Ser]Sec;
encoded by TRU-TCA1-1), via a well described pathway including O-phosphoserine-
tRNA:selenocysteine tRNA synthase (SEPSECS) (Figure 1) [2,3]. Selenocysteine is incorpo-
rated into selenoproteins, at the position of a UGA codon in the mRNA, which ordinarily
encodes a termination codon that dictates the cessation of protein synthesis. Unique Sec-
insertion machinery, involving a cis-acting SEleniumCysteine Insertion Sequence (SECIS)
stem-loop structure located in the 3′-UTR of all selenoprotein mRNAs and the UGA codon,
interacting with trans-acting factors (SECIS binding protein 2 (SECISBP2), Sec-tRNA spe-
cific eukaryotic elongation factor (EEFSEC) and Sec-tRNA[Ser]Sec) (Figure 1), recodes UGA
as a codon mediating Sec incorporation rather than termination of protein translation [3–5].

At least 25 human selenoproteins are described and recognized functions include main-
tenance of redox potential, regulating redox sensitive biochemical pathways, protection of
genetic material, proteins and membranes from oxidative damage, metabolism of thyroid
hormones, regulation of gene expression and control of protein folding (Table 1) [3,6].
The importance of selenoproteins is illustrated by the embryonic lethal phenotype of Trsp
(mouse Sec-tRNA[Ser]Sec) and Secisbp2 knockout mice [7,8]. It is well known that dietary
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Se intake affects systemic Se-status and selenoprotein expression, but not all selenopro-
teins are affected to the same extent. Thus, expression of housekeeping selenoproteins
(e.g., TXNRD1, TXNRD3, GPX4) is less affected by low circulating Se-levels compared to
stress-related selenoproteins (e.g., GPX1, GPX3, SELENOW). Such differential preservation
of selenoprotein expression is attributed to the existence of a “hierarchy of selenoprotein
synthesis”, whose underlying molecular basis is unclear [3,9]. With this knowledge, it is
no surprise that mutations in key components of the Sec-insertion pathway (SEPSECS,
SECISBP2, TRU-TCA1-1) result in generalized deficiency of selenoproteins associated with
a complex, multisystem phenotypes. Here, we describe the clinical consequences of mu-
tations in these three human genes and suggest possible links with loss-of-function of
known selenoproteins.
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Figure 1. Biosynthesis of selenocysteine (Sec) and selenoproteins. Dietary sources of selenium exist
in inorganic form (e.g., selenate, selenite) and organic form (e.g., Sec, SeMet). Inorganic selenium is
reduced to selenide by TXNRD/TRX or GPX/GSH systems and organic selenium is metabolized
to Sec, used by SCLY to generate selenide. De novo Sec synthesis takes place on its own tRNA
(tRNA[Ser]Sec), which undergoes maturation through sequential modifications (SARS-mediated addi-
tion of Ser, PSTK-mediated phosphorylation of Ser), with acceptance of a selenophosphate (generated
from selenide by SEPHS2) catalysed by SEPSECS as final step. Expression of selenoproteins requires
recoding of an UGA codon as the amino acid Sec instead of a premature stop. The incorporation
of Sec is mediated by a multiprotein complex containing SECISBP2, bound to the SECIS element
situated in the 3′-untranslated region of selenoproteins, the Sec elongation factor EEFSEC, together
with Sec-tRNA[Ser]Sec at the ribosomal acceptor site. The other factors (e.g., ribosomal protein L30,
eukaryotic initiation factor eIF4a3, nucleolin) have regulatory roles.
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Table 1. Human selenoproteins.

Selenoprotein Function Expression
Subcellular Localization

GPX1
glutathione peroxidase 1 Oxidoreductase most tissues

cytoplasmic

GPX2
glutathione peroxidase 2 Oxidoreductase limited number of tissues

Nucleus and cytoplasmic

GPX3
glutathione peroxidase 3 Oxidoreductase most tissues

secreted

GPX4
glutathione peroxidase 4 Oxidoreductase most tissues

Nucleus and mitochondria

GPX6
glutathione peroxidase 6 Oxidoreductase testis, epididymis, olfactory system

predicted secreted

TXNRD1
thioredoxin reductase 1 Oxidoreductase Ubiquitous

Nucleus and cytoplasmic

TXNRD2
Thioredoxin reductase 2 Oxidoreductase Ubiquitous

cytoplasmic and mitochondria

TXNRD3
Thioredoxin reductase 3 Oxidoreductase most tissues, high in testis

Intracellular

DIO1
Iodothyronine deiodinase 1 Thyroid hormone metabolism kidney, liver, thyroid gland

Intracellular membrane-associated

DIO2
Iodothyronine deiodinase 2 Thyroid hormone metabolism central nervous system, pituitary

Intracellular membrane-associated

DIO3
Iodothyronine deiodinase 3 Thyroid hormone metabolism several tissues

Intracellular membrane-associated

MSRB1
methionine sulfoxide reductase B1 Met sulfoxide reduction Ubiquitous

Nucleus and cytoplasmic

SELENOF
Selenoprotein F Protein folding control Ubiquitous

endoplasmic reticulum

SELENOH
Selenoprotein H Unknown oxidoreductase Ubiquitous

Nucleus

SELENOI
Selenoprotein I Phospholipid biosynthesis Ubiquitous

transmembrane

SELENOK
Selenoprotein K Protein folding control Ubiquitous

ER, plasma membrane

SELENOM
Selenoprotein M Unknown Ubiquitous

Nuclear and perinuclear

SELENON
Selenoprotein N Redox-calcium homeostasis Ubiquitous

endoplasmic reticulum

SELENOO
Selenoprotein O Protein AMPylation activity Ubiquitous

mitochondria

SELENOP
Selenoprotein P Transport/oxidoreductase most tissues

secreted, cytoplasmic

SELENOS
Selenoprotein S Protein folding control Ubiquitous

endoplasmic reticulum

SELENOT
Selenoprotein T Unknown oxidoreductase Ubiquitous

endoplasmic reticulum

SELENOV
Selenoprotein V Unknown thyroid, parathyroid, testis, brain

Intracellular

SELENOW
Selenoprotein W Oxidoreductase Ubiquitous

Intracellular

SEPHS2
Selenophosphate synthetase 2 Selenophosphate synthesis Ubiquitous, high in liver and kidney

Intracellular
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2. SECISBP2 Mutations

SECISBP2 is an essential and limiting factor for biosynthesis of selenoproteins [4,10]
and functions as a scaffold, recruiting ribosomes, EEFSEC, and Sec-tRNA[Ser]Sec to the
UGA codon by binding to SECIS-elements in selenoprotein mRNAs, generating a dynamic
ribosome-Sec-incorporation complex (Figure 1). The first 400 amino (N-)terminal residues
of SECISBP2 have no clear function; in contrast the carboxy (C-)terminal region (amino
acids 399–784) is both necessary and sufficient for Sec-incorporation (Sec incorporation
domain: SID) and binding to the SECIS element (RNA-binding domain: RBD) in vitro
(Figure 2). The RBD, contains a L7Ae-type RNA interaction module and a lysine-rich
domain, mediating specific recognition of “stem-loop” structures adopted by SECIS el-
ements and other regulatory RNA motifs [11–13]. The C-terminal region also contains
motifs (nuclear localization signal; nuclear export signal) involved in cellular localization of
SECISBP2 and a cysteine rich domain (Figure 2) [14]. In the N-terminal region, alternative
splicing events and ATG start codons have been described, generating different SECISBP2
isoforms [14], but all containing the essential C-terminal region. These events, together with
regulatory domains in the C-terminal region, are thought to control SECISBP2-dependent
Sec incorporation and the hierarchy of selenoprotein expression in vivo.
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Figure 2. Functional domains of human SECISBP2 with the position of mutations described hitherto.
Arrowheads denote the location of ATG codons; NLS: nuclear localisation signal (380–390); NES:
nuclear export signals (634–657 and 756–770); SID: Sec incorporation domain; CRD: cysteine rich
domain; RBD: minimal RNA-binding domain with the Lysine-rich domain (K-rich) and the L7Ae
RNA-binding module; the black bar denotes the minimal protein region required for full functional
activity in vitro.

Homozygous or compound heterozygous mutations in SECISBP2 have been described
in individuals from 11 families from diverse ethnic backgrounds [15] (Table 2, Figure 2);
hitherto no phenotypes have been described in heterozygous individuals. Most SECISBP2
mutations identified to date result in premature stops in the N-terminal region upstream
of an alternative start codon (Met 300), permitting synthesis of the shorter, C-terminal,
minimal functional domain of SECISBP2 (Figure 2) [14,16–23]. Conversely, stop mutations
(e.g., R770X, Q782X) [18,23], distal to the minimal functional domain might generate C-
terminally truncated proteins with residual but altered function. In one patient with an
intronic mutation (IVS8ds + 29G > A) leading to a stop in the SID-domain, correct mRNA
splicing was only reduced by 50% [16], a mechanism preserving some SECISBP2 synthesis
that may operate in other splice site mutation contexts.

Table 2. Human SECISBP2 mutations.

Age in Years (Gender) Mutation Protein Change Alleles
Affected Ethnicity Reference

26 (M 1); 19 (M); 19 (F 2) c.1619 G > A R540Q homozygous Saudi
Arabian [16]

25 (M) c.1312 A > T
c.IVS8ds + 29 G > A

K438 *
fs431 *

compound
heterozygous Irish [16]



Int. J. Mol. Sci. 2021, 22, 12927 5 of 13

Table 2. Cont.

Age in Years (Gender) Mutation Protein Change Alleles
Affected Ethnicity Reference

19 (M) c.382 C > T R128 * homozygous Ghanaian [17]

18 (F) c.358 C > T
c.2308 C > T

R120 *
R770 *

compound
heterozygous Brazilian [18]

44 (M) c.668delT
c.IVS7 -155, T > A

F223fs255 *
fs295 * + fs302 *

compound
heterozygous British [19]

13 (M) c. 2017 T > C
1–5 intronic SNP’s

C691R
fs65 * + fs76 *

compound
heterozygous British [19]

15 (M)
c.1529_1541dup

CCAGCGCCCCACT
c.235 C > T

M515fs563 *
Q79 *

compound
heterozygous Japanese [20]

10 (M) c.800_801insA K267Kfs * 2 homozygous Turkish [21]

3.5 (M) c.283delT
c.589 C > T

T95Ifs31 *
R197 *

compound
heterozygous N/A 3 [22]

11 (F) c.2344 C > T
c.2045–2048 delAACA

Q782 *
K682fs683 *

compound
heterozygous Turkish [23]

5 (F) c.589 C > T
c.2108 G > T or C

R197 *
E679D

compound
heterozygous Argentinian [23]

1 M: Male; 2 F: Female; 3 N/A: Not available.

Only three missense SECISBP2 mutations, situated in the RBD (R540Q, E679D and
C691R) are described. The R540Q mutation, in the lysine-rich domain, fails to bind a spe-
cific subset of SECIS-elements in vitro and a mouse model revealed an abnormal pattern of
Secisbp2 and selenoprotein expression in tissues [16,24,25]. The E679D and C691R muta-
tions are situated in the L7Ae RNA-binding module and part of the CRD. C691R mutant
SECISBP2 undergoes enhanced proteasomal degradation, with loss of RNA-binding [19,25].
The E679D mutation has not been investigated but is predicted to be deleterious (PolyPhen-
2 algorithm score of 0.998), possibly affecting RNA-binding [23].

Complete knockout of Secisbp2 in mice is embryonic lethal [8], suggesting some
functional protein, or an alternative rescue mechanism, is present in humans with SECISBP2
mutations. Studies suggest that most combinations of SECISBP2 mutations in patients
hitherto are hypomorphic, with at least one allele directing synthesis of protein at either
reduced levels or that is partially functional (Table 2). Because it is rate limiting for
Sec incorporation, decreased SECISBP2 function will affect most if not all selenoprotein
synthesis, as confirmed by available selenoprotein expression data in the patients [16,19].

Hitherto, only a small number of patients are described, from different ethnic and
geographical backgrounds, often with compound heterozygous mutations and with limited
information of their phenotypes. Some clinical phenotypes are attributable to deficien-
cies of particular selenoproteins in specific tissues whilst other features have a complex,
multifactorial, basis possible linked to unbalanced antioxidant defence or protein folding
pathways or loss of selenoproteins of unknown function. Increased cellular oxidative stress,
readily measurable in most cells and tissues from patients, results in cumulative mem-
brane and DNA damage. A common biochemical signature in all patients consists of low
circulating selenium (reflecting low plasma SELENOP and GPX3) and abnormal thyroid
hormone levels due to diminished activity of deiodinases resulting in raised FT4, normal
to low FT3, raised reverse T3 and normal or high TSH concentrations [15,16,19]. Most
cases were diagnosed in childhood with growth retardation (e.g., failure to thrive, short
stature, delayed bone age) and developmental delay (e.g., delayed speech, intellectual-
and motor coordination deficits) as common features, due not only to abnormal thyroid
hormone metabolism [26,27] but also effects of specific selenoproteins deficiency in tissues
(e.g., neuronal [8] or skeletal [28]). Fatigue and muscle weakness is a recognized feature
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in several patients and is attributable at least in part to a progressive muscular dystrophy
affecting axial and proximal limb muscles, and very similar to the phenotype of myopa-
thy due to selenoprotein N-deficiency [29]. Mild, bilateral, high-frequency sensorineural
hearing loss is observed in some patients and is possibly due to ROS-mediated damage in
the auditory system [30,31] as it is progressive in nature, worsening in older patients. An
adult male patient was azoospermic, with marked deficiency of testis-expressed selenopro-
teins (GPX4, TXNRD3, SELENOV) [32–36]. Several other recorded phenotypes (increased
whole body, subcutaneous fat mass, increased systemic insulin sensitivity, cutaneous pho-
tosensitivity) probably have a multifactorial basis which includes loss of antioxidant and
endoplasmic reticulum stress defence. Studies of mouse models and in humans provide a
substantial body of evidence to suggest a link between selenoproteins and most of these
phenotypes [19,37–41].

Clinical management of these patients is mostly limited to correcting abnormal thy-
roid hormone metabolism with liothyronine supplementation if necessary. No specific
therapies exist for other phenotypes (e.g., myopathy), but their progressive nature can
require supportive intervention (e.g., nocturnal assisted ventilation for respiratory muscle
weakness, aid for hearing loss). Oral selenium supplementation did raise total serum Se
levels in some SECISBP2-deficient patients, but without clinical [17,18,21] or biochemical
(circulating GPX’s, SELENOP, thyroid hormone metabolism) effect [42]. Antioxidant (alpha
tocopherol) treatment was beneficial in one patient, reducing circulating levels of products
of lipid peroxidation with reversal of these changes after treatment withdrawal [40]. These
observations suggest that treatment with antioxidants is a rational therapeutic approach,
but the longterm consequences in this multisystem disorder are unpredictable.

3. TRU-TCA1-1 Mutations

Selenocysteine is different from other amino acids in that it is synthesized uniquely on
its own tRNA, encoded by TRU-TCA1-1, via a well described pathway including SEPSECS
(Figure 1) [2,3]. Two major isoforms of the mature Sec-tRNA[Ser]Sec have been identi-
fied, containing either 5-methoxycarbonyl-methyluridine (mcm5U) or its methylated form
5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) at position 34, with the level
of methylation being dependent on selenium status (Figure 3). The methylation state of
uridine 34, located in the anticodon loop, is thought to contribute to stabilization of the
codon–anticodon interaction and to play a role in mediating the hierarchy of selenoprotein
expression. Thus, expression of essential, cellular housekeeping selenoproteins (e.g., TXN-
RDs, GPX4) is dependent on the mcm5U isoform, whilst synthesis of cellular, stress-related
selenoproteins (e.g., GPX1, GPX3) synthesis require the mcm5Um isoform [43,44].

The first patient with a homozygous nucleotide change at position 65 (C > G) in
TRU-TCA1-1 (Figure 3) [45], presented with a similar clinical and biochemical phenotype
(fatigue and muscle weakness, raised FT4, normal T3, raised rT3 and TSH, low plasma
selenium concentrations) to that seen in patients with SECISBP2 deficiency. However, the
pattern of selenoprotein expression in his cells differed, with preservation housekeeping
selenoproteins (e.g., TXNRDs, GPX4), but not stress-related selenoproteins (e.g., GPX1,
GPX3) in cells from the TRU-TCA1-1 mutation patient. This pattern is similar to the
differential preservation of selenoprotein synthesis described in murine Sec-tRNA[Ser]Sec

mutant models [3,44]. Recently, a second, unrelated patient with the same, homozygous
TRU-TCA1-1 mutation (C65G) with raised FT4 and low plasma GPX3 levels has been
described [46].

The mechanism for such differential selenoprotein expression is unresolved, but a
possible explanation is the observation that the TRU-TCA1-1 C65G mutation results in
lower total Sec-tRNA[Ser]Sec expression in patients cells, with disproportionately greater
diminution in Sec-tRNA[Ser]Sec mcm5Um levels. This suggest that the low Sec-tRNA[Ser]Sec

levels in the proband are still sufficient for normal synthesis of housekeeping selenoproteins,
whereas diminution of Sec-tRNA[Ser]Sec mcm5Um levels accounts for reduced synthesis of
stress-related selenoproteins.
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4. SEPSECS Mutations

The human SEPSECS protein was first characterized as an autoantigen (soluble
liver antigen/liver pancreas, SLA) in autoimmune hepatitis [49]. The observation that
it was present in a ribonucleoprotein complex with Sec-tRNA[Ser]Sec, led to its iden-
tification as the enzyme that catalyzes the final step of Sec formation by converting
O-phosphoserine-tRNA[Ser]Sec into Sec-tRNA[Ser]Sec using selenophosphate as substrate
donor [50,51] (Figure 1).

Homozygous and compound heterozygous mutations in SEPSECS have been identi-
fied in 20 patients (Table 3, Figure 4). The availability of the crystal structures of the archaeal
and murine SEPSECS apo-enzymes as well as human wild type and mutant SECSEPS
(A239T, Y334C, T325S and Y429X) complexed with Sec-tRNA[Ser]Sec provides functional
information [52–55]. The four premature stop mutants are predicted to be insoluble and
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inactive, as documented for the Y429X mutant. Mutants at Tyrosine 334 are predicted
to fold like wild type SEPSECS and retain binding to Sec-tRNA[Ser]Sec, but with reduced
enzyme activity. The A239T mutant failed to form stable tetramers, possible as result of a
steric clash destabilizing the enzyme’s core, rendering it inactive [55]. The other mutants
for which no structure is available have been analyzed in silico and are predicted to be
deleterious to varying degrees [15].

Table 3. Human SEPSECS mutations.

Age in Year (Gender) Mutation Protein
Change

Alleles
Affected Ethnicity Reference

6 (F 1); 7.5 (2) c.1001 A > G Y334C homozygous Jewish/Iraq [56]

4 (F); 2.5 (M) c.715 G > A
c.1001 A > G

A239T
Y334C

compound
heterozygous

Iraqi/
Moroccan [56]

7 (F); 4 (F);
2 (F) c.1466 A > T D489V homozygous Jordan [57]

0 (M); 0 (F); 0 (F); 0 (F) c.974 C > G
c.1287 C > A

T325S
Y429X

compound
heterozygous Finnish [58]

14 (F) c.1 A > G
c.388 + 3 A > G

M1V
G130Vfs * 5

compound
heterozygous N/A 3 [59]

N/A c.1027–1120del E343Lfs * 2 Homozygous N/A 3 [60]

9 (M) c.1001 A > C Y334H homozygous Arabian [61]

10 (F) c.77delG
c.356 A > G

R26Pfs * 42
N119S

compound
heterozygous Japanese [62]

21 (F) c.356 A > G
c.467 G > A

N119S
R156Q

compound
heterozygous Japanese [62]

1 (M) c.176 C > T A59V Homozygous N/A 3 [63]

23 (F) c.1321 G > A G441R Homozygous N/A 3 [64]

4 (F) c.114 + 3 A > G N/A 3 Homozygous Moroccan [65]

N/A 1 c.877 G > A A293T Homozygous N/A 3 [66]
1 F: Female; 2 M: Male; 3 N/A: Not available.
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Patients with mutations in SEPSECS have profound intellectual disability, global
developmental delay, spasticity, epilepsy, axonal neuropathy, optic atrophy and hypotonia
with progressive microcephaly due to cortical and cerebellar atrophy [56,58,61,63]. The
disorder is classified as autosomal recessive pontocerebellar hypoplasia type 2D (PCH2D,
OMIM#613811), also referred to as progressive cerebellocerebral atrophy (PCCA) [56,67].
SEPSECS is required for generation of Sec-tRNA[Ser]Sec, which is essential for survival as
demonstrated by the Trsp (mouse tRNA[Ser]Sec) knockout mouse model [44]. The Y334C-
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Sepsecs mouse model exhibits a phenotype similar to features described in patients [68].
However, there is some variation in impact of SEPSECS mutations and specific phenotypes,
with three patients (homozygous for G441R; compound heterozygous for R26Pfs*42/N119S
or N119S/R156Q), presenting with late-onset PCH2D and progressive but milder degree
of CNS atrophy [62,64]. In silico analyses suggest that these mutations have a less deleteri-
ous effect on SEPSECS function [15], although environmental factors or patients’ genetic
background modulating phenotype cannot be excluded.

The young age and severity of neurological problems in SEPSECS patients has pre-
cluded detailed investigation of selenoprotein expression and associated phenotypes.
Studies of brain tissue from some patients showed decreased selenoprotein expression,
correlating with increased cellular oxidative stress, but selenoprotein expression in other
cell types (fibroblasts, muscle cells) was not significantly affected [58]. Serum selenium con-
centrations and thyroid status has been partially investigated in five patients, documenting
either normal levels [61,65] or normal T4 but elevated TSH levels [58]. This suggests that
the biochemical hallmarks of selenoprotein deficiency in SECISBP2 and TRU-TCA1-1 disor-
ders (low circulating selenium and abnormal thyroid hormone levels) are not a significant
feature in patients with SEPSECS mutations. Myopathic features with raised CK levels,
abnormal mitochondria, cytoplasmic bodies and increased lipid accumulation in muscle
are documented in one SEPSECS mutation case [61], with broad-based gait and postural
instability suggesting muscle weakness in another patient [64]. These findings are similar to
observations in selenoprotein N-deficient patients with SECISBP2 mutations [19]. Overall,
limited studies to date suggest that SEPSECS patients exhibit phenotypes associated with
selenoprotein deficiency, but that these features can be mutation and tissue dependent.

5. Conclusions

In humans, 25 genes, encoding different selenoproteins containing the amino acid
selenocysteine (Sec), have been identified. In selenoprotein mRNAs the amino acid Sec is
encoded by the triplet UGA which usually constitutes a stop codon, requiring its recoding
by a complex, multiprotein mechanism. Failure of selenoprotein synthesis due to SECISBP2,
TRU-TCA1-1 or SEPSECS defects, essential components of the selenoprotein biosynthesis
pathway, results in complex disorders.

Individuals with SECISBP2 defects exhibit a multisystem phenotype including growth
retardation, fatigue and muscle weakness, sensorineural hearing loss, increased whole
body fat mass, azoospermia and cutaneous photosensitivity. Most patients were identified
due to a characteristic biochemical signature with raised FT4, normal to low FT3, raised
rT3 and normal/slightly high TSH and low plasma selenium levels. A similar biochemical
phenotype and clinical features are described in one individual with a TRU-TCA1-1 muta-
tion, although with relative preservation of essential housekeeping versus stress-related
selenoprotein expression in his cells. Individuals with SEPSECS defects, essential for Sec-
tRNA[Ser]Sec synthesis, present with a disorder characterized by cerebello-cerebral atrophy.
Due to the young age and severe phenotype of patients, the effect of SEPSECS mutations
on selenoprotein expression has not been studied in detail. In contrast, it is noteworthy that
an early-onset central nervous system phenotype is not a feature in patients with SECISBP2
or TRU-TCA1-1 mutations.

As the function of many selenoproteins is unknown, or simultaneous deficiency of
several selenoproteins exerts additive, synergistic or antagonistic effects culminating in
complex dysregulation, linking disease phenotypes with altered expression of specific se-
lenoproteins is challenging. Nevertheless, some causal links between specific selenoprotein
deficiencies and phenotypes (e.g., abnormal thyroid function and deiodinase enzymes; low
plasma Se and SELENOP, GPX3; azoospermia and SELENOV, GPX4, TXRND3; myopa-
thy and SELENON) can be made. Other, progressive, phenotypes (e.g., photosensitivity,
age-dependent hearing loss, neurodegeneration) may reflect absence of selenoenzymes me-
diating defence against oxidative and endoplasmic reticulum stress, resulting in cumulative
tissue damage.
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Triiodothyronine supplementation can correct abnormal thyroid hormone metabolism,
with other medical intervention being mainly supportive. Selenium supplementation is of
no proven benefit in SECISBP2 mutation patients, but needs evaluation in the TRU-TCA1-1
mutation case. Antioxidants, targeting the imbalance in oxidoredox and protein folding
control pathways, could be beneficial in many selenoprotein deficient patients, but due to
the complex interplay between different selenoproteins and their role in diverse biological
processes, such treatment will require careful evaluation.
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disorders caused by mutations in human selenocysteine synthase. Sci. Rep. 2016, 6, 32563. [CrossRef]

56. Agamy, O.; Ben Zeev, B.; Lev, D.; Marcus, B.; Fine, D.; Su, D.; Narkis, G.; Ofir, R.; Hoffmann, C.; Leshinsky-Silver, E.; et al.
Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am. J. Hum. Genet. 2010, 87, 538–544.
[CrossRef] [PubMed]

57. Makrythanasis, P.; Nelis, M.; Santoni, F.A.; Guipponi, M.; Vannier, A.; Béna, F.; Gimelli, S.; Stathaki, E.; Temtamy, S.; Mégarbané,
A.; et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families.
Hum. Mutat. 2014, 35, 1203–1210. [CrossRef] [PubMed]

58. Anttonen, A.K.; Hilander, T.; Linnankivi, T.; Isohanni, P.; French, R.L.; Liu, Y.; Simonović, M.; Söll, D.; Somer, M.; Muth-Pawlak,
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