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Emerging evidence supports the involvement of nervous system in the regulation of
immune responses. Group 2 innate lymphoid cells (ILC2), which function as a crucial
bridge between innate and adaptive immunity, are present in large numbers in barrier
tissues. Neuropeptides and neurotransmitters have been found to participate in the
regulation of ILC2, adding a new dimension to neuroimmunity. However, a comprehensive
and detailed overview of the mechanisms of neural regulation of ILC2, associated with
previous findings and prospects for future research, is still lacking. In this review, we
compile existing information that supports neurons as yet poorly understood regulators of
ILC2 in the field of lung innate and adaptive immunity, focusing on neural regulation of the
interaction between ILC2 and pulmonary immune cells.
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INTRODUCTION

The past decade has witnessed an unprecedented interest in the neural modulation of immunity (1–
4). The immune barrier consists of innate and adaptive components that adopt different strategies to
perceive and respond to pathogen challenge. In the context of innate immunity, innate lymphoid
cells (ILCs) have been demonstrated to be a crucial bridge between both immunity branches (5, 6).

ILCs are a heterogeneous family of lymphocytes that lack re-arranged antigen receptors present
on B and T cells. In earlier studies, lymphoid tissue inducer (LTi) cells and natural killer (NK) cells
were initially identified as the subgroups of the ILCs (7–10). In recent years, more subgroups of the
ILCs were discovered and, based on the surface markers, cytokines, and transcription factors,
categorized into three major types, ILC1, ILC2 and ILC3 (11, 12). These ILCs groups have distinct
Abbreviations: a7nAChR, a7 nicotinic acetylcholine receptor; Ach, Acetylcholine; AD, Atopic Dermatitis; Areg,
Amphiregulin; CGRP, a-Calcitonin Gene-Related Peptide; CRTH2, Chemoattractant Receptor-homologous molecule
expressed on Th2 cells; DCs, Dendritic Cells; PGD2, Prostaglandin D2; EGF, Epidermal Growth Factors; EGFR, EGF
Receptor; HMGB1, High Mobility Group Box 1; ICOS, Inducible Costimulator; ILCs, Innate Lymphoid Cells; ILC2, Group 2
Innate Lymphoid Cells; KLRG1, Killer-cell Lectin Like Receptor G1; NMU, Neuromedin U; NMB, Neuromedin B; Nb,
Nippostrongylus brasiliensis; PCTR1, Protectin Conjugates in Tissue Regeneration 1; PD-L1, Programmed Death-Ligand 1;
PNECs, Pulmonary Neuroendocrine cells; PNS, Peripheral Nervous System; RAGE, Receptor for Advanced Glycation End
products; RAMP1, Receptor Activity-Modifying Protein; TLRs, Toll-Like Receptors; Tregs, Regulatory T Cells; TSLP, Thymic
Stromal Lymphopoietin; VIP, Vasoactive Intestinal Peptide.
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phenotypic, developmental, and functional properties. They are
the innate counterparts of T lymphocytes: ILC1, ILC2, and ILC3
mirror CD4+ T helper (Th)1, Th2, and Th17 cells, respectively,
based on cytokine secretion and transcription factor expression
(11, 13, 14). ILC1 consists of conventional NK cells and ILC1s.
T-bet, a T-box transcription factor, is indispensable for the
differentiation and interferon-gamma (IFN-g) secretion ability
of ILC1. RORa and GATA3 are essential for the development of
ILC2, which can be grouped into transient, circulating
inflammatory ILC2 (iILC2) and tissue-resident natural ILC2
(nILC2) types (15, 16). ILC3 comprises the classical lymphoid
inducer (LTi) cells and LTi-like ILC3 with or without natural
cytotoxicity receptors (NCRs), all of which rely on the RORgt
(transcription factor) for development and secrete IL-17 and/or
IL-22. ILCs protect individuals against infectious agents,
response to inflammatory stimuli, and orchestrate lymphoid
organogenesis and tissue repair, at various tissues especially
mucosal barriers (17–19).

Among all subsets, ILC2 are the center of numerous
investigations. They are mainly localized at mucosal barriers,
e.g. the small intestine, skin, and lung (19–21). ILC2 are a master
regulator of immune and inflammatory responses, but their own
regulatory mechanisms remain largely elusive.

ILC2 are activated by host-derived alarmins such as IL-25,
IL-33, and thymic stromal lymphopoietin (TSLP), which are
expressed during tissue injury (22–24). Once activation takes
place, ILC2 release large quantities of cytokines such as IL-4,
IL-5, IL-6, IL-9, IL-10, IL-13, IL-17, and amphiregulin (16, 25–
28). Furthermore, ILC2 interact with other cells through surface-
bound molecules, such as CD80/86, MHC class II, PD-L1,
OX40L, and inducible costimulator ligand (ICOS-L), and
participate in immune-regulatory functions (29–32). ILC2 play
critical roles in the regulation of inflammation, allergic
immunity, metabolic homeostasis, parasite rejection, and tissue
repair. Dysregulation of ILC2 contributes to inflammatory
responses, including allergen-induced lung inflammation (33,
34), airway hyperreactivity (35), and atopic dermatitis (36).

Currently, the nervous system is found to have complex dual
functions to quickly stimulate or suppress immune cells to
defend the body against various inflammatory responses. There
are continuing advances in our knowledge of neural regulation of
ILC2, these brilliant results provide a new dimension of immune
regulation (37–47). Studies have shown that receptors for
norepinephrine, acetylcholine (Ach), neuromedin U (NMU),
neuromedin B (NMB), a-Calcitonin Gene-Related Peptide
(CGRP), and other neurotransmitters are present on T cells,
dendritic cells (DCs), macrophages, ILC2, and other immune
cells (19, 37, 38, 44, 48–50), and pattern-recognition receptors
(PRRs) and cytokine receptors are distributed on neurons (51–
54). Interestingly, immune cells are also able to synthesize and
secrete catecholamines, acetylcholine, CGRP, and other
neurotransmitters (39, 48, 49, 55). Moreover, ILC subtypes
express the nicotinic and muscarinic cholinergic receptor for
Ach, b2-adrenergic receptor (b2AR) for epinephrine and
norepinephrine, calcitonin receptor-like (CALCRL) for CGRP,
neuromedin U receptor 1 (NMUR1) for NMU, neuromedin B
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receptor (NMBR) for NMB, and VPAC1/2 (vasoactive intestinal
peptide receptor) for vasoactive intestinal peptide (VIP) (19, 39,
44, 50, 56). These findings suggest physical machinery for neuro-
immune communications. Also, type I cytokines can also
influence cells of the center nervous system (CNS) and mediate
what is called “sickness behavior” (57, 58). In this review, we
highlight existing information that describes neurons as novel
regulators of ILC2 in the context of pulmonary innate and
adaptive immunity.
MECHANISMS UNDERLYING ILC2
INTERACT WITH OTHER IMMUNE CELLS

ILC2 function both as initiator of adaptive immunity or as
responder to signals produced by B and T cells. Using ILC2-
targeted models, investigations have shown multiple
mechanisms by which ILC2 regulate innate and adaptive
immune system.

Many previous studies showed that “crosstalk” exist between
T cells and ILC2 (Figure 1). For instance, ILC2 are the largest
group of the cytokine-secreting leukocytes after ovalbumin or
HDM treatment (59), and ILC2 activity is essential for the
efficient differentiation of Th2 cells (29, 60–63). In Rag2−/−

mice, in which T cells and B cells are depleted due to Rag
deficiency, the numbers of ILC2 also markedly decreased after
helminth infection, indicating that T cells advance the survival of
ILC2 (64). Epithelial cells derived cytokines and alarmins
activate ILC2, which can be main producer of type 2 cytokines.
Moreover, ILC2 can activate CD4+T cells either in the priming
phase or during the effector phase since they present major
histocompatibility complex class II (MHCII) (65, 66). IL-33–
activated ILC2 enhances DCs migration into cancer tissues via
C-C motif chemokine ligand 5 (CCL5) and further improve
CD8+ T cell-mediated tumor immunity (67). Combination of
anti-PD1 checkpoint blockade with rIL33 treatment collaborates
to improve anti-tumor immunity by unleashing ILC2 activity
(68). Activated ILC2 further facilitate the polarization of the anti-
inflammatory M2 macrophages, which in turn stimulate Foxp3
regulatory T cells (Tregs) (69). Tregs are a subpopulation of T
cells which modulate the adaptive immune responses through
direct cell-cell interactions, as well as through the inhibitory
functions of TGF-b and IL-10.

Through cytokines and interactions of ICOS with its ligand
ICOS-L, ILC2 activate B cell to undergo isotype-switching,
survival, and secrete IgG1 and IgE (64, 70, 71). IgE produced
by B cells, together with type 2 cytokines released by Th2 cells
and ILC2, lead to further activation of smooth muscle
contraction, mucus production, granulocyte effector cells, and,
which in turn, result in the encapsulation or expulsion of
inflammatory stimuli (72). B cell-derived IgE is an important
effector of type 2 immunity, and the recognition of allergens by
IgE on mast cells is responsible for induction of the cardinal
features of classic allergic responses, including anaphylactic
shock (70). ILC2-derived IL-5 is an important growth factor
that contributes to B1 cell self-renewal (73, 74). ILC2 sorted from
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mesenteric fat-associated lymphoid clusters are able to increase
IgA production by peritoneal B cells in vitro (74).

Multiple indirect (cytokines) and direct (surface-bound
molecules) mechanisms are involved in interactions between
ILC2 and other cells as summarized below (Figure 1) (29,
75–77).

IL-4
IL-4 is expressed by activated ILC2 (78, 79). ILC2-released IL-4
participates in blocking the expansion of allergen-specific Tregs,
thus involving in food allergy (80). ILC2-released IL-4 is also able
to polarize TH2 cells during helminth infection (81).

On the other hand, eosinophil- or basophil-released IL-4 is
found to affect ILC2 by enhancing ILC2 lineage proliferation,
function and stability (82, 83).

IL-5
ILC2 can coordinate adaptive and innate immune functions
through IL-5. IL-5 is critical for B cell function (74) and
Frontiers in Immunology | www.frontiersin.org 3
eosinophil homeostasis (Figure 1) (84, 85). When splenic B cells
co-culture with mesenteric ILC2, IL-5 from ILC2 plays a pivotal
role in the release of IgA from B cells (74). Besides, peripheral ILC2
in pulmonary, peritoneal cavity, and spleen are able to elevate the
secretion of IgA, IgE, IgG1, and IgM by B cells in ex vivo co-
cultures (86). Furthermore, upon NP-Ficoll (primes for a high
affinity IgM anti-NP response) treatment in vivo, IgM produced by
B cells is selectively initiated by lung ILC2 in an IL-5–dependent
pattern (86). IL-5–producing ILC2 are also essential for the Th2
and Th9 cytokine responses against Trichinella spiralis infection
(87). In addition, lung ICOS+ILC2 act a protective factor in a
bleomycin model in an IL-5-dependent manner (88). Of note, the
timing of IL-5 release by ILC2 seems important for the protective
activity (88). Study showed that prostaglandin D2 (PGD2)-
chemoattractant receptor-homologous molecule expressed on
Th2 cells (CRTH2) signaling increases ILC2 and its production
of IL-5, which promotes Tregs proliferation (89).

Our recent study discovered that high mobility group box 1
(HMGB1, a late mediator of sepsis) signals via receptor for
FIGURE 1 | ILC2 interacts with other immune and non-immune cells through a variety of cytokines and cell surface mediators. (1) After activation with alarmins, ILC2
produce type II cytokines and mediators; (2) ILC2 interact with T cells via MHCII, CCL5, PD-1/PD-L1, OX40/OX40L, CD86, CD80, IL-4, IL-5, and IL-13; (3) ILC2
activate B cells to undergo isotype-switching, survival, self-renewal, and secrete antibodies via ICOS/ICOS-L, IL-5; (4) ILC2 stimulate Tregs via IL-5, IL-9, ICOS/
ICOS-L, while ILC2-released IL-4 suppress Tregs. Tregs are capable of inhibiting ILC2; (5) ILC2 prime macrophages into a type 2 immune cell phenotype via IL-13;
(6) Epithelial cells derived alarmins activate ILC2. ILC2-released IL-9 and Areg protect lung endothelial cells. (7) ILC2 increase eosinophils via IL-5, HMGB1. ILC2
inhibit eosinophils via IL-10. Eosinophil- or basophil-released IL-4 activate ILC2; (8) ILC2 activate DCs via IL-9, IL-13, HMGB1.
October 2020 | Volume 11 | Article 576929
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advanced glycation end products (RAGE) to increase lung ILC2
by enhancing ILC2 proliferation and suppressing ILC2 death.
The activated ILC2 increase type 2 cytokines production and
eosinophil infiltration in the lungs, both of which improve
haemorrhagic shock-induced acute lung injury (85). Lung
ILC2 activated by IL-33 secrete a large number of IL-5, which
further up-regulate neutrophil and its IL-5 production (90).

IL-9
Price et al, reported in detail that ILC2 express IL-9 receptor (78).
Using IL-9 reporter and subsequently IL-9 fate mapping mice,
two studies delineated the autocrine signaling mechanism of IL-9
in ILC2 that enhances IL-13 and IL-5 release (Figure 1) (66, 91).
In papain-induced pulmonary inflammation model, IL-9 was
secreted for a short period by ILC2, then ILC2 changed to release
IL-13 and IL-5. Furthermore, IL-33, but not IL-25, increased IL-
9–producing ILC2 (91). Rauber et al, recently uncovered that IL-9
from ILC2 was necessary for Tregs activation and inflammation
resolution in an arthritis model (92). HMGB1-activated
ILC2 also secrete IL-9, which increase DCs (93). Moreover, our
study discovered that ILC2-released IL-9 protects lung endothelial
cells from pyroptosis by suppressing caspase-1 in a septic
model (17).

IL-2 released by adaptive immune cells also play a crucial role
in the IL-9 expression by ILC2, suggesting again the strong
functional link between adaptive and innate lymphoid cells (94).
Besides, IL-2 functions as a costimulator to ILC2 and promotes
cell proliferation and survival by activating NF-kB pathway and
gene transcription through p65 translocation (94). IL-9 and IL-2
work synergistically to direct ILC2 biology, and increased IL-9
production is related to an asthma-like phenotype in humans
and mice highlighting the key role of these cytokines (95–98).

IL-13
IL-13 also mediates the interaction between ILC2 and immune
and non-immune cells (Figure 1). During infection of helminth
in mice, IL-13 released from ILC2 is more abundant than that
from Th2 cells for restricting worm expulsion and immune
response (23, 64, 78). IL-13 from ILC2 can induce goblet cell
hyperplasia as well as mucus secretion (99). Yet the precise
mechanism of IL-13 receptors on pulmonary cells at different
states remains to be fully elucidated.

Pulmonary IL-13+ ILC2 and CD4+ T cells cooperate to
suppress Nippostrongylus brasiliensis (Nb) infection. Immune-
damaged larvae have a severe morphological defect that is due to
the increase of CD4+ T cells and IL-13+ ILC2, as well as the
activation of M2 macrophages (100). Besides, alveolar
macrophages can be primed by ILC2-derived IL-13 into a type
2 immune cell phenotype (101). DCs are stimulated by IL-13 to
convert to a type 2 chemokine-secreting phenotype. ILC2-
derived IL-13 is also able to mediate DCs migration from the
lungs to the LNs, thus impacting the differentiation of TH2 cell
(102). In addition, the number of IL-13+ ILC2 was reported to be
markedly upregulated in patients with uncontrolled asthma, and
it was significantly decreased when these patients had their
symptoms controlled by treatment, suggesting an important
role for ILC2-derived IL-13 in asthma (103). In conclusion,
Frontiers in Immunology | www.frontiersin.org 4
ILC2-derived IL-13 can initiate and affect innate and adaptive
type 2 immune responses.

Amphiregulin (Areg)
Areg is a member of the epidermal growth factors (EGF) family
and acts via the EGF receptor (EGFR) (104). Both hematopoietic
and non-hematopoietic cells in the lung present EGFR (105).
ILC2 are a major cellular producer of Areg after activation with
IL-33. ILC2-derived Areg is a critical component of effective
pulmonary wound healing during influenza infection and
restoring epithelial integrity and lung function (20). The
initiation of mucus secretion and wound healing can prevent
or ameliorate some respiratory diseases, although enhanced and
excessive mucus may play a detrimental role in diseases, such as
asthma (106, 107). Pulmonary Tregs are also capable of
producing Areg without TCR signaling (Figure 1) (108). Thus,
innate Areg released by ILC2 and Tregs is of high importance to
restore tissue homeostasis and wound healing after
pulmonary infection.

ICOS/ICOS-Ligand Interaction
Studies on helminth expulsion revealed ILC2-Tregs crosstalk
(109). Tregs and ILC2 colocalize to similar regions within the
lung tissues and visceral adipose tissue under homeostatic and
inflammatory conditions (Figure 1) (31). Of note, ICOS+ Tregs
and ICOS-L+ ILC2 were reported to accumulate in tissues after
Nb infection or IL-33 administration, while Tregs accumulation
in ICOS-L knock-out mice or after administration with
neutralizing monoclonal antibody against ICOS-L was reduced,
indicating that ICOS-L+ ILC2 could improve Tregs expansion,
thus establishing a pathway for Tregs to cooperate with ILC2
(31). On the other hand, Tregs are capable of inhibiting ILC2 to
restrict allergic airway inflammation (110). Besides, ICOS/ICOS-
L interaction on ILC2 affects STAT5 signaling, activating ILC2
function and proliferation in an allergic model (111).

PD-1/PD-L1 Interaction
ILC2 constitutively express the checkpoint inhibitor molecule
programmed death-ligand 1 (PD-L1), which has been discovered
to activate CD4+ Th2 cell responses during type 2 pulmonary
responses (Figure 1) (30). Conditional knockout of PD-L1 on
ILC2 disrupted cytokine production and early Th2 polarization,
resulting in delayed worm expulsion during infection with the
gastrointestinal helminth Nb (30). Nevertheless, ILC2 can also
express PD-1, which was reported to be upregulated on activated
ILC2, and depletion of these PD-1+ ILC2 resolves papain-
induced lung inflammation (112).

E-Cadherin/KLRG1 Interaction
E-cadherin, a cell adhesion molecule, interacts with the mature
ILC2 marker, killer-cell lectin like receptor G1 (KLRG1). The
finding that E-cadherin-KLRG1 ligation on human ILC2 reveals
a significant decrease in GATA3 expression and type 2 cytokine
(such as IL-5 and IL-13) release and the discovery that E-
cadherin expression is suppressed in keratinocytes propose that
inhibited E-cadherin expression may activate ILC2, promoting
atopic dermatitis (AD) immunopathogenesis (28).
October 2020 | Volume 11 | Article 576929
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Other Interactions
OX40 ligand (OX40L) expression on ILC2 can be enhanced by
IL-33. OX40-OX40L ligation has been reported to increase Th2
cell survival and number (32, 113), thus promoting adaptive
immunity (75).

A molecularly distinct subset of lung ILC2 can secrete IL-10
and suppress some pro-inflammatory genes. IL-2, IL-4, IL-27,
IL-10, and NMU stimulate IL-10 production from ILC2 and are
associated with decreased eosinophil recruitment to the lung,
indicating that ILC2 have anti-inflammatory functions similar to
Tregs (Figures 1 and 3) (26, 114).

The expression of CD86, CD80, and MHCII by mouse ILC2 is
also involved in ILC2 interactions with CD4+ T cells;

MHCII+ ILC2 can drive the differentiation of naive CD4+ T
cells into Th2 in vitro, whereas MHCII-deficient ILC2 upregulate
Th2 cell-driven helminth expulsion in vivo (29, 75).
PULMONARY NERVOUS SYSTEM AND
ITS REGULATORY FUNCTION

Lung is densely innervated by peripheral nervous system (PNS),
which is divided into motor and somatosensory nervous systems
(Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
Motor Nervous System
The motor nervous system consists of the autonomic (sympathetic,
parasympathetic, and enteric) and somatic branches.

Autonomic nervous system serves to regulate involuntary
functions. Sympathetic branch comes from the upper six
thoracic spinal cord segments; the synapse together with
the sympathetic ganglia, and postganglionic fibers then
innervate the airways. The sympathetic nervous system
participates in the body response to stress and regulates
bronchodilation and the production of mucous.

The cholinergic parasympathetic branch comes from the
vagal nuclei of the medulla; the superior and recurrent
laryngeal vagal nerves synapse at the parasympathetic ganglia
to innervate the lung (115). The parasympathetic branch is
mainly responsible for keeping homeostasis (116). It regulates
bronchoconstriction, carbon dioxide and oxygen levels, as well as
neural reflexes including coughing.

Somatosensory Nervous System
The somatosensory nervous system delivers sensory stimuli, such
as proprioception, touch, and pain. Somatosensory neurons are
further divided into pruriceptors and nociceptors responsible for
sensing itch-inducing or noxious stimuli, respectively. These
neurons are important because their activation is closely
related to inflammation and immunity (Figure 2).
FIGURE 2 | The autonomic nervous system regulation of ILC2 function. Ach, Acetylcholine; a7nAChR, a7 nicotinic acetylcholine receptor; b2AR, b2-adrenergic
receptor; NA, Norepinephrine.
October 2020 | Volume 11 | Article 576929
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All opponents of the PNS play a critical role in orchestrating
immunity, inflammation, and tissue repair at host barrier tissues in
response to stimuli and stressors. Primary evidence that
neurotransmitters may regulate immune responses was that their
release from nerves could lead to signaling through the surface
receptors of lymphocyte cell (117). Leukocytes have receptors for
the neurotransmitters such as dopamine, serotonin and glutamate
(117), and also produce neurotransmitters that work as paracrine or
autocrine signals (118). The neuronal reflex senses peripheral
inflammation and coordinates the host response to injury and/or
infection, regulating events within the initiation of inflammation
(48, 119). Lung is heavily populated by resident immune cells, such
as macrophages, DCs, gd T cells mast cells and ILCs. It allows fast,
integrated reactions to pathogens and noxious stimuli (120).

Sympathetic Nervous System
Sympathetic nervous system helps the center nervous system to
control innate immune responses between antiviral and pro-
inflammatory actions (Figure 2) (121, 122).

The nerves of the sympathetic nervous system distribute the
neurotransmitter catecholamines into tissue microenvironments
in which immune response gene transcription occurs, including
all lymphoid organs, most musculoskeletal structures and
visceral organs, and the vasculature and perivascular
tissues (123).

Recent reports have revealed a sympathetic nervous system-
mediated steering of innate immune response programs, which
include enhanced transcription of pro-inflammatory cytokine
genes (such as Il6, tnf, and Il1b) (121, 124) and inhibition of type
I IFN-mediated antiviral responses (122).

Stimulation of the sympathetic nervous system has also been
shown to change the production and trafficking of innate
immune cells, for instance, through the upregulation of
myelopoiesis and the mobilization of monocytes, splenic
neutrophils, natural killer cells, and haematopoietic stem cells
(123). A current study showed that the sympathetic nervous
system stimulates IL-33 and then ILC2 in adipose tissue. Cold
exposure stimulates IL-33 expression, ILC2 and eosinophils in
adipose tissue. Furthermore, sympathetic denervation induced
by 6-hydroxydopamine (6-OHDA) cancels this effect (125).

Catecholamines are monoamine neurotransmitters which are
mainly released by the postganglionic fibers of the sympathetic
nervous system and the chromaffin cells of the adrenal medulla.
Included among catecholamines are dopamine, epinephrine
(adrenaline), and norepinephrine (noradrenaline) (Table 1 and
Figure 2). Release of the epinephrine and norepinephrine from
the adrenal glands and adrenergic nerves is part of the fight-or-
flight response.

Catecholamines exert their effects via two classes of adrenergic
receptors, a and b. Both groups could be functionally divided into
subgroups (a1 and a2; b1, b2, and b3).

Norepinephrine regulates leukocyte gene expression through
b-adrenergic receptors (123). b-adrenergic receptor is expressed
on most immune cells, such as B cells, T cells, and other innate
cells (40, 126–128). It was initially thought to regulate adaptive
immune responses by suppressing the expression of TH1-type
Frontiers in Immunology | www.frontiersin.org 6
genes, such as Il12b and Ifng, and activating the transcription of
TH2-type cytokine genes, i.e. Il4 and Il5 (129–131).

Interestingly, b2AR has an inhibitory effect on innate immune
responses. b2-agonists suppress cardiodepressant and
inflammatory factors, including HMGB1 and TNF. Recently,
ILC2 from the lung and the gut-related tissues (small intestinal
lamina propria, colonic lamina propria and mesenteric lymph
nodes) were found to express b2AR. ILC2 were also shown to
colocalize with adrenergic neurons in the mouse intestine (40).

b2AR deficiency led to enhanced ILC2 proliferation and
subsequent type 2 cytokine production in lung and intestinal
tissues after infection with Nb. Lung eosinophilia was observed
following enhanced IL-5 production from ILC2 in b2AR-
deficient mice. On the other aspect , b2AR agonist
administration disrupted ILC2 responses and suppressed
inflammation in vivo. By using conditional b2AR-deficient
mice, or by transferring ILC2 progenitors from wild-type mice
or b2AR-deficient mice into ILC-deficient mice, the group
generated ILC2-specific b2AR-deficient mice and ensured that
the b2AR negatively controls ILC2 and type 2 inflammation (40).
This study provides another evidence of neuronal regulatory
circuit that regulates ILC2-dependent type 2 inflammation.
b2AR-agonists are the most effective medications for the
treatment of asthma. b2AR-mediated ILC2 regulation could be
one of the pathways of b2AR-agonists effect in asthma (33, 38, 44,
110, 132, 133). On the other hand, b2AR is the first adrenergic
receptor documented to participate in the “anti-inflammatory
reflex” of the parasympathetic system which will be discussed in
the next section (Table 1 and Figure 2).

Parasympathetic Nervous System
Parasympathetic and sympathetic systems are usually considered
to work in opposition to maintain physiological homeostasis.
While current literatures suggested that both branches work
together to restrain systemic inflammation in life-threatening
illnesses, including arthritis, inflammatory bowel disease, sepsis
and endotoxemia (46, 48, 134–138).

Nerve fibers of the parasympathetic nervous system arise
from three primary areas: cranial nerves (facial nerve,
oculomotor nerve, and glossopharyngeal nerve), vagus nerve,
and pelvic splanchnic nerves (three spinal nerves in the sacrum,
S2-4).

The parasympathetic nervous system mainly utilizes
acetylcholine (ACh) as its neurotransmitter (Table 1 and
Figure 2). Tuft cells, capable of secreting the ILC2 activator
IL-25, also secrete Ach (139, 140). The ACh has two kinds of
receptors, the nicotinic and muscarinic cholinergic receptors. a7
nicotinic acetylcholine receptor (a7nAChR), one of the nicotinic
acetylcholine receptors, is expressed by ILC2 at steady state, and
this expression is further increased following alarmin-induced
activation such as IL-33 (44). The a7nAChR is also present on B
cells (141), T cells (142, 143), macrophages (144) and ILC3 (41).

a7nAChR-/- mice were more susceptible to severe lung injury
and higher mortality than a7nAChR+/+ mice. Increased
a7nAChR+ alveolar neutrophils and macrophages were
observed in the mice injured lungs. The immunomodulatory
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cholinergic a7nAChR pathway of alveolar neutrophils and
macrophages alleviated E. coli- and LPS-induced acute lung
injury by inhibiting transalveolar neutrophil migration and
chemokine production.

It was reported that the expression of HMGB1 protein was
suppressed by a7nAChR agonist nicotine and the survival of
post-sepsis acute lung injury was improved (145). In addition,
administration of a7nAChR agonist inhibits type 2 cytokine
production from ILC2 and ameliorates ILC2-mediated lung
inflammation induced via IL-33 stimulation or Alternaria
alternata inhalation. Mechanistically, a7nAChR agonist is
reported to inhibit cellular markers for proliferation in ILC2
(Ki67, NF-kB and GATA3 signaling pathways) (27, 44, 146, 147)
(Table 1). These findings indicate that a7nAChR may be a
potential therapeutic target for acute lung injury (120).

On the other aspect, Bcl-2, an anti-apoptotic factor of ILC2,
was unchanged by a7nAChR agonist treatment. These studies
indicate that parasympathetic nervous system modulates ILC2
Frontiers in Immunology | www.frontiersin.org 7
proliferation, but not death. The suppressive effects of a7nAChR
on ILC2 may serve as the mechanism underlying the observed
reduced pulmonary allergic inflammation induced by nicotine
treatment (148). Moreover, in cancer immunity, nicotine
treatment stimulates tumor growth by suppressing apoptosis
and promoting cell proliferation (149–152).

Anti-Inflammatory Reflex
The vagus nerve is the main parasympathetic nerve connecting
between the central nervous system and peripheral organs (128,
153). Pharmacological or electrical stimulation of the vagus
nerve can restrain the systemic inflammation response, organ
damage, and mortality in different experimental hemorrhage and
resuscitation (43), pancreatitis (154), ischemia and reperfusion
(43, 155, 156), colitis (157), endotoxemia (42, 155, 158, 159) and
sepsis (145, 160).

Mechanically, the motor and sensory vagus nerve form a
complex neural reflex circuit termed the “anti-inflammatory
TABLE 1 | Sources, receptors on ILC2, and relationships with ILC2 of several neurotransmitters.

Neurotransmitters Sources Relevant
receptors
on ILC2

Relationships with ILC2

Catecholamines Epinephrine
(Adrenaline)

Autonomic
(Involuntary)

Sympathetic
nervous system;

b2AR • Adrenergic neurons colocalize with ILC2;
• b2AR agonist administration impairs ILC2 responses and reduces

inflammation;
• Mediator of the “anti-inflammatory reflex”;

Norepinephrine

Acetylcholine Parasympathetic
nervous system;
Also released by
tuft cells;

a7nAChR • a7nAChR agonist administration inhibits the proliferation of ILC2, but does not
alter the death of ILC2;

• a7nAChR agonist administration inhibits type 2 cytokine production from ILC2
and ameliorates ILC2-mediated lung inflammation;

• Mediator of the “anti-inflammatory reflex”;
CGRP Somatic

(Voluntary,
afferent and
efferent
neurons)

Sensory neurons;
Also released by
PNECs and ILC2;

RAMP1
and
CALCRL

• CGRP-secreting PNECs locate in close proximity to ILC2 near airway branch
points;

• ILC2 express both CGRP and its receptor CGRPR;
• CGRP stimulates ILC2 proliferation;
• CGRP suppresses KLRG1+ILC2s proliferation but promotes IL-5 expression;
• CGRP alone does not increase cytokine production from ILC2, a combination

of (NMU + IL-33 + CGRP) stimulates IL-5 but limits IL-13 production and ILC2
proliferation;

VIP Sensory neurons; VPAC1
and
VPAC2

• VIP stimulates IL-5 from ILC2, ILC2-derived IL-5 activates nociceptors on
sensory neurons and upregulates the release of VIP, which in return acts via
VPAC2 and leads ILC2 and subsequently T cells to release more IL-5 and
thereby forming a type 2 inflammatory positive feedback loop mainly based on
the neuro-immune axis;

NMU Sensory neurons
(released by
cholinergic sensory
neurons originating
from DRG);
Also secreted by
some APCs
(including
monocytes, B cells,
and dendritic cells);

NMUR1 • NMU-expressing neurons locate in close vicinity to ILC2;
• NMU elevates ILC2 proliferation;
• Stimulation of ILC2 with NMU leads to strong and immediate production of

tissue protection and innate inflammatory cytokines in a NMUR1-dependent
manner;

• NMU increases IL-10 production in activated ILC2, IL-10 further stimulates IL-
10 production in ILC2 through a positive feedback loop;

• ILC2 activated by NMU increase the number of lung eosinophils and mast
cells;

• IL-13 enhance NMU production in DRG neurons, thus indicating the existence
of a reciprocal neuron–ILC2 regulatory loop via ILC2-derived IL-13 and
neuronal NMU expression;

NMB CNS (olfactory bulb, dentate
gyrus, amygdala, basal ganglia,
brainstem);
PNS (Gastrointestinal tract;
Trigeminal and dorsal root ganglia
(DRG));

NMBR • Treatment with NMB inhibits ILC2 responses, eosinophilia and mucus
production;

• Basophils prime ILC2 for NMB-mediated inhibition;
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reflex” which control spleen cytokine production through splenic
nerve (42, 161–166). ACh released by the vagus nerve in the
celiac mesenteric ganglia stimulates postsynaptic a7nAChR of
splenic nerve (46). The adrenergic splenic nerve release
norepinephrine to activate a discrete subset of spleen
lymphocytes via b2AR. Activated lymphocytes then release
Ach (48, 167). Lymphocyte-derived Ach downregulates
macrophage cytokine release, and switches them toward a
tissue-protective, M2 anti-inflammatory phenotype. a7nAChR
mediates Ach-induced signal transduction in macrophages and
monocytes (144). a7nAChR inhibits the inflammasome activity
(168), enhances the JAK2-STAT3 pathway (169), stabilizes
mitochondrial membranes, and suppresses the nuclear
translocation of NF-kB (119, 145, 168–170).

The eventual influence of inflammatory reflex on the spleen is
the inhibition of cytokine release by spleen macrophages, which
produce over 90% of the IL-1 and TNF during acute
endotoxemia (159, 167). The anti-inflammatory reflex is a
special instance of a functional network between the efferent
parasympathetic vagus nerve, the splenic nerve (termed
sympathetic) and T cells relaying neural signals. In depicting
this cooperation, the use of the classical sympathetic-versus-
parasympathetic neuronal designation should be modified.

Indirect studies suggested that anti-inflammatory reflex is
involved in the regulation of ILC. Dalli et al, reported that
dissection of the right vagus downregulated the number of
peritoneal ILC3 and changed peritoneal macrophage responses.
Right vagotomy led to decreased peritoneal levels of pro-
resolv ing mediators , which include the protect ive
immunoresolvent protectin conjugates in tissue regeneration 1
(PCTR1), as well as increased inflammation-initiating
eicosanoids. Ach restored the PCTR1 production from ILC3.
Treatment of PCTR1 or ILC3 repaired tissue and ameliorated E.
coli infections in vagotomized mice (41). Another group studied
the regulation of ILC2 using coding a7nAChR (Chrna7)
knockout mice, pulmonary C fibre (PCF, which releases ACh
and neuropeptides) degeneration mice, and vagotomized mice.
Knockout of Chrna7 enhanced resident ILC2s and trafficking
iILC2s in the lung, worsened allergic inflammation. However,
PCF degeneration and vagotomy significantly reduced these two
types of ILC2 and attenuated asthma responses (171). Although
there is no direct evidence suggests that “anti-inflammatory
reflex” regulates ILC2, it is promising to investigate since the
number of ILC2 is significantly increased in spleen during
inflammation or infection (172).

In sum, parasympathetic nervous system participates in the
pathogenesis of various diseases, with a different role in
each disease.

Sensory Neurons
The lung is innervated by a dense network of sensory neurons
that mainly comes from vagal afferents whose cell bodies reside
in the vagal ganglia (jugular and nodose ganglia); while other
sensory nerve innervation originates from the dorsal root
ganglion (DRG) (Figure 3) (115, 173–175). Nociceptive
receptors are richly expressed in sensory neurons endings,
Frontiers in Immunology | www.frontiersin.org 8
which are abundantly present in the lung parenchyma and
near the airways; this poises them to act as the first wall for
host defense and these neurons interact directly with
inflammatory stimuli such as ATP, pathogens, allergens,
protons, heat, mechanical injury and chemical irritants like
immune cells such as APCs, macrophages, and other
phagocytes (116, 176–178).

Sensory neuronal action potentials evoked by this interaction
are then transmitted into the CNS within milliseconds of the
detection of inflammation or invasion. This action-potential
signaling mechanism is significantly faster than immune cell.
Once activated, nociceptive receptors induce coughing, pain and
bronchoconstriction (173, 178–180). Neuropeptides emanating
from nociceptor nerve terminals also participate in the
nociceptors crosstalk with immune cells (173, 181–183).

Excitation of nociceptors increases the release of multiple
neuropeptides, such as substance P, VIP and CGRP which
regulate both innate and adaptive immune cells (184) (Table 1
and Figure 3).

CGRP
CGRP, encoded by Calca, is a member of the calcitonin family
peptides that not only secreted by peripheral nociceptive neurons
but also found in central neurons (45, 185). CGRP binds to a
heteromeric receptor composed of a receptor activity-modifying
protein (RAMP1) and a G-protein coupled receptor termed
CALCRL. CGRP via these receptors stimulates AC, which
results in cAMP and PKA pathway activation and leads to the
phosphorylation of several downstream pathways including
NOS, MAPK, and CREB pathways (186).

In skin bacterial infection, lymph node hypertrophy and
TNF-a production are found to be suppressed by CGRP (183,
187). CGRP levels markedly increased in the bronchoalveolar
lavage fluid (BALF) after Staphylococcus aureus infection. S.
aureus also increases cultured neuronal production of CGRP in
vitro. CGRP could alleviate the symptoms of S. aureus-induced
pneumonia by suppressing TNF-a, CXCL1, gd T cells and
neutrophils (188).

A recent study discovered the relationship between CGRP and
pulmonary neuroendocrine cells (PNECs), which comprise ~1%
of the airway cell population (189, 190). PNECs (locate in close
proximity to ILC2 near airway branch points) could secrete
CGRP, which aggravates allergen-induced asthma in mice by
stimulating ILC2 proliferation and the secretion of IL-5 from
ILC2 (133). On the other hand, Il5hiILC2 produce both CGRP and
its receptor CGRPR followingNb infection. CGRP treatment alone
does not increase cytokine production from ILC2, a combination
of neuromedin U (NMU) + IL-33 with CGRP stimulates IL-5 but
limits IL-13 production and ILC2 proliferation. Worm expulsion
and ILC2 responses are augmented without CGRP signaling (39).
Interestingly, Xu et al, reported that OVA-induced inflammation
increased the expression of Calca in KLRG1+ILC2. CGRP
suppressed KLRG1+ILC2s proliferation but promoted IL-5
expression (191). Collectively, these paradoxes point to both pro-
and anti-inflammatory properties of CGRP on immune responses in
the lung and warrant further investigation (Table 1 and Figure 3).
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VIP
The neuropeptide VIP also involves in the regulation of ILC2. It
has been firstly characterized as a polypeptide isolated from the
small intestine with multiple impacts on different systems such as
respiratory and cardiovascular systems (192). VIP can be
perceived by VIP receptor type 1 (VPAC1) or VIP receptor
type 2 (VPAC2), which are differentially regulated according to
cell type and activity conditions (193, 194). Similar to CGRP, VIP
enhances the AC/cAMP/PKA pathway and phospholipase C,
which causes the accumulation of intracellular Ca2+ (195).

Of note, pulmonary and intestinal ILC2 express VPAC1 and
VPAC2 and produce IL-5 when they are incubated with IL-7 and
VIP- or VPAC2-specific agonist (84). Talbot et al, discovered a
critical relationship between ILC2, VIP, T cells, and nociceptive
neurons (182). Reciprocally, ILC2-derived IL-5 activates
nociceptors on afferent neurons and upregulates the release of
VIP, which in return acts via VPAC2 and leads ILC2 and
Frontiers in Immunology | www.frontiersin.org 9
subsequently T cells to release more IL-5 and thereby forming
a type 2 inflammatory positive feedback loop mainly based on
the neuro-immune axis (Table 1 and Figure 3) (182). Since the
levels of blood eosinophils and type 2 cytokine release from ILC2
are regulated by circadian rhythm and food intake, this suggests
that VIP might influence blood eosinophils via upregulation of
ILC2 (84).

NMU
NMU is a neuropeptide mainly released by cholinergic sensory
neurons originating from DRG, but not parasympathetic
neurons in the vagal ganglion (196). The initial biological
functions ascribed to NMU were food intake and body weight
reduction, smooth muscle contraction of the uterus,
pronociceptive effects promotion and circadian rhythm
regulation (197, 198). In addition, NMU is also occasionally
secreted by some APCs, including monocytes, B cells, and
FIGURE 3 | The somatic nervous system regulation of ILC2 function. CGRP, a-calcitonin gene-related peptide; DRG, Dorsal root ganglion; NMB, neuromedin B;
NMU, neuromedin U; PNECs, Pulmonary neuroendocrine cells; VIP, Vasoactive Intestinal Peptide.
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dendritic cells (199). Thus, it is suggested to play an important
role in the regulation of adaptive and innate immunity. In an
allergen-induced asthma model, airway eosinophilia was shown
to decrease in nmu-/- mice. NMU directly stimulated
extracellular/signal-regulated kinase phosphorylation and Ca2+

mobilization. NMU also induced cell adhesion to components of
the extracellular matrix, and chemotaxis in vitro (200).

Recent studies reported that NMU from lamina propria play a
regulatory role in mice type 2 innate immunity through binding
to the neuromedin U receptor 1 (Nmur1), which is selectively
enriched in ILC2. Consistent with this idea, NMU-expressing
neurons have been discovered in close vicinity to ILC2 in the
lungs (19, 37, 38). Lung ILC2 present NMUR1 at steady state and
upon IL-25 stimulation, however, NMUR1 was inhibited upon
IL-33 exposure (38).

In a mice model of worm infection in the lungs and intestine,
stimulation of ILC2 with NMU led to strong and immediate
production of tissue protection and innate inflammatory
cytokines in a NMUR1-dependent manner, thereby alleviating
worm burden (37).

In a model of airway allergy, ILC2 were activated by NMU in
vitro, and in vivo co-treatment of NMU with IL-25 significantly
increased lung histopathology. Disruption of NMU-NMUR1
pathway decreased ILC2 number and effector function, and
changed transcriptional programs following in vivo allergen
exposure (38). NMU elevates pulmonary ILC2 proliferation
and a selectively potent secretion of innate IL-5, IL-13, and
amphiregulin (19, 37, 38). Furthermore, ILC2 activated by NMU
increase the number of lung eosinophils and mast cells, thus
alleviating antihelminth responses (19, 37, 38). Interestingly, IL-
13 enhance NMU production in DRG neurons, thus indicating
the existence of a reciprocal neuron–ILC2 regulatory loop via
ILC2-derived IL-13 and neuronal NMU expression (38). IL-10,
primarily secreted by Tregs, was increased by NMU in activated
intestinal ILC2. IL-10 further stimulated IL-10 production in
ILC2 through a positive feedback loop (Table 1 and Figure 3)
(114). These findings suggested that NMU treatment enhance
inflammation-induced damage in the lungs and pointed to a
double-edged sword of NMU-NMUR1 signaling.

NMB
NMB belongs to the neuromedin family that includes NMB,
NMC, NMK, NML, NMN, NMU and NMS (201, 202). It is
expressed widely in the CNS (olfactory bulb, dentate gyrus,
amygdala, basal ganglia, and brainstem) and the PNS
(gastrointestinal tract, trigeminal and dorsal root ganglia
(DRG)) (203, 204).

NMB controls cell growth, blood glucose, body temperature,
emotion, energy homeostasis, exocrine and endocrine secretion,
food intake, grooming and scratching, nociception and smooth
muscle contraction. Inclan-Rico, Juan M et al, found that
administration of NMB suppressed ILC2 responses via NMU
receptor (NMBR), eosinophilia and mucus production after Nb
infection in the lung. In consistent with in vivo results, in vitro
treatment of NMB inhibited the growth of sorted ILC2 (Table 1
and Figure 3). Of note, ILC2 sorted from basophil-depleted
mice were unchanged by NMB stimulation, indicating that
Frontiers in Immunology | www.frontiersin.org 10
basophils are indispensable for the inhibitory effects of NMB
on ILC2 (50).
PROMISING DIRECTIONS FOR
RESEARCH ON THE NEURAL
REGULATION OF ILC2 IN THE LUNG

The discoveries of neural control of ILC2 have added a new
dimension to neuroimmunity. All previously known findings of
ILC2 in the lung could be re-examined from this perspective.

Previous studies on the lung ILC2 have been mainly
performed in models of allergic disease (205–208), helminth
infection (16, 50, 209, 210), and septic lung injury (17, 85, 211,
212). Multiple neural pathways have been reported to be
involved in these disease models (4, 213, 214). Although recent
studies have found some clues, the relationship between nervous
system and ILC2 still remains contradictory and inconclusive.
For example, CGRP shows opposite effects on different ILC2
subtypes. NMU is able to enhance the pro-inflammatory
function of ILC2 as well as its anti-inflammatory function.
Does the nervous system or neural mediators play ameliorating
or worsening roles in these diseases by regulating ILC2? If future
studies can prove this hypothesis, then ILC2 will not only be a
bridge between innate and adaptive immunity, but also between
the nervous system and the immune system.

The second promising research direction will be the effects of
neural-regulated ILC2 on nervous system. Type I cytokines and
their receptors (such as IL-1, IL-6, and TNFs) are expressed
widely in CNS cells and are important for the development and
function of the CNS (58). However, the impacts of ILC2-released
type II cytokines and mediators on nervous system remains to be
elucidated. Currently, a reciprocal DRG–ILC2 regulatory loop
via ILC2-derived IL-13 and neuronal NMU expression has been
found (38). Besides, ILC2-derived IL-5 activates nociceptors on
afferent neurons and upregulates the release of VIP, which in
return, acting via VPAC2 leads to ILC2 and T cells to release
more IL-5 and, thereby, forming a type 2 inflammatory positive
feedback loop (182). It would be important to explore
unidentified neuron-ILC2 positive/negative regulatory loops.

The third area of interest will be the neural regulation of ILC1
and ILC3. Recent studies have shown that three ILCs are
functionally plastic. For instance, plastic iILC2 can coproduce
both type-2 cytokines and the ILC3-characteristic cytokine (IL-
17A) (215). Under certain conditions, c-Kit+ILC2 can convert to
ILC3-like cells (216). Besides, IL-12 and IL-18 converted ILC2
into ILC1 in patients with chronic obstructive pulmonary disease
(COPD) (217). Does neuromodulation affect the interconversion
of ILC2 and two other cell subtypes? If these plastic properties
can be elucidated, we can gain a comprehensive understanding of
the relationship between ILC as a cell type and the
nervous system.

Least but not last, these results have great therapeutic
implications for precision medicine. For example, NMUR1 is
selectively expressed by ILC2, while receptors for classical ILC2
activators, i.e. IL-25, IL-33, and TSLP, are widely expressed by
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various cell types (19, 37, 38). Meanwhile, researchers have
developed many methods to selectively stimulate and inhibit
neurons (218, 219). Combining these advances will allow us to
identify more effective clinical targets.
CONCLUSION

Emerging evidence from in vivo animal models, human studies,
and in vitro experiments indicates that neuropeptides and
neurotransmitters released from various neurons and non-
neuronal cells are critical in regulation of immune responses in
different tissues including the lung. This review article provides a
comprehensive overview of the effects of novel neural mediators
and pathways on ILC2 and underlying mechanisms as well as the
insights into the direct and indirect interactions between ILC2
and other immune cells, highlighting ILC2 as the bridge between
innate and adaptive immunity. However, the research in neuro-
immune area is, in general, in a premature status, and numerous
questions remain to be addressed. For examples, the most of
signaling pathways that mediate neural regulation of ILC2 are yet
Frontiers in Immunology | www.frontiersin.org 11
clear; and the mechanisms, by which ILC2 selectively respond to
neutral and non-neural signaling need to be elucidated as well. In
addition, translational and clinical investigations are required to
promote the application resulted from the studies in this area.
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