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ABSTRACT

We present the Stochastic Simulator Compiler (SSC), a tool for exact
stochastic simulations of well-mixed and spatially heterogeneous
systems. SSC is the first tool to allow a readable high-level
description with spatially heterogeneous simulation algorithms and
complex geometries; this permits large systems to be expressed
concisely. Meanwhile, direct native-code compilation allows SSC to
generate very fast simulations.
Availability: SSC currently runs on Linux and Mac OS X, and is freely
available at http://web.mit.edu/irc/ssc/.
Contact: mieszko@csail.mit.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 BACKGROUND
Cells interact with their environment via receptors that bind
to extracellular molecules; these events are then translated into
functions by biochemical signaling networks. Non-linearities arising
from the complex topology of such networks often make it difficult
to intuit qualitative behavior of signaling modules. Moreover, recent
imaging experiments have revealed that signaling components are
organized into spatial patterns that modulate signaling (Grakoui
et al., 1999; Lee et al., 2003). Finally, extrinsic and intrinsic
stochastic effects, which make each cell’s response unique, can
be important when small numbers of signaling molecules are
involved (Artyomov et al., 2007). As computational studies
are increasingly becoming necessary complements to genetic,
biochemical and imaging experiments in unraveling this non-
intuitive behavior of cell signaling networks, efficient and easy to
use tools that can carry out stochastic simulations of biochemical
networks, both in well-mixed and spatially inhomogeneous
approximations, have become key technologies.

Since the original stochastic simulation algorithm (Gillespie,
1977), basic computer science techniques have reduced the rate
at which the per-step computation time grows with the number of
possible reactions to logarithmic growth (Gibson and Bruck, 2000;
Li and Petzold, 2006; Wylie et al., 2006), or optimized performance
by noting that a few reactions account for most events (Cao et al.,
2004; McCollum et al., 2006); more recently, Slepoy et al. (2008)
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have reduced per-step computation to expected constant time via an
elegant composition–rejection algorithm. Similar techniques have
been applied to reduce spatially heterogeneous simulation time to
logarithmic (Elf and Ehrenberg, 2004). The combinatorial growth
of the instantiated reaction network size, another limiting factor for
complex systems, has been addressed either by generating species
and reactions on the fly (Faeder et al., 2005; Lok and Brent,
2005) during a Gillespie-based simulation, by representing each
molecule separately (Morton-Firth and Bray, 1998), or ingeniously
do away with explicit counts altogether by adjusting the sampling
distribution (Danos et al., 2007; Yang et al., 2008).

Efficient formulation of such simulations in a general
programming language like C or FORTRAN, however, is not a
trivial task: while simulating a few reactions is fast even with a
simple implementation, a system with thousands of reactions and
subvolumes demands more complex algorithms which are much
more tricky to code. The programming burden has been reduced
by libraries (e.g. Li et al., 2008) as well as by simulators for
well-mixed (e.g. Gillespie et al., 2006; Mauch, 2009) and spatially
inhomogeneous (e.g. Hattne et al., 2005; Meier-Schellersheim et al.,
2006) models. File formats like SBML (Hucka et al., 2008),
developed to express biochemical models, can be read by several
simulators.

The modeling task is further complicated by the explosion
in combinatorial complexity which arises when modeling post-
translational modification or reactions local to one molecule in a
complex (Hlavacek et al., 2006): in SBML (and, indeed, in most
simulators) all possible species and each combination of every
possible reacting complex must be written out as a separate reaction,
which renders expressing even modestly complex reaction networks
impractical. To mitigate these limitations, BioNetGen (Faeder et al.,
2009) and κ (Danos and Laneve, 2004) have proposed higher
level specifications where the reactants in each reaction are written
as patterns covering many possible species; such descriptions not
only naturally correspond to the intuitive concept of a biochemical
reaction, but are significantly smaller and therefore more readable
as well as much less error-prone.

The main contribution of the Stochastic Simulation Compiler
(SSC) that we present here lies in combining a higher level
specification required for modeling larger systems with the ability to
model spatially heterogeneous systems. It differs from BioNetGen
and κ because their syntax and expansion algorithms offer no
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support for spatially inhomogeneous containers, while SSC supports
multiple regions with arbitrarily complex shapes specified using
Constructive Solid Geometry (CSG); meanwhile, while MesoRD
allows such regions and geometries, it suffers from the combinatorial
complexity limitations described above. In addition, SSC produces
fast simulations (cf. Supplementary Material) by directly generating
machine code tailored to a specific architecture.

2 IMPLEMENTATION

2.1 Tool flow
The tool flow resembles a programming language compiler. The
user writes a high-level description of the reaction system (see
Supplementary Material for examples), using patterns to select
and change specific parts of compounds (similar to how a cell
biologist would describe a known or hypothesized cell signaling
network). Regions are specified using CSG, a technique that employs
simple operations (e.g. union, intersection, difference and scale) on
basic shapes (such as spheres, cubes, cylinders, etc.) to describe
arbitrarily complex geometries and widely used in solid modeling
and computer graphics (see, e.g. Requicha and Voelcker, 1977). Any
reaction can be restricted to a subset of regions, and diffusions
within and among the regions are written using the same high-
level pattern syntax as reactions. The compiler then expands the
model starting with initial species and reaction patterns, creating
the necessary instances with specific properties and connections as
well as specific reactions operating on each of those compounds
in each region; meanwhile, the regions are discretized into cubic
subvolumes. This intermediate representation is used to produce a
simulator executable, which, in turn, simulates the model signaling
pathway.

2.2 Reaction expansion
Most biologically relevant signaling reactions are conceptually
local, that is, they ‘see’ only a part of a larger molecule or complex
(say, a single phosphorylation site). Therefore, we write reactions
and diffusions locally, using pattern matching to recognize and
modify parts of complexes, and rely on the compiler to derive all
the possible cases in all regions. Similarly, only initially present
compounds are specified; the compiler generates the rest from the
initial set and the reactions.

Formally, the reactions and diffusion form a graph term-rewriting
system, which is fully evaluated to generate the simulator. Briefly,
each expansion step considers a rule in the system, finding all
combinations of substrates in the relevant region that match the
rule. The rule is then applied to each match, possibly resulting in
new compounds, and a compound-specific reaction is created for the
specific substrate combination. Any new compounds not excluded
by predefined limits (used to prevent infinite expansion) are added to
the region where the reaction took place and any regions reachable
by following the given diffusion patterns; the cycle then repeats until
no more new compounds have been created. (See Supplementary
Material for details of the expansion process).

2.3 Direct code generation
We obtain the efficiency of hand-optimized code by directly
generating assembly code from the fully expanded set of reachable
species and reactions. This allows us to avoid the interpretive

overhead of consulting dependency graphs to determine which copy
counts and propensities must be recomputed.

The generated code is also tailored for model complexity and
processor architecture. For most sizes, the compiler creates a
separate, straight-line segment of code for each possible reaction
in a region; each segment is parameterized only on the subvolume
(or, in the case of diffusion, two subvolumes), and directly updates
and propagates the affected propensities (see Section 2.4). This
avoids pipeline stalls and cache flushes caused by mispredicted
branches, and reduces the number of data memory reads and writes
(which are the performance bottleneck) to the absolute minimum.
(See Supplementary Material for a detailed description of the code
generation method).

2.4 Reaction–diffusion simulation algorithm
The simulation algorithm is similar to the logarithmic-time versions
of the direct stochastic simulation algorithm (Li and Petzold, 2006;
Wylie et al., 2006). The simulation-time representation details may
be found in the Supplementary Material; briefly, the reactions
in each subvolume (or on each boundary between subvolumes)
are arranged in an n-ary heap with the leaves corresponding
to individual reaction propensities and each node carrying the
combined propensity of the reactions underneath—the topmost node
for each subvolume is, then, the propensity of any reaction taking
place within. The subvolume and boundary reaction propensities
are, in turn, themselves arranged in a heap where each leaf is either
a subvolume or a boundary propensity; the topmost node is the
propensity of any reaction in the system taking place (and, hence,
the range from which the random number should be selected).

Simulation proceeds as follows: a random number r is selected
from range [0,R) where R is the propensity of any reaction taking
place; then the subvolume and reaction corresponding to r is selected
by n-ary search in the heap. Next, the reaction is ‘executed’, that is,
the copy numbers of the affected species are adjusted as the reaction
dictates. Finally, the propensity of each reaction whose substrate
copy counts were altered is recomputed, and the partial propensities
are propagated up the propensity heap until the new R is recomputed
and the cycle can be repeated.

Since the propensity heap in each subvolume (or boundary) has
height logarithmic in the number of reactions within, and the heap
above is logarithmic in the number of subvolumes and boundaries,
the total tree depth scales roughly logarithmically in the number of
reactions in the system. Both the reaction selection/search and copy
number/propensity update step, therefore, run in time logarithmic in
the number of reactions.

3 PERFORMANCE
We compared spatially homogeneous SSC against BioNetGen 2.0.46
(Faeder et al., 2009) (since, like SSC, it builds reaction networks
from pattern-matching rules), and against simulators built with the
StochKit library (Li et al., 2008); because of the complexity of
the larger models, we had SSC automatically generate the required
StochKit C++ configurations. To test real-world performance, we
selected two toy systems and two more realistic systems with
various reaction counts: a dimer decay model (Gillespie, 2001)
with four reactions, a simplified EGFR signaling model (Blinov
et al., 2006) with 64 reactions, a model for the earliest events in
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T-cell signaling (Wylie et al., 2006) with 1120 reactions, and an
enhanced version of the same with 2422 reactions. To test spatially
heterogeneous models, we compared with the latest development
revision of MesoRD (Hattne et al., 2005), SVN r559; we used
the T-cell signaling model above where single molecules (but not
compounds) were permitted to diffuse around a membrane interface,
which was divided into 100, 10 000, and 50 000 subvolumes.
All simulations produced the same results (modulo random seed
variation and precision loss during floating point arithmetic). To
focus on measuring only the simulation time, we disabled all output
except the final species counts, and repeated each experiment 5-fold
to account for initial random seed variation and possible effects of
other processes executing on the system.

We found that SSC consistently outperformed the faster of the two
spatially homogeneous simulators we tested by 2× to 6×, with the
advantage growing with the size of the model (see Supplementary
Fig. 3). For spatially heterogeneous simulation, we found that SSC
was ∼ 50× faster than MesoRD, although both scaled very well
with the number of subvolumes (see Supplementary Fig. 4).

4 CONCLUSIONS
We have described the SSC, a new tool for exact stochastic
simulations of biochemical reaction networks. SSC is, to our
knowledge, the first tool to combine a succinct high-level description
(which avoids combinatorial complexity explosion) with spatially
resolved simulation where species and reactions may be restricted
to specific regions of arbitrarily complex shapes, and unique in
employing direct native machine code generation to produce fast
simulators.
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