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ABSTRACT
Aims Atypical lymphocytes circulating in blood have 
been reported in COVID-19 patients. This study aims 
to (1) analyse if patients with reactive lymphocytes 
(COVID-19 RL) show clinical or biological characteristics 
related to outcome; (2) develop an automatic system to 
recognise them in an objective way and (3) study their 
immunophenotype.
Methods Clinical and laboratory findings in 36 
COVID-19 patients were compared between those 
showing COVID-19 RL in blood (18) and those without 
(18). Blood samples were analysed in Advia2120i and 
stained with May Grünwald- Giemsa. Digital images 
were acquired in CellaVisionDM96. Convolutional neural 
networks (CNNs) were used to accurately recognise 
COVID-19 RL. Immunophenotypic study was performed 
throughflow cytometry.
Results Neutrophils, D- dimer, procalcitonin, glomerular 
filtration rate and total protein values were higher in 
patients without COVID-19 RL (p<0.05) and four of 
these patients died. Haemoglobin and lymphocyte counts 
were higher (p<0.02) and no patients died in the group 
showing COVID-19 RL. COVID-19 RL showed a distinct 
deep blue cytoplasm with nucleus mostly in eccentric 
position. Through two sequential CNNs, they were 
automatically distinguished from normal lymphocytes 
and classical RL with sensitivity, specificity and 
overall accuracy values of 90.5%, 99.4% and 98.7%, 
respectively. Immunophenotypic analysis revealed 
COVID-19 RL are mostly activated effector memory CD4 
and CD8 T cells.
Conclusion We found that COVID-19 RL are related 
to a better evolution and prognosis. They can be 
detected by morphology in the smear review, being the 
computerised approach proposed useful to enhance 
a more objective recognition. Their presence suggests 
an abundant production of virus- specific T cells, thus 
explaining the better outcome of patients showing these 
cells circulating in blood.

INTRODUCTION
COVID-19 sustained by the SARS- CoV-2 has 
expanded in all continents.1 2 COVID-19 includes 
respiratory symptoms, which may be mild in most 
patients, although some of them may suffer from a 
serious acute respiratory distress syndrome that can 
lead to death. Laboratory medicine plays an essential 

role in its early detection, diagnosis and manage-
ment.3 Several biomarkers have been described to 
be related to severe COVID-19, such as increased 
values of C- reactive protein, procalcitonin, alkaline 
phosphatase (AP), lactate dehydrogenase (LDH), 
alanine aminotransferase (ALAT), bilirubin, blood 
urea nitrogen and creatinine and cardiac troponin.4

Among haematology laboratory parameters, low 
lymphocyte count is frequent, which is probably 
related to the deficient immune response to the 
virus.5 Nevertheless, some variability in lymph-
opoenia presentation has been associated with 
COVID-19,3–6 as well as leucocytosis and neutro-
philia,3 increased neutrophil/lymphocyte ratio 
(NLR),7 thrombocytopoenia,8 atypical coagulation 
parameters and high values of D- dimer and fibrin/
fibrinogen degradation products.9

Peripheral blood (PB) morphology review shows 
the presence of new atypical reactive lymphocytes 
(RL) circulating in blood4 10–13 in some SARS- CoV-
2- infected patients. In this paper, they are abbre-
viated as COVID-19 RL. It has been reported 
that these cells morphologically mimic RL of 
Epstein–Barr virus or cytomegalovirus infections.10 
However, COVID-19 RL show subtle morpholog-
ical differences, such as more basophilic cytoplasm 
and occasional presence of small cytoplasmic vacu-
oles.11–13 Morphological discrimination between 
COVID-19 RL and RL seen in other infections is 
a challenge. For the sake of clarity, these RL are 
referred as ‘classical’ in this paper.

PB smear review is based on visual inspection, 
which is time- consuming, requires well- trained 
personnel and is prone to subjectivity and intraob-
server variability.14 Image analysis and machine 
learning are technological tools increasingly used 
in medicine, particularly in haematopathology.15 
In a previous work, we successfully applied convo-
lutional neural networks (CNNs) to automatically 
classify blood cell images.16 Since CNNs are multi-
layered architectures able to extract complex and 
high- dimensional features from images,17 they 
might be highly sensitive and specific for COVID-19 
RL recognition.

The relationship of COVID-19 RL and the evolu-
tion and prognosis of the disease has not been inves-
tigated so far. Despite the large numbers of cases 
and deaths, information on the immunophenotype 
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of SARS- CoV-2- specific cells is scarce. The objective of this 
work is threefold: (1) analyse if patients in which COVID-19 
RL are detected show particular clinical or biological character-
istics related to the evolution and prognosis of the disease; (2) 
develop an automatic system to characterise and recognise these 
lymphoid cells in an objective way and (3) analyse COVID-19 
RL’s immunophenotype to investigate their role in patient’s 
outcome.

MATERIAL AND METHODS
Patients
A number of 36 COVID-19 patients were studied during their 
stay at Hospital Clinic of Barcelona. They were arranged in two 
groups: positive and negative. The positive group included 18 
patients (13 males and 5 females) showing COVID-19 RL in PB. 
The negative group had the remaining 18 patients (11 males and 
7 females) showed neither COVID-19 RL nor classical RL. Diag-
noses were confirmed by positive real- time reverse- transcription 
PCR.

Laboratory parameters and statistical analysis
Blood samples were collected in EDTA and analysed in the 
Advia2120i. PB smears were stained with May Grünwald- 
Giemsa and digital cell images (363×360 pixels) were acquired 
by the CellaVisionDM96 (CellaVision, Lund, Sweden). All 
clinical and laboratory findings were compared between both 
groups of patients. Time (in days) between onset of symptoms 
and collection of samples was practically the same for both 
groups. A single sample was obtained from each patient.

Full blood cell parameters and counts were evaluated. Abso-
lute numbers of NLR were calculated. Other tests included 

prothrombin time, D- dimer and biochemical markers, such as 
C- reactive protein, procalcitonin, AP, LDH, ALAT, aspartate 
aminotransferase, gamma glutamyl transpeptidase, bilirubin and 
ferritin. RL in COVID-19 patients were identified by patholo-
gists according to their characteristic morphology. Statistical 
analyses were conducted using Shapiro- Wilk, Student’s t para-
metric test and Wilcoxon non- parametric tests with R software.18 
P values<0.05 were considered statistically significant.

Development of an automatic classification system
CNNs have been successfully applied in the automatic classifi-
cation of normal and abnormal leukocytes in PB.17 19 Based on 
our previous works, we proposed the sequential classification 
scheme with two CNN models working in series, as shown in 
figure 1. The first CNN was trained to distinguish between 
normal and RL, which included both COVID-19 RL and clas-
sical RL in a single category. The second CNN was trained to 
discern between both classes of RL.

We used an initial set of 7555 images. A number of 187 
COVID-19 RL images were collected from the 18 patients of 
the positive group. Images of normal lymphocytes (4928) and 
classical RL (2340) were collected from healthy controls and 
patients with other infections, respectively, which were used by 
the research group in previous works.20 21 The overall set was 
split into two subsets: 80% was randomly selected for training 
the models, while the remaining 20% was saved for their assess-
ment (1491 images). It is common to use higher proportions 
of images for training than for testing, typically between 70% 
and 80% in most practical applications. The reason is to use 
more information to adjust models and keep enough informa-
tion for evaluating the trained models. In this work, we selected 

Figure 1 Block diagram that illustrates the sequential classification of normal lymphocyte and reactive lymphocyte (RL) images in non- COVID-19 
and COVID-19 infection based on morphology. Using the first CNN model, normal lymphocytes are excluded from the RL group. In the following step, 
the second CNN discerns between COVID-19 RL and non- COVID-19 RL. CNN, convolutional neuralnetworks.
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80%–20% for training and test subsets since, after some prelimi-
nary trials, we obtained the best performance measures.

A CNN has a modular structure that can be explained in two 
parts. The first part combines the following elements: (1) the 
input layer, which reads the pixels contained in the images; (2) 
a number of convolutional layers able to detect specific patterns 
and extract quantitative features of the images (feature maps); 
(3) pooling layers, which reduce the size of feature maps, while 
preserving relevant information and eliminating irrelevant 
details. Through subsequent passing of the input image along 
the different layers, the final result is a set of relevant quantita-
tive features that represent the image. The second part is formed 
by a number of fully connected layers as those used in a regular 
neural network. This part is trained to learn how to combine the 
obtained features to perform the final classification of the input 
image. This is done by assigning a probability to each possible 
class and predict the class with the highest score.

In general, training of CNN models requires a balanced avail-
ability of images from all classes. To cope with the unbalanced 
proportions of COVID-19 RL images, data augmentation was 
performed. It consists on randomly applying transformations 
to the original images, such as vertical and horizontal flips and 
rotations.22 With this up- sampling, we finally arranged a data set 
with 5000 images of normal lymphocytes and 5000 of RL, from 
which 2500 images were non- COVID-19 RL and 2500 were 
COVID-19 RL.

Training is an iterative process, where in each iteration all the 
images of the training set are processed forward by the network. 
The classification outputs are compared with the ground truth 
assigned by the clinical pathologists and used to calculate a loss 

function to quantify the error. Cross- entropy was the loss func-
tion used in this work. In a second step, the error is propagated 
backwards to update the parameters (weights) involved in the 
network using the gradient descent algorithm to minimise the 
loss function. Using the updated weights, in the end of each iter-
ation, the images are passed through the network. The objective 
is to check the performance of the model using the loss func-
tion and also the accuracy obtained in the classification of the 
validation images (proportion of images correctly classified). In 
this work, we used the one cycle learning rate policy to obtain 
optimal classification results with fewer iterations. Following the 
same learning scheme, we obtained an accuracy of 99% for each 
CNN classifier.

We analysed several CNN architectures already pretrained 
with the ImageNet database.23–25 VGG16 architecture was 
selected for both CNN (see figure 1) according to the following 
criteria: (1) they showed the best accuracy, which is the propor-
tion of images correctly classified; and (2) this architecture is 
simpler compared with the other CNN models and had the best 
classification speed, which is an advantage for a potential real- 
time implementation.

After the development stage, the system was assessed with the 
testing data set (see Results section).

Immunophenotypic study
We selected the population of large lymphocytes to perform 
the immunophenotypic study, since COVID-19 RL cells are 
morphologically large and complex lymphocytes. For the char-
acterisation of these large lymphocytes, we used flow cytometry 

Table 1 Clinical characteristics, therapies and the number of patients who needed intensive care unit and mechanical ventilation in patients with 
and without COVID-19 atypical lymphocytes (COVID-19 LY) circulating in peripheral blood (n=36)

Patients with COVID-19 LY 
n=18

Patients without COVID-19 LY
n=18

Age (years) 53 (30–88) 74 (46–90)

Sex Men 13 (72%) 11 (61%)

Women 5 (28%) 7 (39%)

Symptoms Fever 18 (100%) 16 (89%)

Cough 13 (72%) 14 (78%)

Dyspnoea 10 (56%) 9 (50%)

Nausea 0 (0%) 2 (11%)

Vomiting 0 (0%) 2 (11%)

Diarrhoea 1 (6%) 1 (6%)

Myalgia 3 (17%) 2 (11%)

Dysgeusia 4 (22%) 0 (0%)

Anosmia 4 (22%) 0 (0%)

Death 0 (0%) 4 (22%)

Drugs Antibiotic therapy 17 (94%) 18 (100%)

Antiviral therapy 16 (89%) 16 (89%)

Antiparasitic therapy 17 (94%) 17 (94%)

Antifungal therapy 0 (0%) 1 (6%)

Immunosuppression Tocilizumab 3 (17%) 7 (39%)

Tocilizumab+Anakinra 2 (11%) 2 (11%)

Tocilizumab+Dexamethasone 1 (5%)

Siltuximab 1 (5%)

Anakinra 1 (5%)

Intensive care unit Yes 1 (6%) 9 (50%)

No 17 (94%) 9 (50%)

Mechanical ventilation Yes 1 (6%) 8 (44%)

No 17 (94%) 10 (56%)
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using PB samples from 13 patients of the positive group, 4 of the 
negative group and 5 samples of healthy controls. After compen-
sation, data acquisition was performed with a BD FACSCanto II 
flow cytometer. For analysis, BD FACSDiva (Becton Dickinson, 
Franklin Lakes, NJ) software was used. A minimum of 100 000 
events or 30 000 T cells were acquired.

RESULTS
Clinical and biological data of patients
Median values and SD of age (years) were 53±16 in patients 
with COVID-19 RL (positive group), and 74±13 in patients of 
the negative group, p<0.00009. Most frequent initial clinical 

symptoms included fever (94%), cough (75%), dyspnoea (53%), 
myalgia (14%), anosmia (11%), dysgeusia (11%), diarrhoea (6%), 
nausea and vomiting (6%). Myalgia, anosmia and dysgeusia were 
present exclusively in the negative group (table 1).

Positive patients showed lower absolute neutrophil counts 
(μ=2.9×109/L) and higher absolute lymphocyte counts 
(μ=1.6×109/L) than negative patients (μ=8.1×109/L and 
μ=0.8×109/L), p=0.04 and p=0.01, respectively. NLR showed 
significant increased values in negative patients (μ=19.2) as 
compared with positive ones (μ=2.2), p=0.0002 (table 2). Large 
unstained cells greater than 5% or atypical lymphocyte flags on 
the Advia2120i were found in the positive group.

Table 2 Haematological and coagulation and biochemistry parameters in patients with and without COVID-19 reactive lymphocytes (COVID-19 RL)

Parameter

Patients with COVID-19 RL Patients without COVID-19 RL

PMean SD Mean SD

Haematological RBC (1012/L) 4.54 0.73 3.27 0.82 <0.001*

Haemoglobin (g/L) 136 22 101 25 <0.001*

Haematocrit (L/L) 0.405 0.060 0.318 0.080 0.001*

MCV (fL) 89.6 4.9 97.2 5.4 <0.001*

MCH (pg) 30.1 1.5 31.0 1.4 0.058

MCHC (g/L) 335.7 8.1 319.4 9.2 <0.001*

Platelets (109/L) 268 148 202 121 0.090

MPV (fL) 8.3 1.0 9.9 2.1 0.007*

MPC (gL) 25.0 2.3 23.9 2.0 0.149

MPM (pg) 2.75 3.36 2.09 0.29 0.326

WBC (109/L) 5.3 4.4 9.8 8.8 0.235

Neutrophils (109/L) 2.9 3.4 8.1 7.9 0.044*

Lymphocytes (109/L) 1.6 1.5 0.8 0.7 0.012*

NLR 2.2 1.6 19.5 32.2 <0.001*

Monocytes (109/L) 0.39 0.25 0.54 0.53 0.620

Eosinophils (109/L) 0.20 0.43 0.07 0.10 0.127

Basophils (109/L) 0.02 0.04 0.02 0.05 0.961

LUC (109/L) 0.16 0.18 0.18 0.24 0.702

PMN (%) 55.5 13.2 76.5 13.1 <0.001*

MN (%) 43.4 13.1 22.7 13.0 <0.001*

PMN/MN ratio 1.5 0.8 4.7 2.8 <0.001*

RL (109/L) 0.21 0.36 0.00 0.00 <0.001*

Coagulation and 
biochemistry

PT (s) 12.8 1.3 14.2 3.3 0.255

D- dimer (μg/L) 856 572 2900 1744 <0.001*

CRP (mg/L) 24 25 45 50 0.242

ASAT (U/L) 58 51 44 36 0.349

ALAT (U/L) 77 71 46 34 0.272

GGT (U/L) 115 209 111 97 0.221

ALP (U/L) 90 81 108 53 0.021*

Total bilirubin (mmol/L) 0.011 0.006 0.016 0.023 1.000

Direct bilirubin (mmol/L) 0.004 0.003 0.009 0.017 0.322

LDH (U/L) 277 97 383 172 0.076

Ferritin (nmol/L) 2.4 1.5 2.3 2.7 0.346

Procalcitonin (μg/L) 0.06 0.03 0.58 1.13 0.023*

BUN (mmol/L) 6.9 2.7 18.7 11 0.032*

Creatinine (mmol/L) 0.08 0.02 0.15 0.11 0.067

GFR (mL/min/1.73 m2) 85.11 12.4 50.92 31.69 0.001*

Total protein (g/L) 662 71 541 65 <0.001*

Albumin (g/L) 390 48 315 39 <0.001*

*Significant differences.
ALAT, alanine aminotransferase; ALP, alkaline phosphatase; ASAT, aspartate aminotransferase; BUN, blood urea nitrogen; CRP, C- reactive protein; GFR, glomerular filtration 
rate; GGT, gamma- glutamyl transferase; LDH, lactate dehydrogenase; LUC, large unstained cells; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin 
concentration; MCV, mean corpuscular volume; MN, mononuclear leucocytes; MPC, mean platelet component; MPM, mean platelet mass; MPV, mean platelet volume; NLR, 
neutrophil/lymphocyte ratio; PMN, polymorphonuclear leucocytes; PT, prothrombin time; RBC, red blood cells; WBC, white blood cells.
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We found higher values of haemoglobin and platelet count 
in positive patients (136±22 g/L and 268±148×109/L) than 
in negative patients (101±25 g/L and 202±121×109/L), 
p=0.00007 and (p=0.09) respectively (table 2). Four patients 
showed platelet counts lower than 100×109/L in the negative 
group and none in the positive one.

D- dimer values were higher in the negative group 
(2900±1744 ng/mL) than in the positive one (856±572), 
p=0.0004. In addition, we found significantly increased values of 
procalcitonin in the negative group (0.58±1.13 ng/mL, normal 
values:<0.50 ng/mL) than in the positive group (0.06±0.03 ng/
mL), p=0.02. Significant abnormal values of blood urea 
nitrogen, total protein, albumin and glomerular filtration rate 
were found in the negative group (see table 2).

There were no differences between both groups in the antibi-
otic, antiviral or hydroxychloroquine treatments. Nevertheless, 
65% of negative patients received immunosuppression (dexa-
methasone in one patient, as it is shown in table 1), while only 
28% of positive patients received it.

Comparing both groups, we found significant differences in: 
(1) number of days hospitalised, which was longer for nega-
tive patients (28±13 days) than for the positive ones (13±8) 
(p=0.0005); (2) period between the onset of symptoms and 
discharge, which was longer for negative patients (35±12 days) 
than for positive ones (21±9) (p=0.0007); (3) patients that 
required admission to the intensive care unit (ICU), which were 
50% in the negative group and 6% in the positive group and 
(4) mechanical ventilation was necessary in 44% of negative 
patients, while in only one positive patient (6%). Finally, four 
negative patients (22%) died and none from the positive group.

Morphological description of atypical lymphocytes in 
COVID-19
In the positive group, the atypical lymphocyte count reached 
values between 1% and 15% in PB (μ=0.21×109/L). Figure 2 
shows COVID-19 RL images in PB. They showed a large- medium 

size, moderate nucleus- cytoplasmic ratio, regular or kidney- 
shaped nucleus with a spongy chromatin pattern, usually with 
one nucleolus, and a distinct deep blue cytoplasm with occa-
sional presence of small vacuoles. In some of them, nucleus 
showed an eccentric position.

Assessment of the automatic classification system
The 1491 images of the testing set were analysed with the clas-
sification system (see figure 1). Results are summarised in the 
confusion matrix shown in figure 3. Rows are the true values and 
columns are the predicted ones. The principal diagonal contains 
the true positive rates (TPRs) for each class. The overall accuracy 
is the percentage of images correctly classified over the 1491 
images, which was 98.7%. Since this is a multiclass classification, 
we considered a ‘one versus all’ approach, where the perfor-
mance metrics were calculated for each class. Focussing only on 
COVID-19 RL as the positive class, we calculated the sensitivity 
or TPR, specificity or true negative rate (TNR) and precision or 
positive predictive value (PPV) as follows:

 Sensitivity
(
TPR

)
= TP

TP+FN =
38
38+4 = 0.905  

 Specificity
(
TNR

)
= TN

TN+FP =
1441
1441+8 = 0.994  

 Precision
(
PPV

)
= TP

TP+FP =
38
38+8 = 0.826  

Immunophenotypic analysis of the large lymphocyte 
population
The large lymphocyte population studied by high forward 
scatter/side scatter contained less B cells (μ=4.9%) than NK 
(μ=18.9%) and T (μ=71.2%) cells (see table 3). T cells showed 
a CD4+ predominance (CD4/CD8 ratio >1).

Once we found that these large lymphocytes were mostly 
T cells, CD45RA, CCR7 and HLA−DR+ cell markers were 
employed to further analyse the following T cell subpopula-
tions: naïve (CD45RA+CCR7+), central memory (CD45RA− 
CCR7+), effector memory (CD45RA−CCR7−), effector/
TEMRA (Effector memory T cells re- expressing CD45RA) 
(CD45RA+CCR7−). The performed analysis revealed a 
significant enrichment of CD4 and CD8 effector memory 
(CD45RA−CCR7−) T cells in the positive group in comparison 
to four negative patients (p<0.05). In addition, large lympho-
cytes in positive patients were particularly rich in activated T 
cells (HLA−DR+) when compared with healthy controls (see 

Figure 3 Confusion matrix of the automatic recognition results of 
the lymphoid cells of the testing set. Absolute image numbers and 
percentages (in brackets). COVID-19 RL, COVID-19 reactive lymphocytes, 
N, normal lymphocytes; non- COVID-19 RL, non- COVID-19 reactive 
lymphocytes.

Figure 2 Images obtained in the CellaVisionDM96 showing atypical 
lymphocytes circulating in peripheral blood in patients with COVID-19 
infection. May Grünwald- Giemsa staining (x1000).
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figure 4). The remaining subpopulations did not show significant 
differences between both groups of patients.

DISCUSSION
The discussion section is organised in the three lines along which 
our study has progressed: (1) clinical and biological characteris-
tics related to the evolution and prognosis, (2) morphological 
classification and (3) immunophenotype findings.

Clinical and biological characteristics related to evolution and 
prognosis
Clinical symptomatology in COVID-19 is variable. Indeed, 
patients may be asymptomatic or show a severe acute respiratory 
syndrome. Clinical, laboratory data and treatments have been 
described in recent studies,3 5 26 in which certain haematological 
and biochemical parameters have been related to the severity of 
the disease.27 Nevertheless, the possible role of the presence of 
RL in PB in the evolution and prognosis of the COVID-19 infec-
tion has not been reported previously. In this work, we observed 
that those patients with RL circulating in blood showed signifi-
cant differences in some clinical symptoms, biological markers, 
hospitalisation time and recovery, with respect to those who did 
not present them.

Lymphopoenia is common in COVID-195 and it has been 
related to a defective immune response to the virus.26 Neverthe-
less, our study revealed that patients with atypical lymphocytes 
had significantly higher lymphocyte numbers and, in conse-
quence, lower NLR than patients without them. Increase in NLR 
values in patients with severe disease has been reported in the 
literature.7 28 Therefore, our findings support a better outcome 
related to the presence of RL in COVID-19 patients, which 
might be associated with a better regulation of the immune 
response. Moreover, thrombocytopoenia has been considered 
an important indicator of severe disease in this infection.8 It is 
important to mention that low platelet counts were found in 
our work exclusively in patients in which RL in blood were not 
observed.

Most of severe cases previously published showed elevated 
levels of infection- related biomarkers and inflammatory cyto-
kines.28 Our results show that indicators of disease severity, such 
as D- dimer and procalcitonin,3 reached significant high values in 
those patients in which RL were absent in PB. High number of 
these patients showed critical illness and required immunosup-
pression drugs, as it was shown in table 1. In addition, consid-
ering the group without RL in blood, the number of days in the 
hospital was significantly longer, as well as the period between 
onset of symptoms and discharge. Moreover, the number of 
patients who required mechanical ventilation or died because 
of severe acute respiratory syndrome were also higher in this 
group.

The results of this study support that patients with the pres-
ence of RL in blood have a more effective immune response 
against the virus infection, with a better evolution and prognosis. 
Considering these findings, the presence of atypical lymphocytes 
in PB smear review might be helpful in the early screening of 
critical illness.

Morphologic detection and classification
In recent years, approaches have been proposed for the auto-
matic recognition of different blood cells by combining image 

Table 3 Percentages of B, NK and T cells in the subset of large 
lymphocytes obtained throughflow cytometry (high FSC/SSC)

Large lymphocytes
Mean (range) (%)

B cells (CD19+) 4.9 (1.1–15.2)

NK cells (CD16/56+) 18.9 (8.9–31.8)

T cells (CD3+) 71.2 (40.4–88.1)

CD4/CD8 ratio 1.6 (0.1–5.3)

It is also shown the CD4/CD8 ratio to see the predominance of CD4 or CD8 in these 
patients.
FSC/SSC, forward scatter/side scatter.

Figure 4 Immunophenotyping analysis of COVID-19 reactive lymphocytes (RL) showing the tendency of (A) effector memory and (B) activated 
(HLA−DR+) T cells in graphs. Mean and range values (in percentage) for each subpopulation are shown in each respective table.
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analysis and artificial intelligence within a computational haema-
topathology framework.29 Since morphological review requires 
high skills and may be prone to subjectivity, computerised 
methods are designed to add objectivity through quantitative 
features. Examples are the classification of abnormal lympho-
cytes and blasts associated with lymphomas and leukaemia, 
respectively.21 30

Two main difficulties have been faced in this work to develop 
an automatic image classifier using CNNs: (1) the similarity 
between COVID-19 RL and RL detected in other infec-
tions;4 10–13 and (2) the availability of a reduced number of 
images of COVID-19 RL. We believe that the sequential struc-
ture of the proposed classification scheme has been successful to 
cope with this problem. The first CNN model was designed for 
a first discrimination of normal lymphocytes, while the second 
model was specialised in detecting COVID-19 RL, reducing the 
system to a couple of binary classifiers showing high accura-
cies. To the best of the authors’ knowledge, this is the first time 
that this strategy is used to classify these new lymphocytes in 
an objective way. The system is not computationally complex 
and could be implemented as a rapid diagnostic tool on a simple 
computer alongside the pathologists. Sensitivity and specificity, 
considering COVID-19 RL as the positive class, reached very 
high values (90.5% and 99.4%, respectively).

In this work, the scarcity of COVID-19 RL images was 
compensated using image augmentation. Applicability and 
validation of data augmentation techniques in medical image 
classification problems have been reported,22 in particular, in 
histopathological images. We believe that, although 90.5% sensi-
tivity is satisfactory, this score may be improved when using a 
larger set of atypical lymphocytes from more patients.

Immunophenotype findings
In a first insight, immunophenotype results in our study show 
that COVID-19 RL in PB are mostly T cells enriched in acti-
vated effector memory CD4 and CD8 T cells. In a further 
insight, our results support that these COVID-19 RL are acti-
vated effector memory T cells (CD3+CCR7−CD45RA−T-
CRαβ+HLA−DR+). In addition, integrating our results with 
a previous work,31 we propose that COVID-19 RL are in fact 
SARS- CoV-2- specific T cells.

Previous publications showed that the presence of SARS- 
CoV-2- specific CD4 and CD8 T cells is associated with less 
severe disease.32 In accordance with this, our work has shown 
that patients showing COVID-19 RL have a clearly better clinic 
outcome. Morphological assessment of the smear is important 
in these patients since the visualisation of the presence of these 
atypical lymphocytes may be an indicator of the production of 
abundant virus- specific T cells.

CONCLUSIONS
In summary, this paper has three main contributions:
1. We found that RL circulating in blood in COVID-19 patients 

are related to a better evolution and prognosis.
2. We demonstrated that these atypical reactive lymphoid cells 

can be detected by morphology in the smear review, being 
the computerised approaches proposed herein useful to en-
hance a more objective recognition.

3. We found that the presence of RL in COVID-19 patients sug-
gests an abundant production of virus- specific T cells, thus 
explaining the better outcome of patients showing these cells 
circulating in blood.
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