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Rice is a major staple food across the world in which wide variations

in nutrient composition are reported. Rice improvement programs need

germplasm accessions with extreme values for any nutritional trait. Near

infrared reflectance spectroscopy (NIRS) uses electromagnetic radiations in

the NIR region to rapidly measure the biochemical composition of food and

agricultural products. NIRS prediction models provide a rapid assessment tool

but their applicability is limited by the sample diversity, used for developing

them. NIRS spectral variability was used to select a diverse sample set of

180 accessions, and reference data were generated using association of

analytical chemists and standard methods. Different spectral pre-processing

(up to fourth-order derivatization), scatter corrections (SNV-DT, MSC), and

regression methods (partial least square, modified partial least square, and

principle component regression) were employed for each trait. Best-fit

models for total protein, starch, amylose, dietary fiber, and oil content were

selected based on high RSQ, RPD with low SEP(C) in external validation.

All the prediction models had ratio of prediction to deviation (RPD) > 2

amongst which the best models were obtained for dietary fiber and protein

with R2 = 0.945 and 0.917, SEP(C) = 0.069 and 0.329, and RPD = 3.62 and 3.46.

A paired sample t-test at a 95% confidence interval was performed to ensure

that the difference in predicted and laboratory values was non-significant.

KEYWORDS

NIRS assisted stratified sampling, normal distribution, derivatives and gaps,
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Introduction

Rice (Oryza sativa) is the major staple food for nearly 50%
of population of the world, primarily in Asia and Africa, where
it is highly cultivated and consumed. Particularly, south-eastern
Asian countries have a heavy dependence on rice, while trends
in Africa also reflect a continuous increase in rice consumption.
In 2019, globally, 755,473,800 tonnes of rice were produced of
which nearly 90% (677,276,789 tonnes) were produced in Asia,
where major producers from China (211,405,211 tonnes) and
India (177,645,000 tonnes) together contributed to nearly 50%
of world rice production (1). In India, it is grown in more than
one-fifth of the total gross cropped area (43,388,000 hectares)
and contributes to 689 kcal/capita per day of food supply.

Rice is a significant contributor of food and nutrient to
a major population of the world and is therefore used in the
preparations of different culinary with wider applications in
food industry than in any other grain. The massive consumption
of rice as a major staple food has shown a strong association
with high incidences of diabetes, protein–energy malnutrition,
and deficiencies for iron, iodine, and vitamin A (2). Out of
10 countries having the largest diabetic population, rice is a
major staple food in six of them (3). Amylose, fat, and fiber
contents influence the glycemic response that makes it essential
to identify rice with high protein, fat, and dietary fiber with
different levels of amylose content (AC;4). Enrichment of rice
for protein and limiting glycemic index would have a significant
impact on major health challenges of rice-eating population.

World over efforts are being made to improve the quality
of major staple foods, as that can have a major impact on
improving the nutritional status of vulnerable people, who draw
major calorie needs from them. Healthy rice is suggested to have
an increased proportion of dietary fiber, amylose, phospholipids,
and protein (5). Diversity in nutrient composition in rice
germplasm collections can play an important role in selecting
nutri-dense varieties with utility for different food formulations.
However, global germplasm collections for rice are huge
where International Rice Research Institute alone maintains
more than 132,000 accessions. Thus, conventional methods
of estimation for different nutrients are not appropriate for
evaluating them as they not only require very high input cost for
laboratory instrumentation, reagents and chemicals, technically
skilled analyst, and high consumption of power but are also
highly time-consuming.

Near infrared reflectance spectroscopy (NIRS) is a widely
used technique for the non-destructive, fast, and robust analysis

Abbreviations: AOAC, association of analytical chemists; SNV-DT,
standard normal variate and detrend; MSC, multiplicative scatter
correction; PLS, partial least square; PCR, principle component
regression; MPLS, modified partial least square; RSQ, coefficient of
determination; RPD, ratio of prediction to deviation; SEP(C), standard
error of prediction.

of various biomolecules through prediction modeling (such
as protein, fat, starch, dietary fiber, fatty acids, amino acids,
glucosides, carotenoids, and cyanides) in different food matrices
such as meat, fruits, vegetables, grains, and flours (6). Several
NIRS-based prediction models have been reported in rice for
protein content (PC), AC, fat content, flavonoids, total soluble
phenols, antioxidants, and dietary fiber (7–13). These models
work well for commercial varieties and market samples but
are not suitable for screening germplasm collections where the
range of variability is very high. Further, germplasm accessions
with extreme value act as a gene source for any trait which
is vital for crop improvement programs. National gene bank
at ICAR-NBPGR has a total of 106,557 (as per 25 June 2022)
rice accessions and thus robust prediction models bearing
applicability over extreme ranges are required for screening a
large germplasm collection of rice.

Models developed on normally distributed data get more
learning from middle-range values and fail in performance
when tested with extreme value samples. Hence, it is important
to follow a sample selection method to achieve uniform
distribution frequency in the entire range of variability for each
trait (14). Sample selection based on variations in NIR spectral
data by the use of statistical methods like Hierarchical cluster
analysis (HCA) enables the grouping of similar accessions
(15). Selection of samples from cluster/sub-cluster centers
and extreme boundaries provide a diverse set with increased
frequency for extreme value samples.

Spectral pre-processing is often employed for removing
light scattering effects using techniques such as derivatization
(feature extraction), standard normal variate and detrend (SNV-
DT), multiplicative scatter correction (MSC), and weighted
and inverse MSC (16). Spectral derivatization at multiple
levels enhances weak regions of spectra and decodes hidden
information (17). Prediction model applicability to get near
accurate and precise values also depends on the selection
of responsive regions by binning (gap intervals) and noise
reduction/smoothening by taking moving average (18).

Processed and standardized NIR spectra contain multiple
variables in the form of reflectance that is regressed with
targeted traits. Multivariate regression techniques such as partial
least square (PLS), principal component regression (PCR), and
multiple linear regression are used to generate robust and
effective models. Modified PLS (MPLS) is commonly used in
NIR modeling and is considered stable and less prone to over
fitting due to the influence of intragroup variations (19).

In this study, we have tried to address the limitations posed
by normal distribution through NIR spectral-based sample
selection for reference analysis and used a combination of
pre-processing (derivatives, gap, and smoothening), scatter
correction methods, and multivariate regression techniques
with the objectives of developing robust prediction models for
estimating total protein, starch, amylose, dietary fiber, and oil.
Based on hierarchical clustering/sub-clustering of NIR spectral
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data, our strategy of selecting samples helped in achieving a
highly diverse calibration set, and the developed models also
performed well for extreme values. These models have the
applicability for multiple sectors that include gene banks, food
and seed industry, and plant breeders working on improving the
nutritional value of rice varieties.

Materials and methods

Sample preparation

Almost 500 accessions of rice landraces were collected from
different states of India representing North Eastern Himalaya,
Eastern Himalaya, Northern plains, Central India, and Southern
India to accommodate variability in rice landraces due to
evolution in specific niche areas. All paddy samples were oven
dried at 60◦C overnight to aid de-hulling using laboratory
rice mill model JGMJ8098, where the husk and dirt were
separated by an in-built aspirator. The obtained brown rice was
homogenized and sieved through a 1-mm sieve in Foss Cyclotec
mill to obtain the flour of each sample for further analysis.

Sample selection for near infrared
reflectance spectroscopy spectra

We have used a novel approach to selecting representative
samples based on stratified purposive sampling where the
variation in NIR spectral data were based on clustering similar
types of accessions. For this, spectral data of 500 samples
were normalized using the standard spectra processing method
of MSC. Normalized spectra were subjected to hierarchical
clustering by Ward’s method and using squared Euclidean
distance. Main clusters were separated and further sub-
clustered using the same method. Samples from cluster/sub-
cluster center and extreme boundary were taken to form a
representative set. All accessions were taken where cluster/sub-
cluster had up to four members. A set of 180 accessions was
selected for generating reference composition data with wet
chemistry analysis.

Near infrared reflectance spectroscopy
spectra acquisition

Five gram of intact flour was scanned on FOSS NIRS 6500
spectrometer equipped with Win ISI Project Manager Software
version 1.50 to obtain reflectance spectra. The reference cell
(white mica) was scanned before each sample scan to ensure
accuracy. Ground sample was loaded in the ring cup with
an internal diameter of 3.8 cm and pressed slightly to ensure

uniform packing. Each sample was scanned 32 times at 400–
2,490 nm at 2 nm intervals, and an average spectrum was
recorded for further analysis. The reflectance spectra were
expressed as Log (1/R), where R is the respective reflectance.
Post scanning the moisture content of samples was estimated
to be 9.5–11.9% by AOAC 2005 method 934.01 (20).

Generation of reference data for near
infrared reflectance spectroscopy
prediction modeling

The total nitrogen percent (%N) was estimated using
Foss Tecator 2300 Kjeltec Nitrogen Auto-Analyser, and it was
converted into protein percent by %N∗5.95 (AOAC 978.02;21).
Total dietary fiber (TDF) and total starch of brown rice were
estimated using Megazyme Kit K-TDFR and K-TSTA as per
AOAC 985.29 and AOAC 996.11, respectively, (22). The AC
was estimated iodometrically using pure potato amylose for
standard curve development (23). The total oil content was
estimated in completely moisture-free, dehulled grain using
pulsed NMR spectroscopy which is based on the relaxation
of protons when kept in an external magnetic field. The
instrument Newport Analyzer Oxford 4000 and the standard
operating protocol mentioned in the United States Department
of Agriculture NMR Handbook were used (24).

Quality control

All the estimations were carried out in duplicates to ensure
the reproducibility of the results. Suitable standards and reagent
blanks were used to ensure accuracy where ASFRM-Rice-2 from
PT-8 obtained from INMU, Thailand, was used for method
validation and check recovery of protein and TDF, while Total
starch control kit (K-TSCK) flours viz. wheat starch, high
amylose maize starch were used for method validation of starch.
Rice reference materials (BCR-465, 466, and 467) obtained
from Sigma-Aldrich were tested for method standardization and
validation of amylose estimation. The pulsed NMR-based total
oil estimation method is validated using ISO10565:1998 and
ISO10632:2000 standard for oilseed and their defatted residues.
The instrument was calibrated thrice with reference rice bran oil
before the estimation to ensure accuracy of the instrument (25).

Method for obtaining calibration and
validation sets

A unique methodology to ensure uniform distribution of
diversity in calibration and validation set was applied. The data
of wet chemistry analysis of 180 brown rice accessions were
arranged in ascending order for each trait and were divided
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in the ratio of 2:1 for developing calibration and validation
sets, respectively, where every third sample was taken out for
preparing the validation set. Thus, two-thirds samples (120)
constituted the calibration (training) set, and one-third samples
(60) formed the validation (test) set for each trait. This assured
that both the sets had equal variability in terms of biochemical
parameters which lead to the prevention of bias in data subsets.

Calibration and validation of near
infrared reflectance spectroscopy
prediction models

Calibration equations were developed on Win ISI Project
Manager Software version 1.50 on the Global Equations
program using full spectra. The upper limit for the principal
components (PCs) was set at 5, and the components required
for the development of the equations were automatically
calculated by the software. Multivariate analysis was performed
by regressing spectral data with laboratory values. Equations
were developed by testing PLS, MPLS, and PCR regression
methods coupled with SNV-DT and MSC scatter corrections.

The models were developed by performing various
mathematical treatments such as “2,4,4,1” “2,6,6,1” “2,8,8,1”
“3,4,4,1” “3,6,6,1” “3,8,8,1” “3,10,8,1” “3,12,8,1” “3,14,8,1”
“3,16,8,1” “3,16,8,2” “4,6,6,1” “4,8,6,1” “4,8,8,1” “4,12,8,1”
“4,16,8,1,” and “4,16,8,2,” where the first digit is the derivative,
second is gap, and third and fourth are first and second
smoothening, respectively, (26). Coefficient of determination
(RSQ), SEC, SD, and SECV were calculated for developing
calibration equations. The generated equations were validated
over an external sample set, and reference and predicted values
were compared under the Monitor Results program of the WIN
ISI software. The best-fit equation was considered qualified as
prediction model on the basis of external RSQ, RPD, SEP, bias,
and slope values.

Statistical analysis

The reference laboratory and predicted values from
validation set were regressed separately to cross-check the RSQ
values and were presented in scatter plots using Veusz plotting
package software. Further, a paired sample t-test using SPSS
Version 17 was performed for predicted and laboratory values
to ensure that there is no significant difference between their
means at a 95% confidence interval.

Apart from RSQ, the accuracy and applicability of
prediction models were ascertained by ensuring low SEP and
high RPD values (27):

SEP =

√∑n
i=1[x1 − x2 − b]2

n
(1)

RPD =
SD
SEP

(2)

Bias =

√∑n
i=1[x2 − x1]2

n
(3)

where n is the number of validated samples, x1 and x2 are
the predicted and measured values of the ith observation, and
b is the model bias, respectively. These equations give the
uncertainty that can be calculated in predictions.

Results and discussion

Biochemical analysis and near infrared
reflectance spectra

The stacked biochemical data of nutritional traits, namely,
protein, dietary fiber, starch, amylose, and oil obtained by wet
chemical analysis are presented as box and whisker plots along
with their respective histograms to showcase nearly uniform
distribution frequency and extent of variability in the sample set
(Figures 1A,B). The results indicate that broad-based equations
generated over HCA-clustered data for nutritional traits have
the potential to provide more accurate models. The sample
selection method also eliminates conventional wet chemistry
analysis of large sample sets, which are used to generate
reference values (28).

The average NIR reflectance spectrum of 500 accessions of
brown rice in the NIR wavelength range of 400–2,490 nm is
shown in Figure 2, which gave six major bands at wavelengths
1,196, 1,466, 1,634, 1,904, 2,288, and 2,322 nm. The 1,196-nm
band arises due to the C-H second overtone corresponding to
aliphatic hydrocarbons. The 1,466-nm band arises due to the
O-H functional group from starch, and N-H arises from protein
stretching at the first overtone; 1,634-nm band is due to the
O-H bending at the second overtone related to water; 1,904-nm
band is due to the O-H and C-O bending the second overtone
related to starch; 2,288 and 2,322 nm bands are due to the N-H
stretching at first overtone relating to protein and C-H bending
at second overtone corresponding to oil. Similar bands were
observed for PC and protein composition of brown rice flour
from Japan (29).

Regression and calibration

Table 1 shows the mean data of protein, fiber, starch,
amylose, and oil estimations in brown rice flour by conventional
methodology (N = 120), which was used as the reference
values to train the model (calibration). All of the three
regression algorithms (MPLS, PLS, and PCR) and different pre-
processing methods including MSC, weighted MSC, inverted
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FIGURE 1

(A, B) Variability of biochemical traits in brown rice germplasm through box and whisker plots and histogram.

Frontiers in Nutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.946255
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-946255 July 30, 2022 Time: 18:49 # 6

John et al. 10.3389/fnut.2022.946255

FIGURE 2

An average NIRS reflectance spectrum of brown rice flour after 32 scans with five major bands corresponding to vibrations due to respective
functional groups.

TABLE 1 Traits measured of brown rice flour by conventional methodology.

Calibration

Trait N Outliers Range (%) Mean

Protein 120 7 6.45–14.63 10.35

TDF 120 10 4.43–5.84 5.09

Starch 120 9 65–85.45 75.4

Amylose 120 5 5.23–30.7 23.0

Oil 120 4 3.05–7.00 5.25

N, number of samples.

TABLE 2 Calibration of NIRS models with brown rice flour.

Trait N Range (%) Math Treatment Mean No. of pcs RSQ SLOPE SD SEC (V)

Protein 113 7.33–13.9 4,8,8,1 10.50 3 0.782 1.003 1.37 0.663

TDF 110 4.43–5.85 3,16,8,2 5.04 3 0.897 0.954 0.28 0.103

Starch 111 67.0–80.0 4,6,61 75.24 5 0.807 1.012 1.98 0.992

Amylose 115 7.56–30.7 2,8,8,1 24.18 5 0.752 1.024 4.51 2.873

Oil 116 3.05–7.00 4,8,8,1 5.42 4 0.843 1.028 0.74 0.410

N, number of samples; PCs, Principle components; RSQ, coefficient of determination; SD, standard deviation; and SEC(V), Standard error of Cross Validation.

TABLE 3 Validation of NIRS models with brown rice flour.

Trait N %RANGE (CAL) %RANGE (VAL) Math Treatment RSQ SLOPE BIAS SD SEP RPD

Protein 60 7.33–13.9 8.15–13.7 4,8,8,1 0.917 0.994 −0.012 1.14 0.329 3.46

TDF 60 4.43–5.85 4.64–5.55 3,16,8,2 0.945 1.164 0.018 0.25 0.069 3.62

Starch 60 67.0–80.0 71.2–78.9 4,6,6,1 0.820 0.806 −0.024 1.73 0.816 2.12

Amylose 60 7.56–30.7 9.50–28.9 2,8,8,1 0.822 0.988 0.120 5.44 2.298 2.36

Oil 60 3.05–7.00 3.72–6.89 4,8,8,1 0.835 0.903 0.025 0.73 0.306 2.39

N, number of samples; RSQ, coefficient of determinations; SD, standard deviation; SEP, standard error of prediction; and RPD, residual prediction deviation.

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.946255
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-946255 July 30, 2022 Time: 18:49 # 7

John et al. 10.3389/fnut.2022.946255

FIGURE 3

Scatter plots of reference and predicted values of (A) Total Protein, (B) Total Dietary Fiber, (C) Total Starch, (D) Total Amylose, and (E) Total Oil
contents as generated by Veusz software. The key represents a linear equation with RSQ values for each trait.

MSC, and SNV-DT were tested (data not shown), and
the best results were obtained by the combination of
MPLS and SNV-DT.

Results of internal cross-validation of calibration set with
developed equation were in good agreement, except for a few
outliers (≤10), which may occur because of sample scanning
or analytical errors. Such samples generate outlying reflectance

spectra and come as a common outlier across the traits, and
thus were removed. Hence, a slight shift in the established
calibration range after internal cross-validation was observed.
Table 2 shows the established calibration range of training set
after the removal of outliers, which were 7.33–13.9% for protein
(3 PCs), 4.43–5.85% for TDF (3 PCs), 67–80% for starch (5 PCs),
7.56–30.7% for amylose (5 PCs), and 3.05–7% for oil (4 PCs).
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TABLE 4 Results of paired sample t-test between the reference and predicted values.

Paired differences t-value DF p-value

Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval of
the Difference

Lower Upper

Pair 1 Protein – Protein predicted −0.011949 0.328882 0.042817 −0.097656 0.073758 −0.279 59 0.781

Pair 2 TDF – TDF predicted 0.017550 0.067970 0.010747 −0.004188 0.039288 1.633 59 0.111

Pair 3 Starch – Starch predicted −0.023895 0.826231 0.134032 −0.295470 0.247681 −0.178 59 0.859

Pair 4 Amylose – Amylose predicted 0.119833 2.297697 0.419500 −0.738141 0.977808 0.286 59 0.777

Pair 5 Oil – Oil Predicted 0.025359 0.305568 0.038196 −0.050969 0.101688 0.664 59 0.509

This predicts that there is no significant difference between the reference and predicted values (at 5% confidence level); t, test statistic; DF, degrees of freedom; and p, probability of
attaining results under the null hypothesis.

Different combinations of derivative, gap, and smoothening
gave the best performance for each trait. Out of many
permutations and combinations used, the finalized treatments
identified based on performance in external validation were
4,8,8,1 for protein and oil, 3,16,8,2 for dietary fiber, 4,6,6,1
for starch, and 2,8,8,1 for amylose based on high RSQ, low
SD, and SEC(V) values. Scattering effects of the sample are
usually compensated in the calibration by using only first and
second derivatives. Whereas derivatization up to third and
fourth order enhanced weak bands that are not prominent in
the average spectrum and helped in establishing good regression
with reference data as in the case of dietary fiber, starch, and
protein. However, the use of higher derivatives also enhances the
non-responsive regions of the spectra resulting in over fitting
of the models. This was observed in the case of dietary fiber
(data not shown); and therefore, to reduce the impact of non-
responsive regions, the selection of wavelength segments at
constant intervals (gap; up to 16) was used to select responsive
segments in spectra that provided better results. Smoothening
(S1, S2) was employed to reduce the signal-to-noise ratio in the
spectral region due to high-frequency perturbations (30).

External validation of calibration
models

The generated calibration equations were externally
validated over a smaller set of samples which also represented
almost the entire range of variability (N = 60). Outliers
in external validation are often removed to show the high
prediction power of developed models but here the external
validations were achieved without the removal of outliers to
ensure robustness. Based on predicted values, the established
validation ranges were 8.15–13.7% for protein [comparable to
Bagchi et al. (7)], 4.64–5.55% for TDF [comparable to Longvah
et al. (30)], 71.2–78.9% for starch [comparable to Deepa et al.
(31)], 9.5–28.94% [wider than that reported by Bagchi et al. (7)]
for amylose, and 3.72–6.89% for oil [consistent with Abubakar

et al. (32)], which show a good agreement with the calibration
ranges (Table 3). The best-fit models were selected on the
basis of coefficients of determination such as RSQ, RPD, slope,
and bias values. RSQ value defines the correlation between
the predicted and reference values around the straight line,
which determines the validity and accuracy of prediction. It
was observed that high RSQ values were obtained for each trait
as 0.945 for dietary fiber, 0.917 for protein, 0.835 for oil, and
0.820 and 0.822 for starch and amylose, respectively. Similar
RSQ value of 0.85 for predicting AC of Japanese brown rice has
been reported (33). Prediction models have been established for
estimating fat content in Chinese brown rice cultivars with RSQ
value of 0.80 (34). A similar validation range of 7–12.6% and
RSQ of 0.941 was given for the PC of brown rice (9,35). RSQ
value of 0.967 was reported for TDF in Korean brown rice (13);
however, our study seems to be the first report on NIRS-based
prediction models for TDF in Indian brown rice landraces.
Previously reported models also have high RSQ values but they
are majorly validated on samples bearing value close to the
mean, which limits their usability to general market samples and
is not suitable for germplasm resources. The regression plots
between the reference and the predicted values for protein, fiber,
starch, amylose, and oil are given in Figures 3A–E, respectively.

Apart from high RSQ values, RPD value also governs the
prediction accuracy of the models. RPD is defined as the ratio
of prediction to standard deviation of reference values, where
RPD < 1.0 indicates very poor model/predictions with no
recommended use; RPD between 1.0 and 1.4 indicates poor
predictions where only high and low values are distinguishable;
RPD between 1.4 and 1.8 indicates fair predictions which may
be used for assessment and correlation; RPD values between
1.8 and 2.0 indicates good predictions where quantitative
predictions are possible; RPD between 2.0 and 2.5 indicates
very good, quantitative predictions, and RPD > 2.5 indicates
excellent predictions (36). Our results exhibited RPD value > 2
for each trait as for starch (2.12), amylose (2.36), and oil
(2.39) indicating their usability in screening large collections
and quantitative predictions. RPD value > 3 was observed for
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protein (3.46) and TDF (3.62) indicating that the model is
providing results that are at par with wet chemical analysis.
Similar RPD values of 3.76 and 2.42 were observed for PC and
AC in Kadus rice from Iran (37), respectively.

The slope represents a change in predicted values with a unit
change in reference values. An ideal slope value should be 1, but
any value close to 1 would also represent the accuracy of the
model. The slope values in our study are 0.994 (protein), 1.16
(TDF), 0.806 (starch), 0.988 (amylose), and 0.903 (oil), which
show optimum accuracy. Comparable slope values of 0.995 and
1.011 have been reported for AC and PC (38), respectively.

Biasness is the average of residuals of laboratory and
reference values, which also account for prediction accuracy,
and should have a value close enough to 0. A negative value of
bias relates to underestimation by the model, whereas a positive
bias value depicts overestimation by the model (39). The bias
values were −0.012 (protein), 0.018 (TDF), −0.024 (starch),
0.120 (amylose), and 0.025 (oil) depicting that the models for
protein, starch are slightly underestimating while TDF, amylose,
and oil models are slightly overestimating.

Table 4 summarizes that the means of laboratory (reference)
data are similar to the analytical (predicted) data. The reference
and predicted values for all traits were found to be in great
agreement with each other as paired sample t-test at a 95%
confidence interval gave p values > 0.05. The highest p value
was observed for starch (0.859) followed by protein (0.781),
amylose (0.777), oil (0.509), and fiber (0.111). A p-value > 0.05
corresponds to the rejection of the hypothesis that the difference
in the means of the reference and predicted values are significant
confirming the applicability of the models.

Conclusion

The present study was carried out to develop a rapid
assessment tool for screening rice germplasm collections and
develop NIRS-based prediction models for brown rice flour.
The developed models are robust with applicability for a
wide range of variability in each trait. The best models were
developed for TDF followed by protein, oil, amylose, and
starch. Stratified purposive sampling based on NIR spectral data
provided nearly uniform distribution of samples for the entire
range of variability in each trait, including extreme values which
ensured proper learning for training the model. The selection
of multiple derivatives and gaps contributed to enhancing
the model performance by enabling feature extraction and
regression with responsive regions. The developed prediction
models are useful for screening vast germplasm collections of
rice and categorize them for specific nutritional needs and
culinary purposes. In the future, models for whole grains are
to be developed, which would be truly non-destructive and of
direct use for plant breeders and eliminate the requirement for
sample homogenization.
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