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ABSTRACT: With the rapid aging in the global population, delay of aging has become a hot research topic. 

Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. 

Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are 

altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their 

component signaling molecules have been recognized to affect aging by interfering with its hallmarks. 

Therefore, targeting LRs is a promising strategy to delay aging. 
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1. Introduction 

 

The aging global population poses an increasing burden 

on public healthcare. In 2020, there were 722 million 

individuals aged over 65 years (accounting for 9.318 

percent of the total population), and the proportion of 

senior people continues to rise (data from the World Bank: 

population ages 65 and above, total (accessed December 

10, 2021) https://databank.shihang.org/home.aspx). The 

incidence of cardiovascular and cerebrovascular diseases, 

neurodegenerative diseases, metabolic diseases, and 

cancers with aging is also increasing each year. 

Aging is generally considered a complicated process 

that cannot be avoided. However, it does have common 

denominators, such as 1) loss of proteostasis 2) altered 

intercellular communication 3) genomic instability 4) 

mitochondrial dysfunction 5) epigenetic alterations 6) 

deregulated nutrient-sensing 7) cellular senescence 8) 

telomere attrition 9) stem cell exhaustion [1]. Lipid 

rafts (LRs) are key functional microdomains involved in 

signal transduction and membrane trafficking. Because 

signal transduction is essential for aging processes, the 

relationship between LRs and aging has attracted 

increasing attention. Furthermore, recend studies indicate 

that LRs are promising targets to attenuate or delay human 

aging, which is signifcant for regulating aging procedures 

and achieving therapeutic effects. 

 

2. Structure and functions of LRs  

The LR hypothesis was proposed in 1997 [2]. LRs are 

microdomains (10-200 nm) with a short life, and their 

components, such as sphingolipids, cholesterol, and 

proteins, are assembled to function and disassemble 

quickly afterward. The components and sizes of LRs are 

not constant, and they can merge with each other to 

become larger when necessary [3]. As hubs for signal 

transduction, LRs contain various signal proteins, 

including glycosylphosphatidylinositol (GPI)-anchored 

proteins, Src family kinases (SFKs), and Epidermal 
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growth factor receptor (EGFR) [4]. LRs are mainly 

composed of sphingolipids, which tend to display longer 

and more saturated hydrocarbon chains and contribute to 

thickening LRs. Moreover, sphingolipids are rich in 

oxygen-containing groups that can form hydrogen bonds, 

making LRs more tightly packed than the surrounding 

areas. Known as liquid-ordered domains (Lo), these 

tightly packed regions are surrounded by a sea of liquid-

disordered (Ld) phospholipids that lack cholesterol [5]. 

Because sphingolipids are prone to forming hydrogen 

bonds, cholesterol has a slightly stronger affinity for 

sphingolipids. Specifically, cholesterol serves as a spacer 

and dynamic glue between hydrocarbon chains to 

assemble the LRs and maintain their integrity [6, 7]. 

Caveolae are stereoscopic-type LRs that are 

invaginated into the plasma membrane; their proteins 

differ from those found in LRs and include the 

specific caveolin and cavin family members [8]. Among 

the extensively studied caveolin family proteins, 

caveolin-1 is a critical regulator of cell senescence [9-11]. 

Owing to the complexity of LR composition and 

their “small, heterogeneous, and highly dynamic” 

characteristics, their separation and visualization progress 

remain hindered to a certain extent. Despite this 

controversy, detergents such as Triton X-100 are still used 

to purify LRs [12]. Sucrose gradient centrifugation is the 

most used method for further fractionation of LRs [13]. 

Next, markers of LRs, such as sphingolipid/cholesterol 

[13], ganglioside M1(GM1) [14], CD36 [15], flotillin-1, 

and caveolin-2 [16], are identified by chromatography-

mass spectroscopy or Western blotting to determine the 

LR fractions. Usually, LRs cannot be observed directly in 

living cells, but fluorescent probes are available for their 

imaging. For example, Alexa Flour 488/555/594–

conjugated cholera toxin B (CtxB) can label GM1 in 

green/orange/red fluorescence to visualize LRs indirectly 

[17]; Laurdan staining, which emits blue fluorescence, 

can also be used to observe LRs [18, 19]. In recent years, 

new fluorescent sphingomyelin analogs and fluorescent 

ganglioside analogs have been discovered, which 

facilitate LR tracking in living cells [20, 21]; this has led 

to dramatic progress in the field. 

 
Figure 1. Plane structure diagram of lipid rafts. Constitutive LR residents include GM1, GM3, and GPI-anchored proteins on the 

outside of the plasma membrane, acylated proteins and flotillins inside the plasma membrane, and transmembrane proteins embedded 

in the plasma membrane. 

 

3. Alterations of LRs during aging 

 

The functions and composition of LRs are altered with 

aging.  Such alterations occur in T-cells, neutrophils, 

fibroblasts, erythrocytes, and nerve cells. For instance, T 

cells from elder subjects have higher cholesterol and GM1 

(a marker of LRs) levels in their LRs and lower LR 

fluidity [22, 23]. In addition, the distribution of LRs is 

disorganized, whereas they are homogeneous in T-cells 

from young individuals [24]. This disorganization of the 

LR can reduce its aggregation, which may alter cellular 

signal transduction and communication. In aging human 

fibroblasts, LRs, cholesterol, and flotillin (an LR 

marker) are reduced [25], whereas polymerase I and 
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transcript release factor (PTRF), a member of the cavin 

family in caveolae, is increased [26]. Further, signaling 

competent caveolae are lost, and the caveolae fraction 

contains lower levels of caveolin 1 and 2, resulting 

in impaired signal transduction [27]. In human red blood 

cells, the LR protein marker flotillin-2 also decreases 

during aging [28]. Likewise, in human frontal cortex 

nerve cells, LR structures are substantially altered when 

the brain cortex ages, which is termed “LR aging” [29]. 

Regarding LR functions, these microdomains are known 

to be involved in the initial signal complex formation 

during T cell activation [30]. With increasing age, LRs 

recruit less lymphocyte-specific protein tyrosine kinase 

(Lck) and linker of activated T cells (LAT) (T cell 

regulators [31-33]) causing compromised T cell function 

in seniors [22]. In neutrophils, the LR-relevant Toll-like 

receptors 4 (TLR4) signaling pathway is altered with 

aging. Under lipopolysaccharide (LPS, a TLR4 ligand) 

stimulation, there is no recruitment of the TLR4 

downstream signal molecule IL-1 receptor-associated 

kinase-1 (IRAK-1) to LRs in elderly donor neutrophils, 

which results in impaired TLR4-driven signaling events 

[34]. Changes in the role of LRs with aging could thus be 

a cause of decreased neutrophil function. Owing to the 

dysfunction of T cells and neutrophils during aging, the 

immune response is reduced, contributing to 

immunosenescence. Notably, a study published in Nature 

has indicated that immunosenescence drives the aging of 

other organs, ultimately promoting organism aging [35]. 

 Similar results have also been reported in animals. 

In wild-type mice, LRs undergo age-related changes, such 

as decreased cholesterol content and increased 

sphingomyelin levels [36]. In mouse CD8+ T cells, GM1 

levels in LRs increase with aging [37]. However, there are 

no apparent age-dependent disparities in the GM1 levels 

of rat brain synaptic LRs. In addition, the content and 

activity of Ca2+-ATPase (an intracellular free Ca2+ precise 

regulator) in the LR domain is downregulated with 

increasing age, and importantly, Ca2+ homeostasis 

dysregulation is associated with brain aging [38]. 

Together, these data emphasize that major changes 

occur in LR structure and function with age, suggesting 

that these changes may contribute to cell signal 

transduction failure. 

 
Table 1. Alterations in lipid rafts and their composition with aging. 

 

 

Species Notes Age-related alteration in LRs 
Age-related alteration in 

components of LRs 
References 

Human T cells The fluidity of LRs ↓ Cholesterol ↑ [22] 

    The distribution of LRs is disorganized GM1 ganglioside ↑ [22, 23] 

  Fibroblasts The signaling competent caveolae ↓ Cholesterol ↓ [25, 27] 

      Flotillin ↓ [25] 

      PTRF ↑ [26] 

  Neutrophils The LR-dependent TLR4 signal ↓ TLR4 ↑ [34] 

  Red blood cells    Flotillin-2 ↓ [28]  
Nerve cells The lipid structure (phospholipid-bound 

fatty acids and specific lipid classes) of 

LRs is altered  

 

[29] 

Mouse Frontal lobe   Cholesterol ↓ [36] 

      Sterol ester ↓ [36] 

      Sphingomyelin ↑ [36] 

      Saturated fatty acid ↑ [36] 

      Phospholipids/cholesterol 

ratio ↑ 
[36] 

 Cortical(3xTgAD)  LRs density ↑  [39] 

  CD8 + T cell   GM1 ganglioside ↑ [37] 

Rat Cerebral synaptic cells   GM2 ganglioside - [38] 

      Ca2+ -ATPase protein ↓ [38] 

Rhesus 

macaque 

Frontal lobe   GM3 ↑ 
[40] 

   
Sphingomyelin ↑ [40] 

-: invariant; ↓: decrease; ↑: increase; 3xTgAD: a triple-transgenic model of Alzheimer's disease 

4. LR and genomic instability  

 

Accumulation of genetic damage is a generally 

recognized cause of genomic instability [41], which 

includes direct lesions in DNA (nuclear DNA damage, 

mitochondrial DNA damage, telomere attrition) as well as 

defects in nuclear architecture [1]. Usually, organisms can 

repair themselves after DNA damage, but severe DNA 

damage or a lack of DNA repair exacerbates the aging 

process [1, 42, 43]. 
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LRs can affect DNA integrity. For example, LR–

mediated signaling can modulate reactive oxygen species 

(ROS) to influence DNA damage and repair responses, 

and LR disruption can suppress DNA repair responses 

[44]. Meanwhile, deficiency of CD59 (a GPI-anchored 

protein on LR) can exacerbate DNA damage and induce 

cellular senescence [45]. The level of caveolin-1 in LRs is 

often upregulated after DNA damage and this activates 

DNA repair [46]. 

These results indicate that genomic stability can be 

affected by LRs and the relevant signals to ameliorate 

aging. 

 

5. LR and loss of proteostasis 

 

Proteostasis can control non-native proteins accumulate 

through molecular chaperones, cochaperones, and 

proteolytic systems [47]. However, proteostasis 

diminishes with age [48], enhancing the risk of protein 

misfolding and aggregation, a hallmark of aging [1], 

which may be deleterious to cells [47, 49].  Notably, LRs 

are integral to proteostasis.  

Molecular chaperones, heat shock protein (HSPs), 

assist protein refolding [50]. According to previous 

reports, distinct reorganization of LRs is required to 

generate and transmit stress signals for stimulating HSP 

genes, thereby upregulating HSP expression [51]. 

Further studies have revealed that this reorganization is 

induced by Ras-related C3 botulinum toxin substrate 1 

(Rac1)-mediated actin polymerization [52, 53]. 

Meanwhile, the level of heat-induced HSP expression is 

impaired if LRs are disrupted [54]. These results indicate 

that the signal for HSP gene activation is transmitted 

through LRs. Although the role of LRs remains unclear, 

evidence suggests that remodeling plasma LRs can 

activate stress signal transduction pathways [55]. Notably, 

lifespan is positively determined by HSPs, and HSP 

expression has been shown to extend the lifespan of 

Drosophila [56]. HSP induction during aging may thus 

preserve protein homeostasis and lifespan by refolding 

damaged proteins that accumulate throughout aging. 

 If these folding attempts are futile, abnormal 

proteins are degraded by two central proteolytic systems 

(ubiquitin/proteasome and autophagic/lysosomal 

systems), which also decay with age [57]. Epidermal 

growth factor (EGF) signaling can affect C. elegans 

longevity by stimulating the ubiquitin/proteasome system 

[58]. Meanwhile, the EGF receptor is localized to LRs 

[59], which means that ubiquitin/proteasome 

system activity can be enhanced by activating EGFR on 

LRs to help maintain protein homeostasis and prolong 

lifespan. Further, the autophagic/lysosomal system is 

linked with mammalian target of rapamycin (mTOR) 

activation; specifically, autophagy can be stimulated by 

mTOR downregulation [60]. LRs appear to be essential 

for regulating the mTOR pathway by promoting 

phosphoinositide 3‐kinase (PI3K) recruitment and V-

akt murine thymoma viral oncogene homolog (Akt) 

activation [61, 62]. Moreover, phosphatase and tensin 

homologue protein (PTEN) can suppress the 

PTEN/Akt/mTORC1 pathway, thereby activating 

autophagy by mobilizing the LR domain [63, 64]. As an 

integral component of LRs, cholesterol is another factor 

that affects autophagy. Cholesterol accumulation reduces 

autophagic activity by suppressing the fusion of 

lysosomes with autophagic vacuoles [65, 66]. Notably, 

autophagy has a beneficial systemic effect on lifespan 

[67].  

As previously discussed, LR remodeling favors the 

activation of HSPs, thereby refolding deleterious proteins. 

Further, excitation of the ubiquitin/proteasome system 

and autophagic recovery of protein homeostasis provide 

exciting possibilities for extending longevity. 

 

6. LR and deregulated nutrient-sensing 

 

Deregulated nutrient sensing is considered a hallmark of 

aging. It is closely affiliated with several nutrient-sensing 

systems, such as the insulin/insulin-like signaling 

pathway (IIS) pathway, which is involved in glucose 

sensing; mTOR, which participates in the detection of 

elevated amounts of amino acids [1, 68]. Nutrient-sensing 

system alterations affect lifespan as increased nutrient 

signaling speeds up aging whereas reduced nutrient 

signaling prolongs lifespan, that is , reduces the functions 

of growth hormone (GH), insulin‐like growth factor 1 

receptor (IGF-1R), or downstream biological factors such 

as Akt and mTOR, and increases the activity of AMPK, 

Sirt1, PTEN, and Forkhead box class O (FOXO) [1, 69]. 

Signal transduction and activation of the nutrient-sensing 

systems mentioned above require the participation of 

LRs. 

The IIS pathway is regulated by LRs in multifaceted 

ways.  First, activation of the IIS signal requires ligands to 

bind to the central regulator IGF-1R (located in LRs) [70]. 

Second, LRs are indispensable for IGF-1R downstream 

signals [70]. The binding of IGF-1 and IGF-1R activates 

the PI3K/Akt pathway, and the phosphorylation of 

Akt requires LRs. If LRs are destroyed, Akt 

phosphorylation is blocked [71], possibly because Akt 

activation requires PI3K recruitment to LRs [62]. Akt has 

many downstream targets including mTOR and FOXO. 

Among these, FOXOs represent a well-conserved group 

of transcription factors; however, when phosphorylated, 

they lose their ability to function as transcriptional 

activators [72, 73]. Inhibition of LR clustering has been 

reported to impede the PI3K/ Akt/ FOXO pathway [74]; 

in particular, FOXO phosphorylation is attenuated by LR 
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disruption [75], suggesting that LRs are involved in 

FOXO signal transduction. Additionally, FOXO is a core 

longevity-promoting transcription factor involved in the 

IIS pathway [76, 77].  Upregulating FOXO activity 

through the regulation of LRs is thus a promising way to 

delay aging [76]. 

CD24, located in the LR, can recruit PTEN to the LR 

and modulate the downstream pathway [63]. Upon PTEN 

inhibition, the PI3K/Akt signaling pathway is activated 

and upregulates mTOR1 [78], thereby interfering with 

protein and lipid synthesis as well as energy metabolism 

[79]. 

In summary, LR can mobilize and activate IIS 

pathway signaling molecules, which in turn regulate the 

signal transduction of mTOR and FOXO. Thus, 

prolonging health span by controlling LR is 

theoretically feasible. 

 

7. LR and mitochondrial dysfunction 

 

Mitochondrial dysfunction leads to accelerated aging 

in mammals [1, 80-82]. Recently, LRs and their residents 

have been reported to modulate mitochondrial function. 

Data from Yu’s laboratory revealed that caveolin-1 

deficiency limits the expression of cardiolipin 

biosynthetic enzymes that decrease cardiolipin content 

(an essential lipid for mitochondrial respiration), thereby 

reducing mitochondrial respiration, culminating in 

mitochondrial dysfunction and premature senescence 

[83]. Asterholm and colleagues found caveolin-1-null 

mouse embryonic fibroblasts displayed altered 

mitochondrial metabolism and higher mitochondrial 

membrane potential [73]. Furthermore, caveolin-1 

deficiency leads to mitochondrial dysfunction by reducing 

membrane fluidity and mitochondrial respiratory chain 

efficiency, consequently causing ROS buildup [84]. 

Actually, the LR has more than one molecule involved in 

mitochondrial function. Src kinases, one of LR residents, 

are also important regulators of mitochondrial function, 

and have emerged as key players in mitochondrial 

tyrosine phosphorylation events [85]. Inhibition of SFKs 

ameliorates mitochondrial dysfunction [86]. Hunterour et 

al. discovered that c-Src, one of the most prevalent SFKs 

undermines mitochondrial energy metabolism by 

weakening the mitochondrial oxidative phosphorylation 

complexes [87]. Cholesterol also affects mitochondrial 

function as oxidized cholesterol derivatives (7-

ketocholesterol) impede mitochondrial metabolism by 

lowering membrane potential [88, 89]. In particular, 7-

ketocholesterol can modify cytoplasmic mitochondrial 

distribution and clusters [90]. 

The free radical theory of aging suggests that 

excessive ROS production by mitochondria damages the 

mitochondrial genome and proteins, causing deterioration 

of mitochondrial function as well as further organism 

dysfunction and shortens lifespan [91]. Aggregation of 

LR with nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase enzymes facilitates ROS production in 

intestinal epithelial cells [92]. Moreover, 7-

ketocholesterol has been proved to interacts with 

NADPH-oxidase to trigger ROS overproduction [93-95]. 

Nuclear factor erythroid-2-related factor-2 (Nrf2), a 

leucine zipper transcription factor, can protect against 

harmful ROS and mediate the translation of antioxidant 

enzymes [96, 97]. Here, caveolin-1 can restrict 

antioxidant enzyme expression by inhibiting Nrf2 

endogenously [98] and accelerating premature senescence 

[99]. Thioredoxin reductase 1 (TrxR1) is a small 

oxidoreductase that contributes to the regulation of 

cellular redox homeostasis [100]. As it is also a caveolae 

resident protein, the combination of caveolin-1 

and TrxR1 can inhibit TrxR activity, thereby accelerating 

stress-induced premature senescence [101]. 

Overall, Src kinases and caveolin-1 are key 

regulators of mitochondrial function in LRs and 

derepressing the abnormal activity of Src kinases or 

upregulating caveolin-1 is a promising strategy to 

ameliorate aging. 

 

8. LR and cellular senescence 

 

Generally, aging begins at the cellular level. Senescent 

cells accumulate as people grow older, resulting in aging 

and the promotion of age-related pathologies. However, 

mounting evidence has shown that LRs and their 

molecular composition are crucial for cellular senescence. 

Stable cell cycle arrest is an important hallmark of 

cellular senescence [102]. Caveolin-1 can mediate cell 

cycle arrest, implying that caveolin-1 causes cellular 

senescence [103].  Furthermore, experimental results 

from Volonte et al. indicate that increased caveolin-1 

expression causes senescence in murine fibroblasts, and 

that restoring caveolin-1 can reverse this condition [104]. 

With an in-depth molecular mechanism study based 

on phenotype, caveolin-1 has been shown to modulate 

senescence and organismal aging by inhibiting the effects 

of mouse double minute 2 homolog (Mdm2), protein 

phosphatase 2A-C subunit (PP2A-C), Sirt1, TrxR1, Nrf2, 

and EGFR on P53 [105]. First, caveolin-1 inhibits P53 

degradation by binding Mdm2, followed by p53/p21 

upregulation and induction of premature senescence 

[106]. Second, caveolin-1 triggers Ataxia telangiectasia-

mutated (ATM) (P53 activator [107]) by isolating PP2A-

C (ATM negative regulator) into caveolae domains, 

sequentially stimulating the p53/p21 pathway, leading to 

lung fibroblast senescence [108]. Third, caveolin-1 is a 

new Sirt1 blocker. The combination of Sirt1 and caveolin-

1 caused by oxidants suppresses Sirt1 activity, which 
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promotes p53 acetylation and induces premature 

senescence [109]. Serving as a TrxR1 antagonist, 

caveolin-1 suppresses TrxR activity, inhibiting the 

p53/p21 pathway, thus promoting premature senescence 

[101]. Furthermore, caveolin-1 can directly bind Nrf2 and 

prevent oxidant-induced Nrf2-related signaling, thereby 

accelerating aging [110]. Finally, caveolin-1 can directly 

combine with EGFR and limit its activation [111, 112], 

thus attenuating EGF signaling in senescent cells [113]. 

Reducing caveolin-1 levels can restore the downstream 

signaling cascades of EGF cell cycle progression and 

reverse senescent phenotypes [114].  Growth factor 

responsiveness decreases because of the upregulated 

caveolin levels in senescent cells. Moreover, PTRF is 

necessary for caveolae to form and function [115, 116] 

and is upregulated in senescent cells. Upregulated PTRF 

interacts with caveolin-1, leading to cellular senescence 

via the p53/p21 pathways [26, 117].  

In addition, 7-ketocholesterol was found to induce 

senescence in mouse endothelial progenitor cells via the 

Notch pathway [118]. 7-ketocholesterol has potential as 

an aging biomarker, as its accumulation is directly linked 

with various aging-related diseases [119, 120]. 

Taken together, suppression of caveolin-1 or PTRF 

can clearly decelerate cellular senescence. On one hand, 

inhibiting caveolin-1 reverses the senescence phenotype 

[114, 121]; on the other hand, reducing PTRF expression 

extends the cellular replicative lifespan [26]. However, 

cellular senescence is a terminal cell fate that prevents 

cells from proliferating indefinitely and can thus suppress 

tumorigenesis [122]. Therefore, determining the break-

even point of cellular senescence is also a challenge in the 

future. 

 

9. LR and stem cell exhaustion  

 

Stem cells have been shown to replenish cells and regulate 

lifespan [123]. Stem cell exhaustion results in a decline in 

tissue regeneration, which is a significant hallmark of 

aging [1]. Stem cell surface molecules or secreted 

molecules from stem cells trigger hibernation or cell cycle 

entry [124, 125]. Previous studies have shown that stem 

cell signaling pathways require LR to accurately modulate 

signal intensity [126]. 

LRs regulate stem cells in several ways. More 

specifically, LRs are indispensable for hematopoietic 

stem and progenitor cell (HSPC) retention in bone 

marrow niches and are hampered when LRs are disrupted 

[127]. The clustering of LRs in hematopoietic stem cells 

(HSCs) can augment downstream signaling pathways and 

deliver signals to cells, thereby inducing HSCs to re-enter 

the cell cycle. In contrast, the inhibition of LR aggregation 

disturbs PI3K/Akt/FOXO, resulting in the accumulation 

of FOXO transcription factors and expression of p57 

cyclin-dependent kinase inhibitors, which cause HSC 

hibernation [74]. Additionally, LRs are required for the 

aforementioned pathway to be effectively activated, 

for recruiting the proliferation mediator Kit [128]. The 

mTOR signal is also mediated by LR via the PI3K/Akt 

pathway, and mTOR activity increases in HSCs with 

aging [129]. Using the mTOR inhibitor rapamycin to 

reduce mTOR activity can restore HSC function and 

increase lifespan [129]. However, the hematological 

toxicity of rapamycin cannot be ignored [130]. 

Intriguingly, LRs also function through LR-

related proteins. Incorporation of CXC chemokine 

receptor 4 (CXCR4) into LRs activates Rac1 (a small 

GTPase involved in HSPC migration) and enables a more 

effective response to the stromal-derived factor-1 (SDF-

1) gradient, which primes homing-related responses 

[131]. Further, the raft-resident protein Lyn (a tyrosine 

kinase belonging to the Src family) contributes to stem 

cell regulation [132]. In addition, Prion protein (PrP), a 

GPI-anchored protein mainly located in LRs [133], can 

stimulate mesenchymal stem cells [134] as well as HSCs 

[135] to proliferate and self-renew. LR-associated 

ADAM12 plays a pivotal role in esenchymal stem cell 

differentiation into smooth muscle cells [136].  

Overall, LR clusters and LR-associated proteins 

have been implicated in stem cell regulation and the 

control of cell fate decisions. Treatments targeting LRs 

may thus be a new approach for stem cell rejuvenation. 

 

10. LR and altered intercellular communication: 

inflammaging 

 

Communication between cells is necessary for optimal 

collaboration; however, aging alters intercellular 

communication, including neuroendocrine dysfunction, 

inflammation, immunosenescence, and bystander effects 

[1]. Inflammation is a prevalent age-related alteration in 

intercellular communication [137]. The nuclear factor 

kappa-B (NF-κB) signaling pathway is a prominent 

inflammatory signaling pathway that regulates cellular 

inflammatory responses [138]. As the “ears and mouth” 

of cells, LRs are responsible for cellular signal 

transduction, especially inflammatory signaling. NF-κB 

signaling can be triggered by TLR and tumor necrosis 

factor alpha (TNF-α) receptors through binding to their 

corresponding ligands [139, 140].  

TLRs are transmembrane proteins of the pattern 

recognition receptor family. They can activate the pro-

inflammatory NF-κB signaling pathway by binding to 

endogenous ligands [139]. TLR activation occurs in LRs. 

One study demonstrated that increased LRs recruit 

more myeloid differential protein-88 (MyD88)-

dependent TLRs to LRs, boosting downstream signal 

transduction and promoting inflammation [141]. 
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Moreover, TLR signal transduction requires the 

cooperation of raft protein [142]. CD14, a GPI-anchored 

protein localized in LRs [143], facilitates the transfer of 

LPS to TLR4 and subsequently activates the NF-κB 

pathway [144]. 

TNF-α, a proinflammatory cytokine, can activate 

NF-κB signaling and initiate an inflammatory response 

[145]. After the binding of TNF receptor 1 and TNFα, 

TNF receptor 1 translocates to LRs and initiates the 

transcription factor NF-κB by forming a receptor-induced 

signaling complex that binds several signaling proteins 

[140]. During this process, LRs act as a platform for TNF-

α to mediate signal transduction. When LRs increase, 

TNF-α secretion is accelerated [146]. In senescent 

endothelial cells, caveolae and caveolin-1 are increased, 

whereas NF-κB activation induced by TNFα is decreased. 

Interestingly, this phenomenon can be reversed when 

caveolin-1 is knocked down. In other words, increased 

caveolae and caveolin-1 may inhibit the NF-κB pathway 

and prevent inflammation in senescent cells [147]. 

Meanwhile, 7-ketocholesterol induces TNF-α expression 

in human monocytes [148], indicating that it can affect 

cell communication. 

Overall, LRs affect inflammation by regulating NF-

κB expression. Numerous studies have focused on LRs to 

control the inflammatory status. For example, allicin 

inhibits mastitis by diminishing the LR form and 

inhibiting signals downstream of TLR2 and TLR6 [149]. 

Selenium is also used to alleviate lipopolysaccharide-

induced endometritis by attenuating LR levels and 

impeding the recruitment of TLR4 into LRs [150]. 

Meanwhile, inhibiting NF-κB signaling is reported to 

delay senescence and aging in mice [151]. Hence, 

selectively blocking LR-dependent inflammatory 

processes may be a suitable strategy to delay aging. 

 

 
Figure 2. Interplay between lipid rafts and aging hallmarks. This figure shows the signaling pathways 

and molecules related to LR and the seven aging hallmarks described in this review. 
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11. Perspectives 

 

The pursuit of longevity is the ultimate goal of humans, 

and aging remains a considerable challenge. Despite the 

continuous advances in our understanding of LRs over the 

last two decades, some questions remain unanswered. 

However, aging is apparently regulated by LR. Aging 

drastically affects the components and functions of LRs. 

Further, considering the evidence discussed here, the 

influences of LRs on the hallmarks of aging are apparent 

(Fig. 2). Many of these hallmarks contribute to the 

development of sustained inflammatory stage and aging 

[152]. Hence, attempts to “cure” aging should involve 

amelioration of inflammaging (chronic, sterile, low-grade 

inflammation during aging) [153],  which can be achieved 

by regulating LRs. 

Modulation of cholesterol is one way to regulate LRs, 

as cholesterol is a critical constituent of LRs. Most 

cellular cholesterol exists in the membrane and is enriched 

in LRs [154]. Depleting cholesterol can disrupt the form 

of LRs and reduce the content of LRs [149, 155], 

suggesting that cholesterol-lowering drugs such as statins, 

can alleviate inflammaging to anti-aging by inhibiting the 

formation of LRs. As expected, clinical results have 

demonstrated that new statin use is associated with a 

decreased death rate among American veterans (75 years 

and older) [156]. However, one of the frequently reported 

adverse reactions of statins is memory impairment 

and cognitive decline [157, 158]. Coincidentally, 

Alzheimer's disease, which is characterized by cognitive 

and memory deterioration, is associated with reduced 

levels of cholesterol and LRs in the frontal cortex [36, 

159]. Based on these results, we speculate that the 

adverse effects of statins on memory and cognitive 

alterations may partly be due to their cholesterol-lowering 

effects and hindered formation of LRs. Therefore, when 

using statins to delay aging, it is recommended to adopt 

some pharmaceutical modifications to increase 

the polarity of the statins or to choose hydrophilic statins 

instead of lipophilic statins for making them selective and 

inaccessible to the central nervous system, thus 

reducing their side effects. 

Overall, aging has been proven modifiable, and some 

drugs for slow aging have been discovered. For example, 

rapamycin inhibits mTOR activation to delay aging; 

senolytics can target and eliminate senescent cells; sirtuin 

activators, which enhance sirtuin activity; Nicotinamide 

adenine dinucleotide (NAD) precursors that can supply 

cellular NAD levels; antidiabetic drugs such as metformin 

and acarbose; and non-steroidal anti-inflammatory 

drugs, can also be used [152, 160]. However, none of 

drugs target LRs to delay aging, making it a 

future objective. Overall, targeting LRs 

will be a novel strategy for prolonging life, and statins 

might be promising candidates for new anti-aging agents. 
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