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Abstract: The effective control of rodent populations on farms is crucial for food safety, as rodents
are reservoirs and vectors for several zoonotic pathogens. Clear links have been identified between
rodents and farm-level outbreaks of pathogens throughout Europe and Asia; however, comparatively
little research has been devoted to studying the rodent–agricultural interface in the USA. Here,
we address this knowledge gap by metabarcoding bacterial communities of rodent pests collected
from Minnesota and Wisconsin food animal farms. We leveraged the Oxford Nanopore MinION
sequencer to provide a rapid real-time survey of putative zoonotic foodborne pathogens, among
others. Rodents were live trapped (n = 90) from three dairy and mixed animal farms. DNA extraction
was performed on 63 rodent colons along with 2 shrew colons included as outgroups in the study.
Full-length 16S amplicon sequencing was performed. Our farm-level rodent-metabarcoding data
indicate the presence of multiple foodborne pathogens, including Salmonella spp., Campylobacter
spp., Staphylococcus aureus, and Clostridium spp., along with many mastitis pathogens circulating
within five rodent species (Microtus pennsylvanicus, Mus musculus, Peromyscus leucopus, Peromyscus
maniculatus, and Rattus norvegicus) and a shrew (Blarina brevicauda). Interestingly, we observed a
higher abundance of enteric pathogens (e.g., Salmonella) in shrew feces compared to the rodents
analyzed in our study. Knowledge gained from our research efforts will directly inform and improve
farm-level biosecurity efforts and public health interventions to reduce future outbreaks of foodborne
and zoonotic disease.

Keywords: agriculture; 16S amplicon sequencing; metabarcoding; nanopore sequencing; dairy cattle;
One Health; Peromyscus leucopus; Mus musculus; Blarina brevicauda; Rattus norvegicus

1. Introduction

Rodents are the largest group of mammals in the world, and they are well known for
harboring a plethora of zoonotic pathogens of concern for human and animal health [1].
Both native and invasive species of mice and rats benefit from human activities, especially
agricultural systems. Rodents are a common hindrance of food production systems globally
and they are known to transmit zoonotic pathogens to food animals and raw produce by
contaminating the overall farm environment [2–5]. This transmission is largely due to
the amplification of foodborne pathogens through the daily deposition of urine and fecal
pellets into the production environment. For example, a single rodent within a barn or food-
production facility can introduce upwards of 23 million Salmonella bacteria into production
pipelines within 24 h [6,7]. However, the functional role that peridomestic (i.e., living in
and around human habitations) rodents serve in the amplification and transmission of
various zoonoses is likely underappreciated. Clear links have been identified between
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rodent pests and outbreaks of zoonotic diseases throughout Europe and Asia [8–12]; yet,
little research has been devoted to studying this relationship in the United States [4,13].
Specifically, regional studies focused on specific rodent species and their pathogen reservoir
status across the diverse agricultural landscapes of the United States are lacking. Hence,
our overarching research goal was to investigate the role of rodent pests on food animal
farms as reservoirs or carriers of zoonotic pathogens, especially with respect to species-
specific patterns.

Emerging genomic technologies are providing exciting new opportunities for the
surveillance of zoonotic pathogens in diverse settings and environments. Next-generation
sequencing platforms allow for the metabarcoding of complex bacterial communities using
taxonomically informative genes (e.g., the 16S rRNA gene). 16S rRNA sequence data
are particularly useful as a molecular marker for bacterial identification, including for
pathogens with clinical relevance [14,15]. The 16S rRNA gene has nine hypervariable
regions (V1-V9) with varying levels of phylogenetic signal, of which the V3 and V4 regions
are particularly useful for resolving genus and species-level relationships [16]. Second-
generation sequencing platforms frequently used for bacterial metabarcoding experiments
(e.g., Illumina MiSeq and NextSeq) provide high per-base accuracy and sequencing through-
put; however, the resulting data consist of relatively short (~300 bp) reads, often permitting
the analysis of particular subregions of the full-length (~1550 bp) 16S rRNA gene [17].
Alternatively, the Oxford Nanopore Technologies (ONT) MinION sequencer is a third-
generation single-molecule sequencing platform that can sequence exceptionally long
DNA fragments (i.e., thousands to millions of bases in length) [18,19]. For this reason, the
MinION can sequence the entire ~1550 bp 16S rRNA gene, thus providing two to five times
greater coverage of the 16S rRNA gene when compared to sequencing data originating
from second-generation technologies. Full-length 16S sequence data provide a greater
number of phylogenetically informative characters, thus enhancing downstream bacterial
taxonomic assignment. This approach is important given that bacterial pathogenicity is
typically considered a species or strain level phenomenon [20]. Although per-base accuracy
of nanopore sequencing is lower (~98%) than that of more commonly used next-generation
sequencing platforms (e.g., Illumina and Pacific Biosciences HiFi (i.e., circular consensus
sequencing); both at >99.9% accuracy) similar or even greater taxonomic resolution is still
achieved with the ONT MinION [21–24]. Furthermore, with continued technological and
bioinformatic advancements, ONT-based DNA sequencing will continually improve over
time [25,26].

With respect to metabarcoding, the ONT MinION platform has been successfully
applied in several studies, including the characterization of bacterial mock communi-
ties [25,27,28]; microbiota profiling of species and tissues such as dog skin [29], canine
feces [30], equine gut [31], water buffalo milk [32], sea louse [33], and microalgae [34];
identification of fungi [35]; and characterization of plastic-associated species in the Mediter-
ranean sea [36]. Additionally, metagenetic analyses of environmental samples obtained
from glacial regions [37], aquatic environments (e.g., ocean water column [38], river wa-
ter [39], wastewater [40], and freshwater [41]), building dust [22], and the International
Space Station [42] demonstrate the potential and applicability of nanopore sequencing
for microorganism detection across diverse environments and field settings. Notably,
nanopore sequencing has been used to describe human gut [43], and nasal microbiota [44],
as well as those associated with colorectal cancer tumors [45], and thrombus samples [46].
Nanopore-based pathogen surveillance of EMS vehicles [15], prosthetic devices [47],
hospitals [48], and antibiotic resistance markers in clinical samples [49–52] clearly demon-
strate the potential of the MinION platform as a pathogen surveillance tool.

In light of the growing number of studies showing the utility of the ONT MinION for
a diverse range of biosurveillance applications and, given the lack of research on the rodent–
agriculture interface in the USA, we set out to examine the potential of the MinION for
metabarcoding rodent-borne zoonoses. Here, we show how the ONT MinION can be used
to taxonomically characterize fecal bacterial communities of farm-dwelling rodents. Our
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study area included farms in the Upper Midwest of the United States (i.e., Minnesota and
Wisconsin), regions where studies focused on the rodent–farm interface are lacking [1]. Our
intent was twofold: (1) to elucidate the farm-level rodent diversity in our study area and
(2) to use full-length 16S metabarcoding to identify rodent-borne zoonoses of agricultural
concern (Figure 1).

Figure 1. Workflow of the overall study design performed herein. (A): Rodents effectively serve as
amplifiers of bacterial pathogens across a given farm environment through fecal deposition, including
possible transmission to resident farm animals. (B): DNA extraction from rodent colon contents
(i.e., feces) and quantification. (C): Laboratory workflow to monitor bacterial communities from
rodent samples using nanopore sequencing.

2. Results
2.1. Rodent Trapping on Farms

We live-trapped 90 rodents during the course of our study; 29 from Farm A, 43 from
Farm B and 18 from Farm C (Table 1). We additionally captured two shrews (Blarina
brevicauda) on Farm C and included those in our analyses. We identified five rodent species
across our study sites, including three native (Peromyscus maniculatus, P. leucopus, and
Microtus pennsylvanicus) and two invasive species (Mus musculus and Rattus norvegicus).
The captured shrew species, B. brevicauda, is native to the Midwest. The majority of rodent
captures were centered around feed bunks, grain storage sites, and within cow barns.

2.2. Nanopore Sequencing Workflow of Full-Length 16S rRNA for Rodent Microbiome Analysis

We generated full-length 16S amplicon sequencing data comprising more than 33 million
reads from 63 farm-caught rodent and 2 shrew colon extracts. Run 1 and Run 3 included 22
rodent colon samples from the large conventional Farm (A), Run 2 and Run 4 included 23
samples from the med-sized Farm (B), while Run 5 included all 20 samples from the small
family Farm (C; Table 2). Each of the MinION sequencing runs included 12 molecularly
barcoded samples except Run 5, which included 20 barcoded samples that were collected
from individual rodent and shrew colons (Table 2). Average raw 16S rRNA reads generated
across the five sequencing runs ranged from 3.5 to 9.4 million reads and mean quality
scores of filtered reads ranged from 8.2 to 10.1 (Table 2). The per-base error rate of our
MinION sequencing was approximately 1 in 11 bases, a result that is consistent with other
nanopore studies [22,53]. However, read depths of full-length 16S amplicons averaged
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16× coverage, resulting in high-quality consensus sequences and reducing concerns of
per-base sequencing error [54]. To sort high-quality reads, pass fast5 reads were generated
from raw data using the Guppy base calling program and FAST model setting. Although
Run 3 data (~3.5 million reads) showed fewer sequencing reads than other sequencing runs,
the mean Q score (8.2), mean read length (1625.40 bp) and read length N50 (1593 bp) were
comparable (Table 2). For all sequencing runs, read lengths had a narrow distribution, with
mean read lengths ranging from 1132.70 to 1625.40 bp, which was close to the full-length
of the 16S rRNA gene (about 1550 bp). A filtering program (Cutadapt) was used to discard
reads out of a 1200 to 1800 bp length range. Collectively, our quality control measures (see
Methods) filtered out approximately 20% of initial raw reads from all runs.

Table 1. Index of all captured animals from Farm A, B and C.

Rodent Species Farm A Farm B Farm C

House mouse (Mus musculus) 27 21 0

White-footed mouse
(Peromyscus leucopus) 0 13 11

Deer mouse
(Peromyscus maniculatus) 1 4 0

Meadow vole
(Microtus pennsylvanicus) 0 5 1

Norway rat (Rattus norvegicus) 1 0 6

Shrew Species

Northern short-tailed shrew
(Blarina brevicauda) 0 0 2

Total = 92 29 43 20

Table 2. Summary statistics of 16S nanopore sequencing of rodent colon contents performed herein. N = number of rodent
samples barcoded and pooled on each MinION sequencing experiment. BP = Base Pairs.

MinION
Sequencing

Run

Farm
(N)

Active
Pores avg.

Read Count
(Unit

Million
Reads)

Mean
Read

Length

Mean Q
Score

Read
Length

N50
Total bp QC > Q7

1 A (12) 509 5.0 1132.70 9.3 1564 5.7 × 109 85.80%

2 B (11) 500 4.5 1178.30 8.3 1587 5.3 × 109 85.50%

3 A (11) 509 3.5 1625.40 8.2 1593 5.7 × 109 68.50%

4 B (11) 500 9.4 1477.10 10.1 1576 13.9 × 109 85.40%

5 C (20) 504 5.8 1472.30 8.4 1564 8.6 × 109 77.70%

2.3. Rodent Fecal Core Microbiome and Microbial Diversity

After taxonomic classification, we obtained 96.25% of classified reads and 3.75% of
unclassified reads. Total reads corresponding to bacteria were at 96.25%, and 0% reads
were assigned to virus, fungi and protozoa. The microbial classifications were obtained at
different taxonomic levels (e.g., division, phylum, class, order, family, genus, and species)
for all of the 65 colon extract samples. Overall, the most abundant phylum for all five
rodent species was Firmicutes (~75% of total reads), followed in abundance by Bacteroidetes
(12.5%) and Proteobacteria (~10%), and other phyla comprised less than ~2.5% of total
classified phyla (n = 80; Figure 2).

At the rodent species level, the house mouse (Mus musculus) was the most captured
species, with a total of 48 animals trapped from Farms A and B. After taxonomic clas-
sification of the combined house mouse reads, 77 phyla, 886 genera, and 473 bacterial
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species were obtained. At the genus and species levels, a filtering step was applied that
included a threshold of 100 reads binned to the respective taxonomic level, which retained
261 genera and 181 species passing the threshold. For M. musculus, the most abundant
genera were Lactobacillus (27.7%), Ruminococcus (10%), Helicobacter (8%), Bacteroides (7.6%),
and Blautia (6.8%) (see Supplementary Table S1). Other abundant genera included fecal or
mammalian gut microbiota (e.g., Coprococcus, Faecalibacterium, Dorea, Roseburia, Oscillospira)
and potential human pathogens and bovine mastitis-causing pathogens such as Staphylo-
coccus, Streptococcus, Bacillus, and Enterococcus, each constituting more than 1% of the total
classified reads.

Figure 2. Core rodent fecal microbiome observed herein (n = 63). Numbers above nodes are reads assigned to each taxon.

The second most dominant rodents in across our study area consisted of Peromyscus
spp., with a total of 29 captured from Farms A, B, and C. After combining and taxonomically
classifying all Peromyscus 16S rRNA reads, 58 phyla, 619 genera, and 344 species were
obtained. After threshold filtering, 139 genera and 89 species were retained. The most
abundant genus was Lactobacillus (37.6%), followed in abundance by Ruminococcus (16.5%),
Blautia (10.6%), Dorea (4.6%), Helicobacter (4%), and Streptococcus (3.4%). Other fecal-related
genera formed less than ~3% of the total (see Supplementary Table S1).

Brown rats (Rattus norvegicus) were captured from Farms A and C with a total of
seven animals. The combined nanopore reads were taxonomically classified into 47 phyla,
583 genera and 357 species. Threshold filtering retained 119 genera and 88 species, where
Lactobacillus (22%), Blautia (17.3%), Ruminococcus (11.5%), Streptococcus (7.8%), and Dorea
(6.5%) were the most abundant genera (see Supplementary Table S1). Other mammalian
gut microbiota (e.g., Oscillospira, Coprococcus, Faecalibacterium, Roseburia) and potential
human pathogenic genera (Helicobacter, Prevotella, Staphylococcus, Clostridium, Bacteroides)
compiled more than 23% of the bacterial genera.

We captured a total of six meadow voles (Microtus pennsylvanicus) from Farms B and
C. Taxonomic classification of vole 16S rRNA reads revealed 52 phyla, 542 genera and 302
species. Subsequent filtering retained 121 genera and 61 species, with the most prominent
genera in the meadow vole feces consisting of Lactobacillus (24%), Ruminococcus (19.6%),
Blautia (11.7%), Oscillospira (7.6%), and Coprococcus (5.3%) (see Supplementary Table S1).
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While examining species level composition, several bacterial species were abundant
and observed across all five rodent species (Figure 3). For example, abundant Lactobacil-
lus species included L. reuteri, L. zeae, L. salivarius, L. delbrueckii, L. brevis, L. helveticus,
L. ruminis, and L. iners. Another dominant genus Ruminococcus consisted of R. gnavus,
R. torques, R. flavefaciens, R. bromii, and R. callidus. Blautia species included B. producta and
B. obeum. The following species were dominant across all rodent samples in our study:
Dorea formicigenerans, Roseburia faecis, Prevotella copri, Faecalibacterium prausnitzii, Oscillospira
guilliermondii, Clostridium perfringens, Helicobacter pylori, and Coprococcus eutactus. The most
abundant Staphylococcus species included S. aureus, S. epidermidis, S. haemolyticus, and S. sci-
uri. The most abundant Streptococcus species included S. luteciae, S. anginosus, S. alactolyticus,
and S. infantis.

2.4. Shrew Fecal Core Microbiome and Microbial Diversity

Two shrews from the same species, Blarina brevicauda, were captured from a small
family farm (Farm C). Taxonomic classification analysis of the shrew 16S sequencing data
revealed 28 phyla, 281 genera, and 178 species. The most abundant phylum for both shrews
was Proteobacteria (~91% of total reads), followed in abundance by Firmicutes (8%), and
other phyla comprised less than ~1% of total classified phyla (n = 28; Figure 4).

Figure 3. Heatmap of the most abundant (>1%) bacterial genera, across rodent species, identified
by mapping 16S rRNA gene amplicons against the GreenGenes reference database. Genera having
low relative abundance are light in color, while those with high abundance are dark. Genera that are
pathogenic to humans appear in red font.

At the genus level, a total of 281 genera were identified and 36 genera were retained
after applying a threshold of 100 reads binned to each genus. The shrew fecal micro-
biome was rich in Klebsiella (18.8%), followed in abundance by Salmonella (16.8%), Serratia
(15.7%), Erwinia (12.6%), and Citrobacter (6.2%) (see Supplementary Table S1). Moreover,
it contained other fecal-related and potential pathogenic genera, including Providencia,
Enterococcus, Morganella, Yersinia, Enterobacter, Proteus, Clostridium, Plesiomonas, Vibrio,
Bacillus, Pseudomonas, Staphylococcus, and Streptococcus, representing less than 5% each
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of the total bacterial composition. The relative abundance of the 18 most abundant taxa
determined at the genus level is shown using bar graphs in Figure 5.

Figure 4. Shrew (B. brevicauda) fecal microbiome observed herein (n = 2). Numbers above nodes are reads assigned to
each taxon.

Figure 5. Shrew (B. brevicauda) microbiota representing > 1% relative abundance at genus (A) and species (B) levels. Potential
pathogenic genera (A) and species (B) to humans appear in red font.
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Metabarcoding analyses at the species level revealed a total of 178 species, with 29 re-
tained after applying a threshold of 100 reads binned to each species. Salmonella enterica was
the most abundant species with 21.5% reads assigned, followed in abundance by Serratia
marcescens (17.3%), Klebsiella oxytoca (16%), Erwinia soli (7.4%), Staphylococcus sciuri (6.2%),
and Trabulsiella farmeri (6%). Other abundant species included putative human and plant
pathogens such as Morganella morganii, Providencia stuartii, Enterobacter cowanii, Staphylococcus
aureus, and Brenneria quercina, each >1% of the total bacterial species composition.

3. Discussion

We used MinION nanopore sequencing to metabarcode fecal microbial communities
in peridomestic small mammals (i.e., rodents, shrews). Rodents and shrews within our
study were collected from three dairy and mixed animal farms over a two-year period. Our
nanopore-based metabarcoding pipeline (Figure 1) demonstrates the utility of the MinION
technology for the surveillance of pathogenic organisms in peridomestic pests [55–59]
and, when used for farm-level surveillance, the methodology can be leveraged to inform
and strengthen biosecurity practices. The long read length, depth of coverage, and rapid
results make MinION sequencing a robust option for pathogen surveillance. Although
nanopore sequencing has a higher per-base accuracy error rate than other next-generation
sequencing methods [53], we based our taxonomic classification on read depths of over
30 million full-length 16S (~1.5 kb) reads. We acknowledge that a high number of sequenc-
ing reads for putative pathogens does not necessarily indicate the absolute presence of
the organism; thus, standard culturing techniques and related molecular methods are still
valuable tools for the confirmation of putative pathogens. Nevertheless, for our purpose of
a primary screening tool, MinION 16S sequencing was a cost effective and rapid method
that achieved our surveillance goals. Regarding the usage of 16S rRNA gene sequence data
for the taxonomic classification of bacteria, we note that shotgun metagenomic approaches
(e.g., deep sequencing DNA isolates with second-generation Illumina technologies) can
provide a more accurate depiction of the diversity of a given microbial community than
single-gene sequence data. Moreover, such approaches can also recover detailed profiling
of antimicrobial-resistant genes within a sample. Despite these observations, there are clear
benefits with respect to MinION 16S rRNA sequencing, as the method can be performed
within individual labs (or in the field for real-time surveillance) and can effectively identify
bacteria that are abundant within a given sample.

To the best of our knowledge, this is the first study to reveal and compare the compo-
sition of bacterial communities in gastrointestinal tracts of wild-caught rodents and shrews
(e.g., M. musculus, Peromyscus spp., M. pennsylvanicus, R. norvegicus and B. brevicauda) using
a third-generation sequencing technology. Rodents are considered to be among the most
commensal synanthropic animals, especially within the context of food-production sys-
tems. Contrastingly, shrews (B. brevicauda) naturally live in woodlands, cultivated fields,
vegetable gardens and mainly feed on invertebrates [60,61]. Both rodents and shrews
retreat into barns, cellars and sheds during fall and winter months (both for shelter and
foraging), thus providing opportunities for direct and indirect (i.e., with rodent/shrew
feces and urine) contacts with humans, pets, livestock, and poultry. Such interactions
have the potential for the transmission of rodent-borne zoonoses, especially pathogenic
bacteria [1,62].

For all five rodent species, phylum level gut microbiomes were similar to that of other
rodent gut microbiomes reported in the scientific literature, with Firmicutes, Bacteroidetes
and Proteobacteria comprising more than 97% of the gut microbiota [63,64]. Firmicutes was
the most abundant phylum in all rodent species, ranging from 64% to 91.5%. In shrews, the
most abundant phylum was Proteobacteria, covering 91.7% of the total shrew microbiota.
At the genus level, Lactobacillus was the top genus for all the rodent species in our study,
which is in line with the findings of a previously reported study on laboratory rodent
microbiomes (see Supplementary Table S1) [65]. This finding implies that the core fecal bac-
terial compositions of wild and laboratory rodents share a degree of similarity. Lactobacillus
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also constitutes a significant component of the human gut microbiome [66]. Furthermore,
Ruminococcus was the second most prominent genus in all mouse species (M. musculus,
Peromyscus spp., M. pennsylvanicus), whereas Blautia was prominent in rats (R. norvegicus).
Alternatively, Klebsiella was the most prominent genus in the northern short-tailed shrew
feces, followed by Salmonella, Serratia and Erwinia. Of note is that metabarcoding data are
scant across all shrews, thus limiting genus or species-level comparisons. A single study
originating from China included the Asian house shrew (Suncus murinus) in their 16S rRNA
metabarcoding analyses and identified Clostridium as the most abundant genus in their
sample [67].

We identified a higher relative abundance of potential human and animal pathogens
in shrew fecal samples than in rodent fecal samples. In brief, the resulting data indicate
the presence of multiple putative foodborne pathogens from the Enterobacteriales order,
including Salmonella spp., Shigella spp., Plesiomonas shigelloides, Yersinia spp., and Escherichia
coli, in all small mammal species (Figure 6). Other top foodborne pathogens observed in
our analysis included Listeria monocytogenes, Campylobacter spp., Clostridium perfringens,
Vibrio spp., and Staphylococcus aureus. These are identified as major bacterial pathogens that
cause foodborne illness and hospitalization in the USA and globally each year [68].

Figure 6. Krona plot showing overall rodent and shrew-associated (n = 65) bacterial species abundance within the order
Enterobacteriales.
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Interestingly, Salmonella enterica was the most abundant species (~21.5%) in the shrew
feces but was much lower across our rodent samples (Figure 7). On the contrary, Clostridium
perfringens, Bacillus spp., and Staphylococcus aureus were abundant within rodents when
compared to the two shrew samples. Within our rodent sample, Vibrio spp. and Campy-
lobacter spp. were observed in comparatively higher abundance in R. norvegicus and M.
musculus, respectively. These bacteria can be transmitted by contaminated food and water,
and, within our study, they had a greater relative abundance in shrew fecal samples than
in those of rodents.

Mastitis is a leading cause of cow culling and causes substantial economic losses to
the dairy industry [69]. Because a majority of our rodent samples were collected from
large-sized (Farm A; ~20,000 cattle) and medium-sized (Farm B; ~600 cattle) dairy farms,
we investigated the presence and abundance of pathogens causing bovine mastitis in the
fecal samples of the farm-dwelling rodents. Many important mastitis-causing pathogens,
including Streptococcus spp., Staphylococcus spp., Klebsiella spp., Enterococcus spp., Enterobac-
ter spp., Mycoplasma spp., and Corynebacterium spp., were observed in varying abundance
across our rodent and shrew samples. E. coli, Streptococcus spp., Staphylococcus spp., and
Corynebacterium spp. are well known environmental mastitis pathogens [70], and the
presence of these pathogens in the resident rodent population of each dairy farm is a
putative health risk to the resident cattle, especially when considering the fecal output of
commensal rodent species into the farm environment [1]. Our metabarcoding data indicate
that the rodents sampled during our trapping events are possible reservoirs of mastitis
pathogens and have the potential to continuously introduce these pathogens into the dairy
farm environments. Moreover, they can amplify and mechanically vector these pathogens
from sick to susceptible animals through fecal-based pathogen amplification [1]. When
performing rodent species comparisons of the relative abundance of mastitis pathogens
across Farms A, B, and C (Figure 7B), the house mouse (M. musculus) exhibited the highest
number of mastitis-associated pathogens. Given this observation and in light of our farm-
level observations, we hypothesize that because M. musculus cohabitates with cows inside
barns (i.e., tunneling and nesting extensively in bedding material and wall insulation),
they are exposed to a greater overall amount of mastitis pathogens by direct and indirect
interactions with resident dairy cow herds.

Figure 7. Abundance of foodborne (A) and mastitis (B) pathogens in all small mammal species.

Rodent and shrew-borne bacterial pathogens can cause human diseases through vari-
ous routes, especially by urine and fecal output into water and food resources. In our study,
rodent fecal samples contained a variety of zoonoses of concern to human health in high
abundance, including: Helicobacter pylori, known to cause chronic gastritis, gastric ulcers,
and stomach cancer [71]; Prevotella copri, associated with the pathogenesis of rheumatoid
arthritis [72]; pathogens related to nosocomial infections such as Morganella morganii, Serra-
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tia marcescens, and Providencia stuartii [73,74]; and opportunistic pathogens associated with
splenic abscess (Parabacteroides distasonis) and anaerobic peritoneal infections (Bacteroides
fragilis) [75,76].

Rodents are well-known across the globe for their commensal nature, living in close
proximity to populations of both humans and domesticated species. An increasing number
of studies suggest that rodents may serve as potential sources of infectious zoonotic diseases
via pathogen amplification and cross-species transmission [1]. Surprisingly little attention
has been paid to rodents associated with food-production systems in the United States,
despite the fact that they occupy food animal farms, fresh produce lands, and processing
facilities across the country. In our study, a substantial number of sequences obtained
from the northern short-tailed shrew were identified as potential foodborne pathogens.
It is possible that B. brevicauda is a reservoir of bacterial foodborne pathogens; however,
shrews are not considered peridomestic species and thus transmission risk is likely quite
low. Alternatively, invasive M. musculus and R. norvegicus and native Peromyscus spp.
readily adapt to farm environments and have the capacity to establish abundant on-farm
populations. We recorded evidence of large on-farm populations of both M. musculus and
R. norvegicus consisting of subfloor tunneling in barns and outbuildings, nesting within
wall insulation and livestock bedding, and accessing livestock food storage areas. Despite
observing a large population of R. norvegicus on Farm A, our live-trapping methods were
not ideal for collecting R. norvegicus. Enhanced species-specific trapping efforts with pre-
baiting measures to acclimate the rats and the use of multiple trapping methods might
overcome trap avoidance behaviors exhibited by R. norvegicus [77]. Our personal observa-
tions during farm-level trapping and subsequent bacterial metabarcoding data indicate that
farm-dwelling rodents are potential reservoirs of many putative zoonotic foodborne and
mastitis-associated pathogens. In light of these results, we strongly recommend additional
research focused on the rodent–agricultural interface across the United States.

4. Materials and Methods
4.1. Rodent Trapping and Sample Collection on Farms

During the summer (2019) and fall (2019, 2020), we collected rodents from one dairy
cattle farm (A), one mixed animal (dairy cattle and hog) farm (B) and another mixed animal
(cattle and horse) farm (C). Farms A and B are located in Nicollet and Stevens counties of
Minnesota, respectively, and Farm C is in southeastern Wisconsin in Sauk County. Farm
A is a large dairy operation (~20,000 dairy cattle), Farm B is a medium-sized operation
(600 dairy cattle and 400 hogs), and Farm C is a small-sized family farm (cattle and horses
< 100 animals). Rodent activity was elevated on farms per observations by farm managers,
particularly on Farm A where we observed hundreds of Norway rats (R. norvegicus)
actively foraging around compost piles during daylight hours. All farms had poison
bait stations, kill traps and cats as rodent control measures during the time of our visits.
Four nights of rodent trapping were conducted at each study site using 150 Sherman
live traps baited with oats. Decontamination of all traps was performed using a 10%
sodium hypochlorite solution (10 min soak) before and after each trapping event. All
trapped animals were humanely euthanized following approved UMN IACUC protocols
(protocol number 1809-36374A). Small mammals were collected with approval by the
Minnesota Department of Natural Resources under Special Permit No. 23896. Two shrews
(Blarina brevicauda) were collected during the course of our research and were included
in our analyses. Standard morphological techniques were used to identify rodents and
shrews to species-level and metadata (e.g., species, age, weight, sex, body measurements)
were collected for each individual animal. Biological samples (e.g., feces, colon) were
collected and preserved (e.g., liquid nitrogen, freezer) for metabarcoding analysis and
further quantification of pathogens of interest. A schematic workflow of the overall study
design is shown in Figure 1 and specimens examined are provided in Table S2.
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4.2. DNA Extraction

DNA was extracted with a QIAamp PowerFecal Pro DNA Kit (QIAGEN, Hilden,
Germany). Snap-frozen rodent and shrew feces and colon extracts were stored at −80 ◦C
and were used for DNA extraction. Briefly, 250 mg of colon contents were added to
PowerBead Pro tubes and 800 µL of solution CD1 was mixed by vortexing. A bench top
PowerLyzer 24 Homogenizer (QIAGEN, Hilden, Germany) was used for homogenizing
the samples at 2000 rpm for 30 s, pausing for 30 s, then homogenizing again at 2000 rpm
for 30 s to enhance cell lysis. PowerBead Pro tubes were centrifuged at 15,000× g for
1 min, and the resulting supernatant was transferred to clean microcentrifuge tubes. We
used fully automated QIAcube connect instruments (QIAGEN, Hilden, Germany) for
DNA extraction following the manufacturer’s instructions. DNA concentrations were
measured by fluorescence in a Qubit 4 fluorometer (Thermofisher Scientific, Waltham, MA,
USA) using the Qubit dsDNA BR Assay Kit (Thermofisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions.

4.3. Nanopore Library Construction and Sequencing

The 16S Barcoding Kit (SQK-RAB204; Oxford Nanopore Technologies, Oxford, UK)
was used to prepare the amplicon library, following the manufacturer’s instructions for 1D
sequencing strategy. The 16S region (1.5 kb) of bacteria was amplified using specific primers
(27F-1492R) and subsequently barcoded. This approach enables targeted sequencing of mul-
tiple samples and provides genus-level resolution. Five sequencing runs were performed
with a total of 65 samples, including 11 (run 1, 3, 4), 12 (run 2), and 20 (run 5) barcoded
samples from individual rodents and shrews. Briefly, genomic DNA samples were diluted
to 100 ng/µL and amplification of the full-16S rRNA gene was performed by PCR with
reaction volume of 50 µL, using the primers 27F 5′-AGAGTTTGATCCTGGCTCAG-3′ and
1492R 5′-GGTTACCTTGTTACGACTT-3′, and Taq DNA polymerase LongAmp (NewEng-
land Biolabs, Ipswich, MA, USA). Amplification was performed using Bio-Rad Laboratories
PCR Thermal Cycler T100™ (Bio-Rad Laboratories, Hercules, CA, USA) with the following
PCR conditions: initial denaturation at 95 ◦C for 1 min, 25 cycles of 95 ◦C for 20 s, 55 ◦C for
30 s, and 65 ◦C for 2 min, followed by a final extension at 65 ◦C for 5 min.

PCR products (50 µL each) were purified with 30 µL Agencourt AMPure XP beads
and incubated in a HulaMixer for 5 min at room temperature. After a magnetic bead
washing step, purified products were eluted in 10 µL of elution buffer (10 mM Tris-HCl
pH8.0 with 50 mM NaCl). The amount and purity of the sequencing library was quantified
using a Qubit 4 fluorometer (ThermoFisher Scientific, Waltham, MA, USA) following
the manufacturer’s instructions. Libraries were pooled in multiplex mode following the
addition of 1 µL of rapid adapter (Oxford Nanopore Technologies, Oxford, UK) and
incubated at room temperature for 5 min. The amplicon library (11 µL) was then diluted
with a running buffer (35 µL) containing 3.5 µL of nuclease-free water and 25.5 µL of loading
beads. Five nanopore sequencing libraries were separately run on FLO-MIN106 R9.4 (run 1,
2, 4, 5) and FLO-MIN111 R10.3 (run 3) flow cells (Oxford Nanopore Technologies, Oxford,
UK). Sequencing runs were performed for 48 h. using the MinION control software,
MinKNOW 4.0.20 (Oxford Nanopore Technologies, Oxford, UK).

4.4. Bioinformatic Analyses

After the completion of each sequencing run, raw signals in nanopore fast5 files
were base-called using Guppy (version3.2.2, Oxford Nanopore Technologies, Oxford, UK),
and a quality filter step was applied to retain only sequences with a mean Q-score ≥ 7.
De-multiplexing of the barcoded samples was conducted using Porechop [78]. Adapter
trimming and a second round of de-multiplexing were performed using Cutadapt 1.91 [79].
Only reads between 1200 and 1800 bp were selected for further analysis using Cutadapt.
Read statistics for each sequencing run were obtained using Nanostat and NanoPlot [80].
For taxonomic assignments, Kraken2 [81] and Bracken [82] were used with the Greengenes
(GG) database (https://benlangmead.github.io/aws-indexes/k2, accessed on 26 March

https://benlangmead.github.io/aws-indexes/k2
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2021). While generating the Bracken classification report, a threshold of >100 reads was
applied for higher confidence at the genus and species levels. For visualization Krona
tools and Pavian interactive applications were used to generate taxonomic charts and flow
diagrams [83,84]. The ggplot2 package (version 3.2.1) in RStudio software (version 3.3.3)
was used to create a heatmap [85]. BioRender was used for illustrations and diagrams
(Created with BioRender.com). Base-called data were uploaded to the EPI2ME interface, a
platform for cloud-based analysis of MinION data, and WIMP (ONT; “What’s in my pot”
software) analysis was performed in parallel to compare results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10091183/s1, Table S1: Percentages of full-length 16S rRNA reads taxonomically
assigned to bacterial genera per rodent and shrew species. Listed genera represent the top 15 of each
rodent and shrew species, collectively; Table S2: specimens examined.
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