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Opportunities for Novel Therapies 
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MA, USA

Skeletal muscle, a principal component of body composition, 
along with fat and bone mass, is highly important for metabolic 
health since divergences from normal values are associated with 
several pathological conditions. Skeletal muscle mass and mus-
cle strength exhibit a steady decline after the fourth decade of 
life and the rate of decline is accelerated with aging [1]. Loss of 
skeletal muscle mass is an independent risk factor for osteopo-
rosis, falls and fractures, impaired function and mortality [2]. 
For this reason, there is a great interest to define the risk factors 
and the mechanisms that contribute to this.

Investigators with the Kangbuk Samsung Health Study evalu-
ated the risks of rapid decreases in lean mass in reaction to age 
and sex among relatively young Korean adults, participants in a 
health screening program [3]. The authors point out that lean 
mass decreases significantly with aging, even among relatively 
young adults. This decrease was more noticeable among women 
who displayed a greater risk of a rapid decrease in lean mass, 
compared to men. Additionally, the percentage of fat mass lost 
increased as the participants aged.

There is a considerable number of studies regarding the loss 
of lean mass in the elderly and its relationship with metabolic 
diseases as well as mortality [4]. However, this is the first large-
population study which examined this phenomenon in a popula-
tion with a relatively wide age range and demonstrated that the 
same phenomenon exists even in younger adults. Kim et al. [3] 
attributed their findings to aging processes, sex-related genetic 

differences and racial differences, too. Hormonal and mitochon-
drial factors may play important roles, too. 

The human skeletal muscle demonstrates age-associated mi-
tochondrial changes, such as age-related decline in mitochon-
drial DNA and mRNA capacity, mitochondrial ATP production 
and oxygen consumption which lead to the formation of giant, 
bioenergetically inefficient mitochondria that release more reac-
tive oxygen species [5]. Consequently, this mitochondrial dys-
function gives rise to activation of skeletal muscle apoptosis 
which causes the skeletal muscle atrophy that occurs with ag-
ing, a condition characterized by a reduction of skeletal mass, 
changes in protein synthesis, replacement of muscle fibers with 
fat and development of fibrosis [6]. 

It is noteworthy that the loss of muscle mass is often con-
cealed by an unaltered or even increasing body mass index, due 
to increased adiposity. The co-presence of sarcopenia and obe-
sity is defined as a syndrome which is relatively novel and it is 
called sarcopenic obesity (SO) [7]. These two conditions share 
common pathophysiological mechanisms such as insulin resis-
tance (IR), increased levels of proinflammatory cytokines and 
inflammation, oxidative stress as well as specific hormonal 
changes. Specifically, IR, which develops with age, seems to be 
very closely associated with mitochondrial dysfunction, muscle 
fiber atrophy, changes in muscle fiber type and the development 
of skeletal muscle lipid deposition [7]. Moreover, insulin plays 
a key-role in maintaining muscle mass through stimulation of 
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protein synthesis and thus IR prompts proteolysis in muscles 
[8]. As regards the role of inflammation and oxidative stress, 
which are also associated with aging, it has been suggested that 
sarcopenia is a proinflammatory state [9]. Oxidative stress pro-
motes the expression of transcription factors like nuclear factor 
κΒ, which stimulates proteolytic pathways and augments the 
generation of proinflammatory cytokines and the cytokine-re-
lated aging process [9]. Tumor necrosis factor α affects protein 
synthesis by modifying translation initiation [10]. Furthermore, 
high levels of interleukin 6 and C-reactive protein seem to be 
associated with a more pronounced decline in muscle strength 
[11]. 

Skeletal muscle is considered to be a secretory organ. One of 
its secreted factors (myokines) with an important role in the 
control of skeletal muscle mass is myostatin. Myostatin belongs 
to the transforming growth factor β family, is a strong inhibitor 
of skeletal muscle differentiation and growth [12] and it seems 
to be related to muscle function parameters, such as strength 
and power. The peptide binds to a transmembrane receptor, the 
activin receptor IIB (ActRIIB) which regulates intracellular sig-
naling pathways and activates proteins in the Smad family. 
These proteins decrease the levels of MyoD, a factor that cause 
enhanced myoblast proliferation [12,13]. Knockout mice re-
peatedly manifested significant skeletal muscle hypertrophy 
[14], whereas dramatic muscle atrophy was observed when 
myostatin was being administered systemically [15]. Humans 
with mutations related to myostatin deficiencies have increased 
muscle mass, too. A representative example is a newborn with 
increased muscle mass compared with other newborns [16]. 
This child was found to have a myostatin null mutation and also 
other family members were exceptionally strong. Also, myo-
statin seems to be involved in several functions of the human 
body. Towards this direction is a study in Colombian people 
which has been recently completed [17]. The investigators 
aimed to examine and validate three myokines (myonectin, 
myostatin, and fibroblast growth factor 21) as IR biomarkers.

A sufficient number of studies have demonstrated the associa-
tion of myostatin with sarcopenia. Higher serum and mRNA 
levels were observed in old individuals compared to younger 
participants [18]. However, contradictory findings derive from 
other studies which did not report any age-related differences in 
circulating protein or skeletal muscle myostatin mRNA levels 
[19]. These data may suggest that myostatin may not be a pri-
mary provocation for sarcopenia. 

It is also very interesting that myostatin levels in skeletal 
muscle may be altered in relation to adipose tissue, particularly 

in SO. It has been demonstrated that myostatin deficient mice 
have a lesser amount of subcutaneous adipose tissue and that 
myostatin RNA can be isolated in adipocytes [20]. 

Inhibiting myostatin activity may thus lead to effective thera-
peutic strategies for increasing muscle mass and strength or 
even for controlling excess body fat. Similar to animal studies, 
the myostatin expression and secretion levels were increased in 
skeletal muscle from extremely obese women in comparison 
with non-obese individuals and the circulating concentrations of 
myostatin were correlated with IR [21]. Furthermore, women 
who received the highest dose (3 mg/kg) of ACE-031, a soluble 
form of ActRIIB, not only had a significant increase in total 
body lean mass, but they also lost fat mass after 57 days of ob-
servation. In addition to these, the changes in the serum bio-
markers for adipose tissue, adiponectin and leptin, reinforced 
the finding of improved fat metabolism [22]. Follistatin is an 
antagonist of myostatin signaling through binding to the ActRI-
IB receptor [13]. Transgenic mice overexpressing follistatin 
specifically in skeletal muscle have been shown to present ex-
aggerated increase in muscle growth similar to that seen in 
myostatin-knockout mice [23]. In addition to follistatin, fol-
listatin-like 3 is a protein with structural and functional proper-
ties, similar to those of follistatin, and it seems to be a very 
strong inhibitor and the major binding-inhibiting protein of 
myostatin [24]. Nevertheless, it remains unclear whether inhibi-
tion of the myostatin/ActRIIB pathway might have other bene-
ficial or adverse effects on other organs or tissues and this is an 
active area of investigation [25].

In summary, myostatin inhibition and/ or the interplay of hor-
monal factors that act by binding to the ActRIIB seem to have 
the capability to increase the skeletal muscle mass and reduce 
the adipose mass although existing data regarding the potential 
effects of myostatin inhibition are limited. The quality of the 
tools that we have at our disposal is not satisfying and due to 
this, slow progress has been made in the field. Thus, further 
work in this direction is required. In any case, the findings of 
the study by Kim et al. [3], regarding the lean mass decrease 
even among young adults, articulate the need for developing ef-
fective therapeutic methods for the treatment of this condition.
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