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ABSTRACT Objective: Non-invasive respiration detection methods are of great value to healthcare applica-
tions and disease diagnosis with their advantages of minimizing the patient’s physical burden and lessen
the requirement of active cooperation of the subject. This method avoids extra preparations, reduces
environmental constraints, and strengthens the possibility of real-time respiratory detection. Furthermore,
identifying abnormal breathing patterns in real-time is necessary for the diagnosis and monitoring of possible
respiratory disorders. Method: A non-invasive method for detecting multiple breathing patterns using C-band
sensing technique is presented, which is used for identifying different breathing patterns in addition to extract
respiratory rate. We first evaluate the feasibility of this non-contact method in measuring different breathing
patterns. Then, we detect several abnormal breathing patterns associated with certain respiratory disorders at
real time using C-band sensing technique in indoor environment. Results: Mean square error (MSE) and
correlation coefficient (CC) are used to evaluate the correlation between C-band sensing technique and
contact respiratory sensor. The results show that all the MSE are less than 0.6 and all CC are more than
0.8, yielding a significant correlation between the two used for detecting each breathing pattern. Clinical
Impact: C-band sensing technique is not only used to determine respiratory rates but also to identify breathing
patterns, regarding as a preferred noncontact alternative approach to the traditional contact sensing methods.
C-band sensing technique also provides a basis for the non-invasive detection of certain respiratory disorders.

INDEX TERMS Breathing patterns, C-band sensing technique, non-invasive detection, respiratory rate.

I. INTRODUCTION
BReathing is not just a matter of inhaling the air and exhaling
the air. The entire respiratory pattern is important to human
health. Rate, depth, timing, and consistency of breaths are all
vital to the delicate balance of respiration and metabolism.
On the one hand, the respiration rate is one of the four primary
vital signs of life, which is useful in detecting or monitoring
medical problems [1]. On the other hand, certain diseases or
injuries can cause change in the breathing pattern. So careful
observation of the respiratory rate and pattern is a crucial part
in the diagnosis and during the course of treatment of various
diseases [2]. Normal respiration rate for a healthy adult at rest
varies form 12-20 breaths/min and it is considered abnormal
to have a rate under 12 breaths/min or over 20 breaths/min [3].

Abnormal breathing patterns indicate the potential for injury
or metabolic disorders. For example, Biot’s respiration is
caused by damage to the pons due to strokes or trauma or
by pressure on the pons due to uncial or tentorial hernia-
tion. Biot’s respiratory pattern can also be induced by opi-
oid use [4]. There are multiple types of abnormal breathing
patterns, includes Biot’s respiration, Cheyne-Stokes respira-
tion, Kussmaul breathing, Ataxic breathing, sighing breath-
ing and so on [4]–[6]. Some breathing patterns are presented
in Figure 1. The characteristics of these breathing patterns are
described clearly in this figure. So the long-term and real-time
detection of respiratory signals can be used in the discovery
and diagnosis of respiratory disorders. Therefore, there is a
need for a non-invasive method which accurately captures
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respiratory function under various breathing conditions in the
area related to respiratory physiology.

Many different measurement methods can be used to
obtain the respiration information. The finest monitoring
technique is spirometry, which directly measures the volume
and flowof air that can be inhaled and exhaled [7]. Some com-
mon methods for continuous respiration monitoring in hos-
pital and clinical settings are inductance pneumography [8],
electrical impedance pneumography (EIP) [9], and capnogra-
phy [10]. However, these methods require a patient to visit a
hospital, which cause the inconvenience to the patient. Other
methods like utilizing pressure sensor arrays [11] or cam-
eras [12] are also used for monitoring respiration. However,
there are expensive and light-limited disadvantages to these
methods.

Radio Frequency (RF) based monitoring methods
overcome above-mentioned drawbacks, and have caught
much attention as the most promising candidates. Under
this category, these methods can be classified, based
on special wireless devices and based on commercial
off-the-shelf transmitter-receiver. In these methods spe-
cial wireless devices are used such as the Doppler
radar [13], [14], the ultra-wide-band (UWB) radar [15], [16],
and the Frequency Modulated Continuous Wave (FMCW)
radar [17], [18]. However, these systems require specialized
devices with high complexity, hindering the development of
them.

On the other hand, some systems based on commercial
off-the-shelf transmitter-receiver are built on the existing
wireless network infrastructure. For example,
Patwari et al. [19] and Kaltiokallio et al. [20] utilized the
received signal strength (RSS) to detect human breathing and
estimate the breathing rate. In recent studies the RSS mea-
surement obtained from the universal software radio periph-
eral (USRP) devices is used for respiration detection [21].
However, the RSS has lower detection precision because
it cannot characterize multipath propagation. Therefore the
abnormal breathing (e.g., sleep apnea) is hard to identify
from the RSS data. So can we find a more sensitive wireless
signal than the RSS data that various breathing patterns can be
detected? The answer is yes, the fine-grained channel infor-
mation is discovered that is much more sensitive than RSS.

Based on the above, we propose a non-invasive detec-
tion method based on radio signals, called C-band sensing
technique. It has abilities to sense breathing in an indoor
environment by using the propagation of electromagnetic
waves. Specifically, we build a pair of prototypes operating at
C band to capture respiration information. This system lever-
ages the readily available channel information to detect the
slight change caused by breathing. Compared with the RSS,
our system utilizes fine-grained channel state information
that contains both amplitude and phase information of mul-
tiple orthogonal frequency division multiplexing (OFDM)
subcarriers.

In this paper, we first analyze the feasibility of using
C-band sensing technique in detecting different types of

breathing patterns. Next, we leverage one pair of proto-
types to detect several abnormal breathing patterns relevant
to certain diseases in the door environment. These breath-
ing patterns are professionally playing role according to the
medical descriptions given in [4]–[6]. In addition, we show
that the correlation between wireless signals obtained from
C-band sensing technique and respiratory sensor data for
various breathing patterns. Finally, this demonstrates that
C-band sensing technique can provide non-contact, contin-
uous fine-grained respiratory patterns detecting. It also sup-
ports real-time and long-term respiratory patterns monitoring
in home.

The main contributions of this paper are summarized as
follows.
• We propose a non-invasive method, C-band sensing
technique, which not only can detect the respiratory rate
but also can capture different types of breathing patterns.

• Our proposed system utilizes fine-grained channel state
information to detect various breathing activities, espe-
cially for detecting multiple abnormal breathing pat-
terns. The proposed C-band sensing technique provides
a basis for the non-invasive detection of certain respira-
tory disorders.

• Extensive experiments show that our system has sig-
nificant correlations with dedicated respiration sensor,
in other words, our system can achieve comparable per-
formance as dedicated respiration sensor.

The rest of this paper is organized as follows. Section II
presents the theoretical foundation of C-band sensing tech-
nique in detecting respiratory activities. Section III introduces
the overall design of the proposed system that covers feasi-
bility analysis and system overview. Section IV describes the
signal processing used in wireless data and reference data.
Section V describes the experimental setup and discusses the
experimental results for various breathing patterns. Finally,
conclusion is given in Section VI.

II. METHODS AND PROCEDURES
The proposed method uses C-band sensing technique to
detect breathing, and this technique can sense the minute
movements by collecting fine-grained channel state informa-
tion through propagation of electromagnetic waves. In the
indoor environment, the RF signal generated by the trans-
mitter reaches the receiver through multiple paths, thus form-
ing the receiving signal with multipath superposition. This
receiving signal carries information, reflecting environmental
characteristics under the influence of the propagating physi-
cal space. The environment refers to the physical space of sig-
nal transmission, including human factors (human position,
breathing, etc.) and environmental factors [22]. RF based
sensing method uses precisely the influence of physical space
on the signal to inversely deduce the characteristics of the
sensing target to realize sensing.

When a person exists in the physical space, the additional
path is introduced due to the body’s reflection or diffraction
of signals. Therefore, the influence of human behavior on
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FIGURE 1. Respiration patterns of normal and abnormal.

FIGURE 2. The mechanism of detecting breathing by C-band sensing
technique.

the propagation of signals, as part of the physical channel,
is also recorded by the receiving signals and described in
the form of channel state information. For this experiment,
the transmitter continuously transmits wireless signals with a
specific frequency, and the receiver receives signals sent by
the transmitter. Meanwhile the minute changes in the chest
and abdomen caused by breathing, induces change in the
signal propagation path (as shown in Figure 2), recorded by
the received signals in the form of channel sate information.

C-band sensing technique adopts OFDM technology
which divides the single spatial stream into a series of orthog-
onal channels, called subcarriers. Each received channel state
information packet is composed of a group of 30 subcarriers,
given as follows:

H = [H (f1) ,H (f2) ,H (f3) , . . . ,H (fn)] (1)

here H represents the Channel Frequency Response (CFR),
n = 30 is the total number of subcarriers.

Each subcarrier contains amplitude and phase informa-
tion. Assuming k ∈ [1, 30] is the sequence number of the

subcarrier, the CFR of the kth subcarrier can be expressed as:

H (fk ) = ||H (fk )||ej
6 H (fk ) (2)

where, ||H (fk) || represents the amplitude information and
6 H (fk) denotes the corresponding phase information.
To detect breathing activities, the data packets need to

be collected continuously within certain time, and all the
recorded measurements for time duration is represented as:

H = [H1,H2,H3, . . . ,HN ] (3)

N is the total number of data packets (CFR) received and
serve as the primary input for detecting and analyzing breath-
ing patterns.

FIGURE 3. The subcarrier sequence collected over a period of time when
a person sits in a chair quietly. (a) The original amplitude information.
(b) The original phase information. (c) The original phase difference.

Figure 3(a) and 3(b) shows the original amplitude and
phase information of a subcarrier using data collected over
a period of time when a person sits in a chair quietly.
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The sitting posture is selected to detect breathing activity
because breathing rate has little change while sitting [23].
An obvious periodic up and down trend can be observed from
the amplitude information, which could be caused by the
person’s breathing. But the phase information is random and
cannot be used directly. Therefore, the processing procedure
is essential.

To obtain the available phase information from the raw
channel state information, the phase difference between two
receiving antennas is used to sense human motion [24]. The
key idea is that the phase difference profile for the stationary
states is stable enough to distinguish motions. So can the
phase difference between two receiving antennas detect res-
piration? A sinusoidal like periodic wave can be seen clearly
from the phase difference between two receiving antennas as
shown in Figure 3(c). We adopt one transmitting and three
receiving antennas configuration in this experiment. More-
over, we note that the amplitude information presents a better
performance than the phase difference. Therefore, the ampli-
tude information is used for breathing patterns detection in
the next section.

III. SYSTEM DESIGN
In this section, we first validate the feasibility of detecting
different breathing patterns using C-band sensing technique
and lately we presented the overview of our system design.

A. FEASIBILITY ANALYSIS
Based on the previous research work [23], the proposed
C-band sensing technique can detect normal breathing activ-
ity, but it is not known if this method can detect abnormal
breathing activity such as apnea. Therefore, before detecting
different breathing patterns, we need to know whether our
proposed method can detect breathing rate, depth and pause.
For this purpose, we perform several different experiments
to investigate the feasibility of C-band sensing technique
on detecting different breathing patterns. In this experiment,
the subject is requested to:

(1) Breathe normally for one minute;
(2) Breathe normally followed by deep breaths;
(3) Breathe deeply, pause, and then normal breathing.
The results of these three experiments are presented

in Figure 4(a), 4(b) and 4(c) respectively. The respiratory
rate is measured by counting the number of breaths for
one minute [2]. It is legible from Figure 4(a) that there are
15 breaths for oneminute, with the respiratory rate of 0.25Hz.
From Figure 4(b), the subject first breaths normally 11 times
and then takes 13 deep breaths. The amplitude fluctuation
of normal breathing is less than 2 values (from 17 to 19)
while the amplitude of deep breathing fluctuates more than
2 values or some even by 3 values. An apparent apnea can be
observed between 18 and 40 seconds in Figure 4(c). These
three experiments illustrate that rate, depth and pause of
respiration can be detected perfectly by our proposedmethod.
Based on these findings, there is no doubt that using C-band
sensing technique can detect various breathing patterns.

FIGURE 4. (a) Experiment 1: Normal breaths for one minute.
(b) Experiment 2: Normal breaths followed by deep breaths.
(c) Experiment 3: Deep breaths, pause followed by normal breaths.

B. SYSTEM OVERVIEW
The basic idea of the proposed system is to detect and analyze
respiratory patterns through fine-grained channel state infor-
mation collected by C-band sensing technique. The structure
of this system mainly consists of three modules: data col-
lection, signal processing and detecting respiratory patterns,
as illustrated in Figure 5.

For data collection, the C-band prototypes are used to col-
lect time-series amplitude measurements that are the primary
input of our system. They utilize system-generated periodic
traffic to achieve continual long-term data acquisition. These
data are then transported to signal processing module and
is taken as the input of this module for further analysis.
Because there are various abnormal breathing patterns to
detect, the data processing method of normal breathing is
no longer applicable. So we propose a signal processing
module more suitable for multiple breathing patterns. Signal
processing module includes four parts; the subcarrier selec-
tion method is firstly conducted. The subcarrier selection
is of crucial importance because the amplitudes of different
subcarriers are expressing different sensitivity to the minute
movements caused by breathing. We propose a subcarrier
selection method based on scoring mechanism, which selects
subcarriers by scoring the variance of subcarriers and the
difference between the envelope and the signal. Second,
the wavelet filter [25] and the moving average filter [26]
are used to denoise and smooth for the selected subcarriers.
The third step is to estimate respiratory rate. Spectrogram
analysis based on Short Time Fourier Transform (STFT)
is used in extracting the respiration rate in each breathing
pattern. Finally, the correlation between the two is estab-
lished by comparing the measurements made using C-band
sensing technique with the measurements made by contact
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FIGURE 5. Overview of system flow.

respiratory sensor. After these processes, normal breathing
and six abnormal breathing associated with certain breathing
disorders are detected.

IV. SIGNAL PROCESSING
In this section, signal processing methods are described in
detail. This module contains subcarrier selection method,
filtering method, respiratory rate extraction and correlation
of wireless signal with respiratory sensor.

A. SUBCARRIER SELECTION METHOD
A group of 30 subcarriers can be obtained at the same time
from each channel state information. Figure 6(a) shows the
amplitude information of four subcarriers (subcarrier 1, 5,
10 and 21) over a period of time when a person breathes nor-
mally. We observe that the amplitudes of different subcarriers

FIGURE 6. (a) The amplitude information of four subcarriers when a
person breathes normally. (b) The variance of 30 subcarriers.

display different sensitivity to breathing behavior, which is
because the frequency of subcarriers is different. For better
detection of the breathing activity, it is necessary to remove
the subcarriers not sensitive to the breathing activity.

We first consider choosing subcarriers with larger vari-
ance. Figure 6(b) represents the variance of 30 subcarriers.
As can be seen from Figure 6(b), the variance of subcarri-
ers 21 and 5 is significantly higher than that of other sub-
carriers. However, from the Figure 6(a) it is evident that
subcarriers 21 and 5 fluctuate chaotically and contain more
outliers. Therefore, for subcarrier selection, not only the
variance but also the difference between the envelope and
the signal should be considered. As higher variance means
more sensitivity and too much difference between envelope
and signal indicates more outliers. By synthesizing these two
aspects, we propose a subcarrier selection method based on
scoring mechanism. To be specific, each subcarrier is scored
in both the variance and the difference between the envelope
and the signal. We thus use this method to select subcarriers
with a high periodicity level for further analysis.

B. FILTERING METHOD
To improve the reliability of the received data, the noise
contained in the received data should be eliminated. Firstly,
we used the wavelet filter [25] for denoising, because it can
not only filter out outliers but also retain the sharp transi-
tions of signals. Specifically, we apply soft heuristic SURE
thresholding and scaled noise option, on detail coefficient
obtained from the decomposition of raw data of the selected
subcarriers, at level 4 by sym8 wavelet. After that, we further

VOLUME 7, 2019 2700211



D. Fan et al.: Small-Scale Perception in Medical Body Area Networks

FIGURE 7. The amplitude information of a subcarrier. (a) Before using the
filter. (b) After using the filter.

apply a moving average filter to smoothen the data and to
remove the high-frequency noise not caused by breathing.
The Figure 7(a) and 7(b) represents the amplitude informa-
tion of a subcarrier before and after using the filter. It can
be clearly seen that the sinusoidal waves reflect the periodic
up-and-down of the chest and abdomen movements caused
by inhaling and exhaling.

C. RESPIRATORY RATE EXTRACTION
The Short Time Fourier Transform (STFT) technique is used
for extracting the respiration rate in each particular breathing
pattern. The procedure for computing STFT is to divide a
longer time signal into shorter segments of equal length and
then compute the Fourier transform separately on each shorter
segment. We used the STFT technique to transform the wave-
forms to spectrograms, so that the amplitude information can
be analyzed in the time-frequency domain. The spectrogram
uses a sliding window to divide the waveforms into small
samples with equal segment, and then executes Fast Fourier
Transform (FFT) on these samples. Time, frequency, and
FFT amplitude are three dimensions of the spectrogram. The
tradeoffs between time and frequency resolution of STFT
depends on the window size. The smaller the window, the
higher the time resolution will be. However, FFT decreases
the accuracy due to the small number of samples, resulting in
poor frequency resolution. So it is crucial to choose a suitable
window size.

In our experiments, the frequency of the measurements
for human breathing is less than 1Hz and their changes are
in tens of milliseconds. Thus we choose a Hamming win-
dow size of 512 samples as the sliding window, the over-
lapped size of 511 samples in each segment and an FFT size
of 3000 samples. The sample frequency is 50 Hz. By com-
puting, it gives suitable time resolution of 20 ms and fre-
quency resolution of 0.017 Hz to capture the minute chest
movements caused by breathing. Figure 8 illustrates an exam-
ple of a spectrogram for normal breathing (The waveform
is shown in Figure 7). From Figure 8, the respiration rate
estimated using the STFT technique is 0.25 Hz which agrees
with the peak detection method where the respiration rate is
15 breaths/min (0.25 Hz).

FIGURE 8. (a) Spectrogram based on the STFT technique for normal
breathing. (b) The breathing cycles based on the peak detection method
for normal breathing.

The peak detection method can only be used to extract
the respiration rate under a normal breathing condition. This
method is no longer suitable for extracting the respiration
rate because of the non-periodic characteristic of abnormal
breathing patterns. Therefore, we choose the STFT technique
for respiratory rate extraction.

D. CORRELATION OF WIRELESS SIGNAL WITH
RESPIRATORY SENSOR
It has been demonstrated that the use of C-band sensing
technique can detect respiratory rate, depth and pause in the
previous sections. To further evaluate the detection accuracy
of C-band sensing technique, we compare the measurements
captured using C-band sensing technique with the mea-
surements captured by the contact respiratory sensor. Mean
square error (MSE) and correlation coefficient (CC) are used
to evaluate the correlation between the two.

MSE is a measure of reflecting the degree of difference
between the estimated values and what is estimated. The
formula for MSE is given as [27]:

MSE =
1
n

∑n

i=1
(X̂i − Xi)

2
(4)

where X̂i is the denoting values of n number of predications.
And Xi is a vector representing n number of true values.
The correlation coefficient is a numerical measure of some

type of correlation that is a statistical relationship between
two variables. We choose the Pearson correlation coefficient
to compute the correlation, which is a measure of the linear
association between two variables [28]. The formula for the
Pearson correlation coefficient (denoted as ρ) is:

ρX ,Y =
cov(X ,Y )
σXσY

(5)

where (X, Y) denotes a pair of random variables, cov is
the covariance, and σX and σY are the standard deviation
of X and Y respectively.

V. RESULTS
A. EXPERIMENT SETUP
We conduct extensive experiments to evaluate the perfor-
mance of C-band sensing technique in detecting different
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breathing patterns. In order to better set suitable parameters
of C-band sensing technique and obtain precise measurement
results, we first use RF generator, spectrum analyzer, vector
network analyzer, cable and antennas to briefly analyze the
microwave distribution situation of the experiment environ-
ment. On this basis, we leverage C-band sensing technique
to collect wireless data. Specifically, one pair of prototypes
equipped with off-the-shelf network adapter is used to obtain
the wireless data. One of them connected with one omnidi-
rectional antenna, works as the transmitter, while the other
connected with three omnidirectional antennas (say antenna
A, antenna B and antenna C) works as the receiver. The trans-
mitter is made up of a USRP device and a computer equipped
with off-the-shelf network adapter, and the receiver includes
three USRP devices and a computer equipped with off-the-
shelf network adapter. The computer equipped with off-the-
shelf network adapter is used to stream data to and from
USRP devices. Thus, the total number of spatial streams is 3.
Each spatial stream provides 30 subcarriers to upper layer
users. The transmitter and the receiver operate at 5.32 GHz
with a bandwidth of 20 MHz. Compared with the previous
work [23], the transmit power has been increased so that it can
detect more subtle respiratory changes. The transmit power
is −5 dBm. And the sample rate is set to 50 Hz.

The experiments are conducted in a laboratory with dimen-
sion 7 m × 5m. The subject sits on a chair with a relaxed
posture and minimummovement from the body. The transmit
and receive antennas are placed at the two sides of the chair
in the same line of sight with 2m apart, and their height
is parallel to the abdomen. In the meantime, the ground-
truth respiration is obtained by a contact respiratory sensor
attached to the subject’s abdomen. This device is HKH-11C
Digital Respiratory Sensor. Its data bits are 8 bits, baud rate
is 9600, and the sampling frequency is 50 Hz, which is
consistent with the sample rate of the proposed system.

TABLE 1. Details for six participants.

A total of 6 different participants were invited in this exper-
iment and their details are shown in Table 1. All the human
subjects participating in this research gave informed consent.
Before collecting wireless data these subjects were trained to
role play each breathing pattern professionally. First, the char-
acteristics of each breathing pattern were described to all
subject according to medical data, and then these subjects

were asked to watch medical video of each breathing pattern
and to play role of each breathing pattern. Moreover, before
formal experiments we conducted some pre-experiments to
check the subjects’ performance of each breathing pattern.
In this paper, these participants were asked to perform dif-
ferent types of breathing patterns professionally in real time,
including:

(1) Normal Breathing
(2) Biot’s Breathing
(3) Cheyne-Stokes Respiration
(4) Ataxic Breathing
(5) Kussmaul Breathing
(6) Sighing Breathing
For each breathing pattern experiment, 3 data sets are

collected from each subject (only one set of observations from
subject 3 is shown in this paper where each breathing pattern
was imitated well). This is to ensure that C-band sensing
technique has a higher level of accuracy in detecting different
breathing patterns.

B. RESULT
In this section, the detection of each breathing pattern using
C-band sensing technique is described in turn. For each con-
dition, the subject was asked to follow a certain breathing
pattern, and the wireless data and sensor data were collected
simultaneously to investigate the feasibility of using C-band
sensing technique in capturing such conditions. Before each
experiment commenced the subject was introduced to the
characteristics of each breathing pattern and run exercises
to simulate such breathing pattern for some time. In this
experiment, the 14th subcarrier of antenna C is selected by
the subcarrier selection method for the next step of analysis.
In the next step we used the filtering method for the selected
subcarriers to get cleaner waveforms. After that, we utilized
the STFT technique for the respiration rate extraction and
the time-frequency analysis, and more information can be
obtained from the time-frequency analysis to understand the
breathing activity.

Further, in order to evaluate the detection accuracy of using
C-band sensing technique, each data received by C-band
sensing technique was compared with the standard respira-
tory sensor measurement as a reference. For this purpose,
both the results form C-band sensing technique and respi-
ratory sensor were normalized with a range of [−1, 1], and
then MSE and CC were computed by Equation (4) and (5)
to find the correlation of the breathing patterns obtained. The
formula of normalizing the data to the range of [a, b] is as
follow:

X ′ = a+
X − Xmin

Xmax − Xmin
(b− a) (6)

where a = −1 and b = 1.
Table 2 shows the performance evaluation of the results

for the above-mentioned six breathing patterns. MSE and CC
are used for the validation of the normalized C-band sensing
technique measurements in comparison to the normalized
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FIGURE 9. Spectrograms with different types of breathing patterns. (a) Normal breathing. (b) Biot’s breathing. (c) Cheyne-stokes breathing. (d) Ataxic
breathing. (e) Kussmaul breathing. (f) Sighing breathing.

TABLE 2. The performance evaluation of C-band sensing technique
measurements compared to respiratory sensor measurements.

respiratory sensor measurements. From Table 2, all the MSE
are less than 0.025 and all CC are more than 0.84. The results
consistently suggest that C-band sensing technique is highly
correlated with the contact breathing sensor.

1) NORMAL BREATHING
Normal breathing is the free and easy respiration when
at rest. The normal respiratory rate is 12-20 breaths per
minute for adult. For this breathing pattern, the subject was
asked to breathe normally and at ease. From Figure 9(a),
the estimated respiratory rate is 0.26Hz corresponding
to15.6 breaths/min which agrees with the breathing waves as
shown in Figure 10(a). And Figure 10(a) shows the normal-
ized wireless signals compared to the normalized respiration
sensor signals. The calculated MSE and CC is 0.128 and

0.9550 respectively (see Table 2). This illustrates the signifi-
cant correlation between the two.

2) BIOT’S BREATHING
For this experiment, the subject was asked to simulate Biot’s
breathing, which is characterized by regular deep respira-
tions interspersed with periods of apnea. Figure 9(b) shows
a breathing rate of 0.24 Hz but from Figure 10(b), there
are approximately 18.5 breaths in 110 seconds, equivalent
to the breathing rate of 0.17 Hz. This indicates that it is
not accurate to estimate the respiratory rate of this breath-
ing patterns using time-frequency analysis. Even so, some
useful information can be acquired from the spectrogram.
From the spectrogram shown in Figure 9(b), we can clearly
see that there are 3 pauses in breathing for 20-30 seconds,
55-65 seconds and 95-105 seconds respectively, which is in
line with the result shown in Figure 10(b). The spectral analy-
sis is beneficial for detecting the apnea state. The correlation
between the normalized wireless signals and the normalized
respiration sensor signals in this breathing pattern is shown
in Figure 10(b) and Table 2.

3) CHEYNE-STOKES BREATHING
Cheyne-Stokes breathing demonstrates periods of gradual
hyperpnoea alternating with periods of apnea, which have
the crescendo-decrescendo pattern. Cheyne-Stokes breathing
is a classic breathing pattern seen in individuals with severe
neurological or cardiac disease [2]. As for Cheyne-Stokes
breathing, from Figure 10(c), there is a periodic breathing
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FIGURE 10. Normalized filtered wireless signal versus normalized respiration sensor signal. (a) Normal breathing. (b) Biot’s breathing. (c) Cheyne-stokes
breathing. (d) Ataxic breathing. (e) Kussmaul breathing. (f) Sighing breathing.

change with a crescendo-decrescendo type of sequence fol-
lowed by an apnea. It can be observed clearly that C-band
sensing technique as a non-contact method has ability to
detecting the changes of breathing, and gives the good cor-
relation to the respiratory sensor. In the time-frequency anal-
ysis, two apneas for 20-30 seconds and 60-70 seconds are
detected, shown in Figure 9(c). The breathing rate estimated
using the STFT technique (0.22 Hz from Figure 9(c)) is
approximately in agreement with the one extracted, using the
breathing waveform (0.21 Hz from Figure 10(c)).

4) ATAXIC BREATHING
Ataxic breathing is characterized by unpredictable irregular-
ity in breathing pattern, breathing may be deep or shallow,
slow or rapid and even brief pause. Biot’s respiration caused
by damage to the pons may deteriorate to ataxic breathing [4].
For this breathing pattern, the respiratory rate is 0.3 Hz shown
in Figure 9(d), which is not consistent with the one (0.19Hz)
shown in Figure 10(d). Although the spectrogram cannot
accurately estimate the breathing rate of abnormal breathing
patterns but still can get a lot of useful information from it.
As it can be seen form Figure 9(d), apnea occurs between
8-18 seconds and 45-55 seconds. And we can see that there
are deep breathes for the first 8 seconds, 20-30seconds and
35-40seconds and shallow breathing for 30-35 seconds and
40-45seconds. This result completely coincides with that
shown in Figure 10(d). Figure 10(d) shows that the measure-
ments captured using C-band sensing technique, correlates

quite closely to the measurements made by the respiration
sensor.

5) KUSSMAUL BREATHING
Kussmaul breathing is deep breathing with fast, normal or
slow rate. And Kussmaul breathing is often associated with
severe metabolic acidosis, particularly diabetic ketoacido-
sis (DKA) and kidney failure [2]. Due to the periodicity of
this breathing pattern, the STFT technique can be used for
respiratory rate extraction. As shown in Figure 9(e), the res-
piratory rate approximated at 0.36 Hz is quite consistent with
the respiratory rate approximated by the breathing waveform
in Figure 10(e). Moreover, the normalized wireless signal
is quite close to the normalized respiration sensor signal as
shown in Figure 10(e).

6) SIGHING BREATHING
Sighing breathing is a normal reaction to fatigue or to certain
mild emotional states, but frequent sighs punctuating the
breathing cycle may be the warning sign of hyperventila-
tion or the early signs of depression [29]. For this type of
breathing, the subject was asked to sigh frequently, which is
1.5-2 times greater than the usual tidal volume. The results
of sighing breathing can be seen in Figure 10(f). From this
figure, there are 5 sighs in one minute, which occur at
the 10 seconds, 22 seconds, 35 seconds, 47 seconds and
58 seconds respectively. Meanwhile, Figure 9(f) accurately
shows the first four sighs, and the time when these four sighs
occur is consistent with the time in Figure 10(f). But the
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TABLE 3. The average MSE and CC of three data sets for six breathing patterns from all subjects.

5th sigh is missing in Figure 9(f) due to the low time res-
olution. Also, it is accurate to estimate the respiratory rate
from Figure 9(f) where the respiratory rate is the same as
shown in Figure 10(f) (both are 0.33 Hz). In this case C-band
sensing technique is still capable of capturing the changes in
breathing yielding consistent correlations with the respiration
sensor reading as shown in Figure 10(f).

In all experiments, computation of MSE and CC as the
average of three data sets for all subjects is performed
between C-band sensing technique and respiratory sensor as
shown in Table 3. Results present a high correlation between
the C-band sensing technique and the respiratory sensor. In a
word, C-band sensing technique as a non-invasive detection
method is able to detect and identify different types of breath-
ing patterns.

VI. CONCLUSION
In this paper, we first demonstrated the feasibility of C-band
sensing technique in capturing respiratory changes such as
breathing rate, deep, and pause. We then used C-band sensing
technique to detect different types of breathing patterns asso-
ciated with different breathing disorders. Indeed, the experi-
ments were conducted by all participants in professional role
playing of six breathing patterns and not with real patients,
yet the results are compelling that C-band sensing tech-
nique can be used as an alternative method to the standard
respiratory sensor measuring the same breathing patterns.
In addition, the collected data by C-band sensing technique
needs to go through a series of signal processing to obtain
clear respiratory waveforms. To this end, we proposed a
subcarrier selection method based on scoring mechanism,

a filtering method including the wavelet filter and the mov-
ing average filter, a respiration rate extraction method using
the STFT technique, and a mechanism for comparing the
correlation between C-band sensing technique and the con-
tact respiratory sensor. The experimental results show that
spectrograms using the STFT technique can provide ade-
quate spectral-temporal information to understand how the
breathing activity had taken place. The results also present
the measurements made using C-band sensing technique,
correlates quite closely to the measurements made by the
respiration sensor. Therefore, we can draw a conclusion that
C-band sensing technique as a non-invasive detection method
is able to detect and identify different types of breathing
patterns and the STFT technique is suited for detailed analysis
of breathing patterns.

The use of C-band sensing technique as a sensing mecha-
nism for respiration detection and monitoring is particularly
useful owing to its unique advantages. The method can pro-
vide an effective non-contact form of use and real-time and
long-term respiratory patterns monitoring in home, with no
need for special hardware devices. However, there are two
deficiencies in this research. One disadvantage is that cur-
rently the system is for a single subject application, the other
is that the experiments were not performed on real patients.
Therefore, on the one hand, future work would be extended
to multiple subjects and more advanced algorithms would be
applied. When there are multiple subjects in the same room,
the breath of each person can be detected by C-band sensing
technique, but these subjects’ breath is mixed together, which
requires more advanced algorithms to distinguish each sub-
ject’s breath. On the other hand, in the future work involving
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real patient experiments would be conducted as well as algo-
rithms would be used to classify corresponding breathing
disorders to its appropriate classes.
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