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Background: Recent studies indicate that cell mechanics are associated with

malignancy through its impact on cell migration and adhesion. Gliomas are

themost common primarymalignant brain tumors. Low-grade gliomas (LGGs)

include di�use LGGs (WHO grade II) and intermediate-grade gliomas (WHO

grade III). Few studies have focused on membrane tension in LGGs. Herein,

we assessed the prognostic value of plasma membrane tension-related genes

(MTRGs) in LGGs.

Methods: We selected plasma MTRGs identified in previous studies

for analysis. Based on LGG RNA sequencing (RNA-seq) data in The

Cancer Genome Atlas, a prognostic signature containing four genes

was constructed via log-rank testing, LASSO regression and stepwise

multivariate Cox regression and was validated with other datasets. Additionally,

functional annotation, pathway enrichment and immune and molecular

characteristics of the prognostic model defined subgroups were analyzed.

Thereafter, a predictive nomogram that integrated baseline characteristics

was constructed to determine the 3, 5, and 10-year overall survival (OS)

of patients with LGG. Di�erentially expressed genes were confirmed via

quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and

immunohistochemistry (IHC).

Results: Our MTRG prognostic signature was based on ARFIP2, PICK1,

SH3GL2, and SRGAP3 expression levels. The high-risk group was more

positively associated with apoptosis and cell adhesion pathways and exhibited

a low IDH1 mutation rate, high TP53 mutation rate and a low 1p19q co-

deletion rate. The high-risk group also exhibited incremental infiltration of

immune cells, more forceful immune activities and high expression of immune

checkpoints as well as benefited less from immune therapy compared with

the low-risk group. Our prognostic model had better forecasting ability than

other scoring systems. We found that the nomogram was a better tool for

predicting outcomes for patients with LGG. Finally, qRT-PCR confirmed that

SH3GL2 and SRGAP3 expression levels in glioma tissues were significantly

lower than those in normal brain tissues. The results of IHC analysis confirmed

that SH3GL2 protein expression was higher in patients with longer survival.
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Conclusion: Our plasma membrane tension-related gene prognostic

signature is a prospective tool that can di�erentiate between prognosis,

genemutation landscape, immunemicroenvironment, immune infiltration and

immunotherapeutic e�cacy in LGG.
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Introduction

Glioma is the most common primary brain tumor

that accounts for approximately 80% of all malignant

brain tumors (1). Gliomas are defined as brain tumors

of glial origin; depending on their malignant behavior,

gliomas can be categorized into WHO grades I–IV.

The most common histological types of gliomas include

astrocytomas (grades I–III), oligodendrogliomas (grades

II–III), oligoastrocytomas (grades II–III) and glioblastomas

(grade IV) (2). The prognosis of patients with gliomas

varies with the molecular subtype. compared with isocitrate

dehydrogenase (IDH) wild-type glioma, mutations in IDH1/2

constitute a glioma subtype with better prognosis and distinct

ontogeny. O6 methylguanine-DNA methyltransferase (MGMT)

expression is repressed by MGMT promoter methylation,

which results in TMZ resistance. The 1p19q co-deletion

is strongly associated with an oligodendroglial phenotype

and favorable prognosis (2–4). In addition, the cIMPACT-

NOW update 3 recommends that IDH wild-type LGG

harboring EGFR gene amplifications, chromosome 7 gain

and chromosome 10 loss, or TERT promoter mutations

will follow an invasive clinical course similar to IDH wild-

type glioblastoma and patients with this condition have

significantly shorter survival (5). LGG molecular subtyping may

provide additional prognosis information regarding patient

outcome; however, new risk-stratification biomarkers need to

be identified.

Cell membrane tension affects various vital biological

processes, including cytokinesis, cell motility, endocytosis,

exocytosis and organelle function sustainability, which is

closely correlated with rapid disease progression (6). Recent

studies have shown that high plasma membrane tension

effectively inhibits cancer cell migration and invasion by

counteracting the membrane curvature sensing/production

of BAR family proteins (7–9). Membrane tension regulates

the cellular pluripotent state via endocytosis-mediated

ERK signaling and regulates cellular metabolism through

proteasome degradation of the rate-limiting metabolic enzyme

phosphofructokinase to maintain high glycolytic rates in cancer

cells (10, 11). Recent studies have reported the association

between plasma membrane tension and tumor invasion,

pluripotency and metabolism (12–14). However, there are

only few studies on its association with LGG prognostic

value. To better predict survival of patients with LGG, our

prognostic nomogram took into account patient age, grade,

IDH mutation and 1p19q co-deletion state while calculating

baseline characteristics and risk scores. Our results indicate

that our plasma membrane tension-related prognostic model

may be a potential prognostic indicator and therapeutic target

for LGG.

Materials and methods

Study flow diagram

The study flow diagram is presented in Figure 1.

Collectively, we constructed and externally validated

MTRG-based prognostic models which showed significant

differential expression between LGG and normal brain

tissues. We then performed gene enrichment, clinical

characteristics, gene mutation, immune microenvironment

and immunotherapy responsiveness analyses of

patient groups according to the model. Finally, we

validated our results through quantitative reverse-

transcription polymerase chain reaction (qRT-PCR) and

immunohistochemistry (IHC).

Patient samples

RNA-seq data, survival information and baseline

characteristics of 529 samples from patients with LGG

were obtained from TCGA (https://tcga-data.nci.nih.gov/

tcga/). RNA-seq data of 207 normal brain tissue samples

were obtained from Genotype-Tissue Expression (GTEx, http://

commonfund.nih.gov/GTEx/). Subsequently, mRNA expression

data and survival information of GSE16011, mRNAseq_325,

mRNAseq_693, mRNA-array_301 and Rembrandt microarray-

independent datasets were downloaded from Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) and China

Glioma Genome Atlas (CGGA, https://www.cgga.org.cn/) for
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FIGURE 1

Flow diagram of the study.

external validation. Gene mutation data were obtained from

TCGA (15–18).

Di�erential expression analysis

A total of 40 MTRGs were selected for expression analysis

based on a literature search (19). The list of 40 MTRGs

are included in Supplementary material 1. We performed

differential expression analysis of MTRGs extracted from TCGA

and compared them with the GTEx datasets. Differentially

expressed genes were defined as those with a false discovery

rate (FDR) p value of < 0.05 and absolute log2 fold change

(logFC) of >1. We used the “limma” package in R for

differential analysis, and normalized gene expression profiles

using the normalizeBetweenArrays function (19). MTRGs with

differential expression were uploaded to Metascape (http://

metascape.org/) for functional analysis (20) and subsequently

uploaded to String (https://string-db.org/) to construct a protein

interaction network (21).

Developing and validating our prognostic
signature

To develop our prognostic signature, log-rank tests, LASSO

regression and multivariate Cox regression were used to

screen for differently expressed MTRGs that were significantly

correlated with LGG prognosis. Multivariate Cox regression

analysis was performed through a step function, and the lowest

AIC value was selected as the final model. The risk score

for each sample was calculated by multiplying the expression

values of specific genes by their weights in the Cox model

and adding them. We categorized the patients into low- and

high-risk groups as per a median risk score. Kaplan–Meier

(KM) curves were used to compare the OS between the two

groups, and 3, 5, and 10-year receiver operating characteristic

(ROC) curves were plotted. Area under curve (AUC) was

used to evaluate the specificity and sensitivity of survival

prediction. Finally, validation datasets were used to validate our

prognostic signature.

Comprehensive analysis of risk score

Patients were grouped according to different clinical

characteristics (age: divided into younger and older age groups

based on the median age; sex: female and male; grade: grades II

and III; IDH1 mutation status: IDH1 mutant and IDH1 wild-

type and 1p19q co-deletion status: 1p19q codel and 1p19q non-

codel). The risk scores were analyzed separately for differences

in the clinical features. Thereafter, in the gene mutation analysis,

the “maftools” package in R was used to visualize the somatic

mutations of the TCGA–LGG samples (22). We also calculated

tumor mutational burden (TMB) for each LGG sample and

compared the difference in TMB of the high- and low-risk

groups. Finally, Spearman correlation was used to assess the

association between TMB score and our risk score.

Gene set enrichment analysis and related
LncRNA exploration

Gene set enrichment analysis (GSEA) (23) was performed

using GSEA v4.1.0 software (http://www.broadinstitute.org/

gsea). The Hallmark v7.2, c2 KEGG, and c5 Go BP gene sets

were used for further analyses (24). GSEA enrichment plots were

constructed using the “ggplot2” package in R. In addition, long

non-coding RNAs (lncRNAs) with a correlation coefficient of

>0.5 and a p value of < 0.05 for ARFIP2, PICK1, SH3GL2,

and SRGAP3 were considered to be significantly associated

with our prognostic model. Subsequently, the lncRNA–mRNA

network was constructed using Cytoscape 3.8.2, and univariate
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Cox regression was used to test the significance of the association

between survival and lncRNAs (25).

Immune characteristics and immune
therapy analysis

Samples from the TCGA–LGG cohort were used for

immune-related analysis. The enrichment scores of 16 immune

cells and 13 immune-related functions per sample were

estimated using single-sample GSEA (ssGSEA). The R package

“CIBERSORT” was used to quantify 22 immune cell types.

Only the samples with a CIBERSORT output p value of <

0.05 were selected for further analysis (26). We selected eight

well-known glioma related immune checkpoints, obtained their

mRNA expression and downloaded tumor immune dysfunction

and exclusion (TIDE) scores, microsatellite instability (MSI),

T cell dysfunction scores and T cell exclusion scores from

the TIDE website (http://tide.dfci.harvard.edu) to explore the

predictive ability of our prognostic model for immunotherapy

response. All these immune-related characteristics of the high-

and low-risk groups were compared. Finally, we compared the

prognostic value among our prognostic signature, TIDE and T

cell infiltration score (TIS) with the “timeROC” R package (27).

Prognostic nomogram establishment

Using stepwise multivariate Cox regression analysis to

screen prognostic factors, a model with a minimum AIC value

used to assess the 3, 5, and 10-year OS of LGG, including

age, grade, IDH mutation, 1p19q co-deletion and our risk

score. Calibration curves were plotted to assess the predictive

power of the nomogram prognostic model and the multivariate

timeROC was plotted to compare the predictive power levels of

various features.

qRT-PCR and IHC

Total RNA was extracted using the TIANGEN RNA

Extraction Kit (TIANGEN, Beijing, China) and reverse-

transcribed using TOROIVD R© III Reverse Transcription Kit

(Toroivd, Shanghai, China). Quantitative PCR was performed

using TOROGreen qPCR Master Mix (Toroivd, Shanghai,

China). The results are standardized using GAPDH. qPCR

was performed using the Applied Biosystems QuantStudio

Real Time PCR system and analyzed using Applied

Biosystems QuantStudio Design & Analysis Software. Fold

change was determined using the 2−11Ct method for

gene expression. Gene-specific PCR primers are listed in

Supplementary material 2. IHC was performed according to the

previously described protocol (28). LGG tissues were fixed with

4% paraformaldehyde overnight at 4◦C. Subsequently, tissue

samples were embedded in paraffin and sectioned at 4µm. The

sections were dewaxed with xylene, rehydrated using a graded

series of alcohol and then placed in a retrieval box containing

citrate antigen retrieval buffer (pH 6.0) for antigen retrieval in a

microwave oven. Endogenous peroxidase activity was blocked

by incubating with 3% H2O2 solution for 10min. The sections

were then blocked with 5% BSA for 30min and incubated

with SH3GL2 antibody (1:400, 12345-1-AP; ProteinTech)

SRGAP3 antibody (1:200, ab204408; Abcam) overnight at 4◦C

in a humidified chamber. The sections were then incubated

with biotinylated secondary antibody for 1 h and treated with

SABC for 1 h. After each incubation step, sections were washed

three times with phosphate-buffered saline for 5min each.

Finally, the specimens were stained with DAB chromogen

(Zhongshan Jinqiao) and counterstained with hematoxylin.

Immunohistochemical staining was performed using an

immunohistochemical kit (Dako, Glostrup, Denmark). Clinical

information on samples in qRT-PCR and IHC experiments is

provided in Supplementary material 3. Immunohistochemical

image analysis was conducted as follows: H-SCORE =
∑

(pi

× i) = (percentage of weak intensity × 1) + (percentage of

moderate intensity × 2) + (percentage of strong intensity × 3)

(29, 30).

Statistical analyses

Differences in the indicators of the high- and low-risk

groups were compared by Wilcoxon test. Univariate survival

analysis was performed by KM survival analysis and log-

rank test. Multivariate survival analysis was performed using

Cox regression models. Two-sided p < 0.05 was considered

significant. Statistical data analysis was performed using the R

software (Version 4.0.5).

Results

Di�erentially expressed MTRGs

The results of differential gene expression analysis

of 40 MTRGs between 529 TCGA–LGG samples and

207 GTEx normal brain tissue samples are shown in

Supplementary Figure 1A. Overall, 17 MTRGs were identified

as differentially expressed genes (Figure 2A) and were ranked

according to the significance of differences (Figure 2B). The

results of functional analysis showed that the differentially

expressedMTRGs in LGG and normal brain tissues were mainly

enriched through synaptic vesicle endocytosis, CDC42 GTPase

cycle, endocytosis regulation and actin filament organization

regulation (Figure 2C). Finally, the protein–protein interaction

network is shown in Figure 2D.
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FIGURE 2

(A) 17 MTRGs with significantly di�erent expression between LGG tissue and normal tissue, ***p < 0.001. (B) Significantly di�erent expressed

genes were selected through absolute log2FC > 1, FDR < 0.05. Selected genes are in bold. (C) Functional analysis of 17 MTRGs in Metascape.

(D) PPI of significantly di�erential expressed genes.
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Construction and validation of
MTRG-related prognostic signature

The prognostic signature was constructed based on RNA-seq

data from TCGA. Among 17 differentially expressed MTRGs,

six of them had statistical significance in the prognosis of

LGG using log-rank test. High expression of PICK1, SRGAP2

and PABPC4 were considered predictors of poor prognosis,

whereas high SH3GL2, SRGAP3, and ARFIP2 expression were

considered predictors of positive prognosis in LGG (Figure 3A).

Using LASSO and stepwise multivariate Cox regression, we

found that only four MTRGs—ARFIP2, PICK1, SH3GL2, and

SRGAP3—significantly affected the OS of patients with LGG

(Figures 3B,C). Next, we constructed a prognostic signature

for all LGG samples and calculated their risk score formula

as follows: −0.7459 × expression of ARFIP2 + 0.3572 ×

expression of PICK1−0.2948× expression of SH3GL2−0.4229

× expression of SRGAP3 (Figure 3D). There were significant

differences in terms of patient survival time, survival status and

expression of the four MTRGs between the high- and low-risk

groups (Figure 3E, Supplementary Figure 1B). The KM curve

showed that the OS of the two groups was significantly different

and the survival time of the high-risk group was significantly

shorter than that of the low-risk group (p< 0.001). Finally, time-

dependent ROC analysis revealed that the diagnostic accuracy is

as follows: 3-year AUC= 0.760, 5-year AUC= 0.717 and 10-year

AUC= 0.739 (Figure 3F).

Six validation datasets were used, including the CGGA

mRNAseq_693, CGGA mRNAseq_325, the whole CGGA

mRNAseq, CGGA mRNA array_301, Rembrandt microarray

and the GSE16011 dataset to validate the prognostic model.

Patients in each validation dataset were also divided into two

groups according to their median risk score. There were also

significant differences in the expression of the four genes

between the high- and low-risk groups. KM curves and time-

correlated ROC analyses were performed for six validation

datasets. The results showed that our prognostic signatures

could differentiate well between high- and low-risk populations.

It could also effectively estimate OS probabilities for 3, 5, and

10 years (Figures 4, 5). The expression patterns of the four

MTRGs between the high- and low-risk groups in the model are

presented in Supplementary Figure 2.

Clinical features and gene mutation
landscape

Patients in TCGA were stratified as per their median

age, sex, grade, IDH mutation and 1p19q co-deletion status,

respectively. There were significant differences in risk scores

among patients with different IDH mutation status, different

tumor grades and different 1p19q deletion status. WHO grade

III patients (p < 0.001), IDH-wild-type patients (p < 0.001) and

chromosome 1p19q non-co-deletion patients (p < 0.001) had

higher risk scores (Figure 6A). Differences in these molecular

signatures suggested a strong relationship between risk scores

and molecular and pathological tumor subtypes.

Epigenetic alteration plays a vital role in early malignancies

and can influence prognosis. Here we obtained the mutation

spectra of all LGG samples in TCGA. Missense mutations were

the most common, followed by nonsense mutations. The most

commonly mutated genes were IDH1, IDH2, TP53, ATRX,

EGFR, PTEN, CIC and TTN. The results showed that mutations

in IDH1 (91%: 63%, p < 0.001) and IDH2 (6%: 1%, p = 0.004)

was more common in the low-risk group and mutations in

TP53 (44%: 38%, p = 0.177), EGFR (10%: 1%, p < 0.001) and

PTEN (6%: 0%, p < 0.001) was more common in the high-risk

group (Figures 6B,C). Furthermore, we calculated the TMB of

each sample. Then, the TMB of the high- and low-risk groups

was compared and the correlation between the risk score and

the TMB score was analyzed. The results indicated the high-

risk group had a higher TMB score (p < 0.001) and it was

positively correlated with TMB (R= 0.22, p< 0.001) (Figure 6D,

Supplementary Figure 3A).

GSEA and MTRG-related lncRNA network

The results of GSEA showed that the apoptosis pathways,

immune response related pathways and processes, cell

endocytosis, exocytosis and cell adhesion biology processes was

enriched in the high-risk group. Detailed results of GSEA are

shown in Figures 7A,B.

Previous studies have shown that lncRNAs can regulate the

expression of target genes in their cis or trans forms, which is

the main regulatory mechanism of lncRNAs (31–34). To explore

the possible regulatorymechanisms ofMTRGs in our prognostic

model for LGG, we screened 28 highly correlated lncRNAs and

constructed a lncRNA–mRNA regulatory network (Figure 7C).

In our prognostic signature, high expression of SH3GL2 and

SRGAP3 suggested a beneficial effect on survival, but high

expression of PICK1 led to a poor survival rate. Those lncRNA

which positively regulated SH3GL2 or SRGAP3 or negatively

regulated PICK1 might benefit in terms of survival. Conversely,

the other lncRNAs might have a deleterious effect on patient

survival. Survival analysis of the 28 lncRNAs was performed

using the KM curve, and the results showed that only two of

them had no significant effect on survival; 26 of 28 lncRNAs

were consistent with the expected results (Figure 7D). NEAT1,

AC004067.1, AC009227.1, and AC074286.1 were associated

with all three MTRGs. Among them, NEAT1 and AC004067.1

were not only positively correlated with SH3GL2 and SRGAP3

but negatively correlated with PICK1, whereas AC009227.1

and AC074286.1 were negatively correlated with SH3GL2 and

SRGAP3 and positively correlated with PICK1. Subsequent
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FIGURE 3

(A) Results of the KM curve analysis of 17 di�erential expressed MTRGs. Red dots represent the genes with an impact on poor prognosis, blue

dots represent genes with an impact on good prognosis, and black dots represent genes with no significant impact on prognosis. (B)

Coe�cients of the determined characteristics are exhibited via lambda parameters. (C) Partial probability deviance relative to log (lambda)

(Continued)
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FIGURE 3 (Continued)

generated through LASSO and Cox regression. (D) Hazards ratio, p value and 95% confidence interval in stepwise multivariate Cox regression. (E)

Riskscore, survival time and survival status in the TCGA–LGG data set. Above: The dotted line represents the median risk score, categorizing

patients into low- and high-risk groups, with a scatter plot of Riskscore from low to high. Middle: The dotted line represents the median risk

score, with the patients in the low-risk group on the left and those in the high-risk group on the right; the red dots represent dead patients, and

the blue dots represent surviving patients. The patients in the high-risk group had shorter survival duration with a high mortality rate. Bottom:

Heatmap illustrating the expression patterns of prognostic genes in low- and high-risk groups. PICK1 was more highly expressed in the high-risk

group, whereas ARFIP2, SH3GL2, and SRGAP3 were more highly expressed in the low-risk group. (F) KM curve analysis of two groups and ROC

curves for 3, 5, and 10-year OS.

studies should explore whether these four lncRNAs have a

binding relationship with MTRGs.

Immune-correlation and immunotherapy
benefit analysis

To further explore the correlation between the 11-gene

signature risk score and immune status, we used ssGSEA to

quantify the enrichment scores of 16 immune cell subgroups and

13 related functions, or pathways. Overall, 12 types of immune

cells were significantly different between high- and low-risk

groups (Figure 8A). Likewise, all 13 immune-related functions

were significantly different between the two groups, which

revealed a significant relationship with risk scores (Figure 8B).

Then, CIBERSORT was used to calculate the abundance of

22 immune cells. We used the Wilcoxon test to compare the

distribution of immune cells in different risk subgroups. We

found that resting CD4 memory T cells, regulatory T cells,

M0 macrophages and resting mast cells were more abundant

in the high-risk subgroup, whereas plasma cells, activated NK

cells and activated mast cells were more abundant in the low-

risk subgroup (Figure 8C). We found that immune checkpoints

(PD-1, PD-L1, LAG3, B7-H3, B7-H4, CD28, CD40, and TIM3)

were significantly highly expressed in the high-risk group

(Figure 8D). We also found higher TIDE scores (p= 0.046) and

dysfunction scores (p < 0.001) in the high-risk group than in

the low-risk group, suggesting that the low-risk group would

benefit more from immune checkpoint inhibitor (ICI) therapy

(Figure 8E). Finally, we calculated the AUC for TIDE = 0.514

and for T cell-inflamed signature (TIS) = 0.707, so we suggest

that the predictive value of our prognostic signature was better

than TIS and TIDE in LGG (Figure 8F).

Construction of nomogram

The nomogram included the risk score and baseline

characteristics (age, grade, IDH mutation status and 1p19q

co-deletion status) and was built to estimate 3, 5, and 10-

year survival probabilities (Figures 9A,B). We found that the

AUC for OS from the nomogram model was greater than any

other factor, implying that the nomogram incorporated risk

score and clinical features could assess patient survival more

accurately than a single prognostic signature (Figure 9C). For

calibration curves forecasting 3, 5, and 10-year survival, red lines

represent the estimated survival and gray lines represent the

ideal survival time. All three lines were tightly aligned, showing

good calibration in the TCGA dataset (Figure 9D). Data from

the validation sets (CGGA mRNAseq 693 and CGGA mRNA-

seq 325) were also acceptable in terms of predictive power

(Supplementary Figure 3B).

Validation of MTRGs expression levels in
the prognostic model

Combined with the results of qRT-PCR, we noticed that

the RNA expression levels of ARFIP2, PICK1, SH3GL2, and

SRGAP3 in normal brain tissue were higher than those in

LGG tissue, and the difference between SH3GL2 and SRGAP3

was statistically significant (Figure 10A). In addition, the IHC

results showed that samples from two patients with a survival

period of more than 50 months had high expression of SH3GL2

(Samples 1 and 3). The samples from three deceased patients

revealed low SH3GL2 expression (Samples 2, 4 and 7). SH3GL2

protein expression was low in two IDH1 wild-type samples

(Samples 6 and 8), one of which hardly expressed SH3GL2

protein (Figure 10B). In summary, SH3GL2 is at the RNA and

protein levels. In summary, SH3GL2 showed significant inter-

group differences in expression at both RNA and protein levels.

The immunohistochemical results of SRGAP3 are shown in

Supplementary Figure 4, and they revealed that SRGAP3 was

not expressed in three of the four samples.

Discussion

Gliomas are common aggressive primary malignant

brain tumors that occur in adults. Current treatment

strategies for glioma are not adequately effective because

of their high infiltration rate and heterogeneity. Even after

comprehensive treatment, gliomas are prone to recurrence and

can easily invade surrounding normal tissues (1–4, 35).

Recently, increasing evidence indicates that cellular

mechanics are intrinsically linked to cancer invasion and
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FIGURE 4

Validation results (A) CGGA mRNA-seq_693 cohort. (B) CGGA mRNAseq_325 cohort. (C) Whole CGGA mRNAseq cohort.

metastasis. High membrane tension helps maintain cell

integrity and increases cell stiffness, thereby inhibiting cell

migration (7–9, 36, 37). Malignant cells are mechanically

characterized by reduced cell stiffness, which is strongly

correlated with increased invasiveness and metastasis

(10–12, 38, 39).

To the best of our knowledge, the prognostic value of

plasma MTRGs in LGG is yet to be elucidated. In this study,

we systematically analyzed the differences in the expression

of 40 MTRGs in tumor tissues and normal brain tissues

and examined their relationship with patient prognosis. We

then constructed an MTRG-based prognostic risk score model

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2022.1024869
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.1024869

FIGURE 5

Validation results (A) CGGA array_301 cohort. (B) Rembrandt microarray cohort. (C) GSE16011 cohort.

using the TCGA–LGG cohort and validated its stability and

effectiveness in the CGGA, GEO, and REMBRANT cohorts.

Based on this proposed model, the TCGA–LGG cohort was

divided into high- and low-risk groups for further analysis.

The results demonstrated that patients with poorer pathological

grades had higher risk scores. Other factors, including IDH1/2,

TP53 and EGFR mutation status and 1p19q co-deletion status,

which are considered to be associated with glioma progression

and patient prognosis, are also significantly different for

high- and low-risk groups. These results are consistent with

those of previous prognostic models that revealed that high-

risk scores are inversely associated with patient outcomes.

To further explore the signaling pathways associated with

prognostic models, we performed GSEA and noted that our

model was associated with multiple cancer-related pathways,

including apoptosis, epithelial–mesenchymal transition, reactive

oxygen species and immune-related pathways. Furthermore, we

constructed an lncRNA–mRNA network to provide potentially

useful information on lncRNA–mRNA interaction mechanisms

in LGG progression.
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FIGURE 6

(A) Boxplots showing the distribution of risk scores in LGG samples categorized by age, sex, WHO grade, IDH mutation status and Chr1p19q

co-deletion status. (B) The somatic landscape of low-risk group samples. (C) The somatic landscape of high-risk group samples. Mutation

information for each gene in each sample is shown as waterfall plots, with di�erent colors at the bottom with specific annotations indicating

various mutation types. (D) Boxplot showing the di�erence of TMB scores between two groups.
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FIGURE 7

GSEA analysis between the high- and low-risk groups. (A) HALLMARK and KEGG pathway enrichment analysis. (B) GO BP enrichment analysis.

(C) The lncRNA–MTRG regulation network; triangular nodes represent lncRNA, circular nodes represent prognostic MTRG, red circular nodes

represent cancer-promoting genes, blue circular nodes represent tumor suppressor genes, red lines indicate upregulation and blue lines indicate

downregulation. (D) Univariate Cox regression analysis of lncRNAs negatively correlated with SH3GL2 or SRGAP3 and positively correlated with

PICK1. Univariate Cox regression analysis of lncRNAs positively correlated with SH3GL2 or SRGAP3 and negatively correlated with PICK1.
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FIGURE 8

(A) Boxplots illustrating the 16 immune cells in the two groups using ssGSEA analysis. (B) Boxplots illustrating the 13 immune-linked functions in

two groups using ssGSEA analysis. (C) Boxplots illustrating the level of 12 immune cells infiltration in two groups using CIBERSORT analysis. (D)

Boxplots illustrating the expression of immune check point genes in high- and low-risk groups. (E) TIDE, MSI and T cell dysfunction and

exclusion score in two groups. The variables between the two groups were compared through the Wilcoxon test, * p < 0.05, ** p < 0.01, *** p <

0.001. (F) Time-dependent ROC was used to compare the prediction performance of three prognostic models (our MTRGs related risk score,

TIDE, TIS).
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FIGURE 9

Nomogram construction. (A) The nomogram used risk score, age, grade, IDH mutation and 1p19q co-deletion to assess the 3, 5, and 10-year

overall survival of LGG. (B) Hazards ratio, p value and 95% CI of each variable in the nomogram model. Model’s AIC value and c-index are at the

bottom. (C) Multivariate ROC analysis was used to compare the predictive power of each variable. Among them, the nomogram has the best

predictive ability. (D) The calibration curve for the evaluation of the nomogram. The Y-axis designates the actual survival, while the X-axis

designates nomogram estimated 3, 5, and 10-year OS of patients in TCGA cohort. **p < 0.01, ***p < 0.001.
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FIGURE 10

Results of qRT-PCR and IHC. (A) Expression distribution of risk score MTRGs in normal brain and glioma samples. Asterisks represent level of

significance *p ≤ 0.05, ***, p ≤ 0.001, ns, not statistically significant. (B) Immunohistochemical results of eight glioma samples (magnification,

10× and 40×).
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Of the four genes, ARFIP2, SH3GL2, and SRGAP3 have a

protective function. ARFIP2 is a member of the BAR family

and plays a role in constitutive metalloproteinase (MMP)

secretion from the trans-Golgi network. It is also involved

in autophagy through the regulating of ATG9A vesicles that

deliver phosphatidylinositol 4-kinase beta to the autophagosome

initiation site (40). SH3GL2, also known as endophilin-A1,

is involved in synaptic vesicle endocytosis and may recruit

other proteins to membranes with high curvature (41). Zhu

et al. found that SH3GL2 inhibits the migration and invasion

behavior of glioma cells by negatively regulating STAT3/MMP2

signaling. Moreover, SH3GL2 dysregulation has been associated

with increased blood–brain barrier permeability, which may

promote tumor progression (42). SRGAP3 regulates the actin

cytoskeleton by inhibiting actin dynamics specifically via

lamellipodia formation (43). High expression of ARFIP2,

SH3GL2, and SRGAP3 help maintain cell tension and stiffness

as well as inhibit tumor invasion and metastasis. Finally, PICK1,

a protein containing PDZ and BAR domains, inhibits actin

polymerisation dependent on actin-related protein 2/3 and

is involved in regulating the trafficking of many cell surface

receptors (44). Experimental evidence suggests that PICK1 is

involved in promoting tumor growth and is associated with

poor prognosis in human breast cancer (45). In conclusion,

our risk scores were negatively correlated with the expression

levels of ARFIP2, SH3GL2, and SRGAP3, whereas the risk

scores were positively correlated with the expression level

of PICK1. Finally, qRT-PCR and IHC analysis confirmed

the differential expression of SH3GL2 in tissues of different

origin and its correlation with the prognosis of patients

with glioma.

Recently, the most advanced therapy for cancer is

immunotherapy. According to the correlation analysis

between the proposed model and immune cell infiltration,

immune-related activities using ssGSEA and CIBERSORT,

our prognostic signature could reflect the tumor immune

microenvironment. NK cell infiltration levels were significantly

higher in the low-risk group, indicating greater antitumor

ability. Subsequently after the TIDE analysis, it was found that

the low-risk group had lower TIDE and immune dysfunction

scores. These results suggest that patients in the low-risk

group benefit more from ICI therapy than those in the

high-risk group.

Conclusion

Our prognostic signature was validated using six

independent datasets and exhibited better predictive

ability than TIDE and TIS scores. Our MTRGs

related prognostic signature is, therefore, a promising

predictive tool for better risk-stratification of patients

with LGG.
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SUPPLEMENTARY FIGURE 1

Di�erential analysis of MTRGs. (A) Di�erential expression analysis of 40

MTRGs in LGG tumor samples (TCGA–LGG) and normal brain tissue

samples (GTEx). (B) Di�erential expression analysis of four MTRGs in

prognostic models between high- and low-risk groups in the

TCGA–LGG dataset. ∗p < 0.05, ∗∗∗p < 0.001.

SUPPLEMENTARY FIGURE 2

Di�erence analysis of four MTRGs in prognostic models between high-

and low-risk groups in the six validation datasets (CGGA_mRNAseq 325,

CGGA_mRNAseq 693, CGGA_mRNAseq 325 + CGGA_mRNAseq 693,

CGGA_microarray 301, Rembrandt and GSE16011). ∗p < 0.05, ∗∗p <

0.01, and ∗ ∗ ∗p < 0.001.

SUPPLEMENTARY FIGURE 3

(A) Correlation of risk scores and tumor mutational burden in the

TCGA–LGG cohort. (B) Calibration curves for 3, 5, and 10-year OS

predicted in CGGA_mRNAseq 693 data set with nomogram. (C)

Calibration curves for 3, 5, and 10-year OS predicted in

CGGA_mRNAseq 325 data set with nomogram.

SUPPLEMENTARY FIGURE 4

IHC results of SRGAP3 in four samples (Sample 5, Sample 6, Sample 7,

Sample 8). SRGAP3 was not expressed in Samples 5, 6 and 8 and

moderately expressed in Sample 7.
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