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Abstract

In this study, we present a novel graph-based methodology for an accurate classification of 

cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach 

employs the visibility graph technique to generate graphs from time signals. Subsequently, 

informative features are extracted from each graph and then fed into classifiers to match the 

input ECG signal with the appropriate target arrhythmia class. The six target classes in this 

study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), 

premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. 

Three classification models were explored, including graph convolutional neural network (GCN), 

multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH 

arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that 

the multi-layer perceptron model attains the highest performance, showcasing an average accuracy 

of 99.02%. Following closely, the random forest achieves a strong performance as well, with an 

accuracy of 98.94% while providing critical intuitions.
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1. Introduction

Cardiovascular diseases (CVDs), accounting for approximately 17.9 million deaths annually, 

are the leading cause of global mortality. Reducing the incidence of premature fatalities 

hinges on the accurate identification of individuals at the highest risk and ensuring their 
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prompt access to appropriate treatment. Among the various manifestations of CVDs, 

arrhythmia, which denotes abnormal changes in the heart pulse rate, emerges as a common 

occurrence. A vital initial step in planning effective treatment for patients with cardiac 

problems is the establishment of a precise and automated arrhythmia diagnosis model. This 

pivotal tool plays a vital role in enhancing the accuracy of identification and expediting 

access to timely interventions, contributing to the overall goal of reducing the impact of 

cardiovascular diseases on global health.

The electrocardiogram (ECG) is a non-invasive medical diagnostic tool, providing essential 

insights into the heart’s electrical activity, rhythm, and condition (Kligfield et al., 2007). 

It is widely employed by cardiologists as a primary assessment tool for evaluating 

patients. Traditionally, cardiologists invested significant time in manually reviewing 

electrocardiogram recordings. The integration of automated arrhythmia detection models can 

streamline this process, resulting in enhanced efficacy and accuracy in cardiac assessments. 

Usually, the 12-lead ECG obtained from 10 electrodes is used for a routine study of the 

electrical activity of the heart. These leads include three bipolar limb leads (I, II, III), three 

augmented unipolar limb leads (aVR, aVL, aVF), along with six precordial leads (V1–V6). 

From bipolar leads, the second lead is the most widely used as it generally provides more 

information on the important waves of a heartbeat Lai, Bu, Su, Zhang, and Ma (2020).

In recent years, the utilization of machine learning algorithms in analyzing diverse bio-

signals has gained significant traction, demonstrating superior performance compared to 

previous methods (Ebrahimi, Loni, Daneshtalab, & Gharehbaghi, 2020; EPMoghaddam, 

Banta, Post, Razavi, & Aazhang, 2023; EPMoghaddam, Banta, et al., 2023a; 

EPMoghaddam, Sheth, Haneef, Gavvala, & Aazhang, 2022; Nasiri, Naghibzadeh, Yazdi, 

& Naghibzadeh, 2009; Wang, Chiang, Hsu, & Yang, 2013). Notably, numerous studies 

have concentrated on arrhythmia classification, with a discernible trend emphasizing the 

integration of neural network models, particularly convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), to augment the precision and efficacy of arrhythmia 

classification (Ebrahimi et al., 2020; EPMoghaddam, Muguli, & Aazhang, 2023b; Jun et al., 

2018; Singh, Pandey, Pawar, & Janghel, 2018).

As an example, the study by Sahoo et al. introduces an algorithm designed for the detection 

of QRS complexes, which encompass three deflections on an ECG tracing: the Q wave, the 

R wave, and the S wave, alongside the extraction of features using multiresolution wavelet 

transform (Sahoo et al., 2017). These extracted features are subsequently employed for 

classifying cardiac abnormalities, including normal (N), left bundle branch block (LBBB), 

right bundle branch block (RBBB), and paced beats (P). The classification is carried out 

using neural network (NN) and support vector machine (SVM) classifiers. The reported 

average accuracy is 96.67% for NN and 98.39% for SVM. Another study investigates the 

application of continuous wavelet transform in comparison to alternative data transformation 

techniques, specifically discrete wavelet transform and discrete cosine transform, for the task 

of arrhythmia classification (Khorrami & Moavenian, 2010). This study employs multi-layer 

perceptron (MLP) and SVM as classifiers. Notably, the study utilizes a dataset comprising 

only ninety beats for each arrhythmia—a limited set employed for training, testing, and 

validation purposes. A more recent study in Houssein et al. (2021) explores the application 
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of manta ray foraging optimization with SVM for the efficient classification of ECG 

arrhythmias. This approach incorporates a diverse set of features, including one-dimensional 

local binary pattern, wavelet, higher-order statistical, and morphological information. The 

integration of these features into the proposed framework achieves an inter-patient average 

accuracy of 98.26%.

In the study by Jangra et al. a novel CNN model is proposed for arrhythmia 

classification, achieving an accuracy of 99.48% in distinguishing ventricular ectopic beats 

and supraventricular ectopic beats (Jangra, Dhull, Singh, Singh, & Cheng, 2023). Similarly, 

the work by Kim et al. (2023) introduces another CNN architecture named WavelNet for 

the same task. In their three-class classification, they attain sensitivity rates of 91.4%, 

49.3%, and 91.4% for non-ectopic, supraventricular ectopic, and ventricular ectopic beat 

classifications, respectively. In the study presented in Madan et al. (2022), a hybrid model 

named 2D-CNN-LSTM is introduced, which combines convolutional neural network and 

long short-term memory (LSTM) network architectures. Initially, ECG signals are translated 

into scalogram images before being input into the model. The researchers utilize heartbeats 

from three databases and report accuracy rates of 98.7%, 99%, and 99% for the three-class 

classification of cardiac arrhythmias, congestive heart failure, and normal sinus rhythm, 

respectively.

Moreover, the visibility graph (VG) technique has been utilized in several studies for 

the arrhythmia classification task. For instance, in Li et al. (2021), weighted multi-scale 

limited penetrability visibility graph features were extracted, and an XGBoost classifier was 

employed to effectively classify atrial fibrillation (AF). Similarly, another study utilized the 

adjacency matrix of weighted visibility graphs or sequences of node weights as features 

for the classification of cardiac disorders using ECG recordings from the PTB-XL dataset 

(Kutluana & Türker, 2024). Table 1 summarizes several studies’ strengths and limitations. 

As evident, there is still room for further investigation into a broader spectrum of arrhythmia 

classes and enhancing classification performance. Additionally, addressing the dataset’s 

limitations, especially regarding data imbalance, is imperative as it can significantly affect 

learning outcomes. In this work, we tackle these gaps by examining a wider array of 

arrhythmia classes while concurrently enhancing classification accuracy. Moreover, we will 

discuss the dataset’s constraints and propose viable strategies to mitigate any associated 

limitations.

In this study, we introduce and assess a novel methodology for performing the arrhythmia 

classification task by leveraging visibility graphs in conjunction with three classifiers: 

graph convolutional neural network (GCN), multi-layer perceptron, and random forest 

(RF). The paper is structured as follows: Section 2 delves into the data and provides a 

comprehensive methodology overview, while Section 3 presents the experimental results. 

Ultimately, Sections 4 and 5 discuss the findings and conclude the paper.
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2. Material and methods

2.1. Data

The MIT-BIH open-source arrhythmia database from the PhysioNet Forum stands out as the 

most widely utilized dataset for the arrhythmia classification task (Goldberger et al., 2000; 

Xiao et al., 2023). In line with evaluating the presented model, we employed the MIT-BIH 

dataset, which encompasses 48 half-hour ECG recordings obtained from 47 distinct patients 

at the BIH laboratory. This dataset features 2-channel ECG recordings with a sampling rate 

of 360 Hz, offering a diverse range of heartbeats. For the specific focus of this work, we 

only utilize the first ECG lead, namely modified limb lead II (MLII). We narrowed down 

our analysis to data from six classes: N, LBBB, RBBB, PVC (premature ventricular), A 

(atrial premature contraction), and F (fusion beats). Fig. 1A illustrates the distribution of 

distinct types of heartbeats for each patient. Notably, recordings 102, 104, 207, and 217 

were excluded from our analysis due to poor signal quality (Mark, 1987; Sellami & Hwang, 

2019). Fig. 1B displays the proportion of various classes within the final training and testing 

sets.

2.2. Preprocessing

The first stage in the proposed methodology is preprocessing, focusing on noise removal and 

segmenting ECG recordings into individual heartbeats (Kher et al., 2019). Noise removal 

involves applying a notch filter to eliminate 60 Hz power line noise, followed by wavelet 

denoising using biorthogonal wavelets to effectively remove high-frequency noise (Mallat, 

1999). Additionally, baseline wandering is addressed through the application of successive 

median filters.

Following the noise removal, ECG signals undergo a subsequent partitioning into individual 

heartbeats. In Fig. 2A, two ECG heartbeats and their essential components are displayed. 

A crucial consideration in this process was to ensure a uniform segment length, coupled 

with the centering of the R peaks across different segments. The goal was to have the same 

number of time samples in each heartbeat segment, ensuring that the peaks were consistently 

represented at roughly the same time across all segments. Opting for windows spanning 300 

time points, equivalent to 0.83 s, was a deliberate choice to encompass the entire temporal 

scope of a beat, ensuring a comprehensive analysis that captures all critical components of 

a heartbeat. To accomplish this, as shown in Fig. 2B, for each heartbeat, the R peaks of the 

preceding and subsequent heartbeats are identified, and RR intervals are calculated. If, on 

each side, half of the RR interval is less than 150 time points, we apply padding to ensure a 

window of 300 centered around the R peak.

Following data segmentation, a down-sampling procedure was employed due to the 

substantial number of time points within each heartbeat. This down-sampling aimed 

to reduce the dimensionality of each segment, enhancing the efficiency of both graph 

generation and graph feature extraction processes. To achieve this, a sliding window 

approach was applied across the time-series, where the average of the amplitude values 

within each window was computed. Specifically, a sliding window of 10 time points was 

used, with a 20% overlap between consecutive windows. The sliding window duration 
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strikes a balance, being large enough to reduce complexity yet small enough to ensure 

that the final down-sampled segment, consisting of 38 time points, retains sufficient 

characteristics of the raw heartbeat without substantial distortion.

2.3. Visibility graph generation

The visibility graph is a technique used to transform complex time-series data into a 

network (Lacasa, Luque, Ballesteros, Luque, & Nuno, 2008; Stephen, Gu, & Yang, 2015). 

Fundamentally, each time point serves as a node in the graph, and the presence of an edge 

between two nodes signifies the intervisibility of the corresponding time points. In this 

study, we employ two variations of the visibility graph, specifically natural visibility graphs 

(NVG) and horizontal visibility graphs (HVG), as detailed in Lacasa et al. (2008), Luque, 

Lacasa, Ballesteros, and Luque (2009).

In the context of a natural visibility graph, two arbitrary points (ta, ya) and (tb, yb) possess 

visibility and are consequently connected if, for any other data point (tc, yc) situated between 

them, the following condition is satisfied:

yc < yb + (ya − yb) × tc − tb
ta − tb

.

(1)

In the case of HVG, two nodes are connected if:

yc < yb, ya .

(2)

Fig. 3 provides an illustration of the process of creating an NVG from a heartbeat. For the 

conversion of time-series data to a visibility graph, the ts2vg library in Python is employed.

In the process of constructing a visibility graph, it is possible to incorporate edge weights. 

In our context, we introduced edge weights based on the distance between two points. 

Specifically, the weight assigned to the edge connecting two arbitrary points (ta, ya) and (tb, yb) 

is defined as:

weab = (ya − yb)2 + (ta − tb)2,

(3)

where eab represents the edge connecting nodes a and b in the graph, and weab is its 

corresponding weight.

The rationale for employing a visibility graph in the current task is rooted in the 

understanding that the peaks and their relative distances constitute the most informative 

aspects of a heartbeat. The success of this approach lies in the visibility graph’s unique 
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capability to accentuate these critical features, aligning seamlessly with the essential 

requirements of the task.

In Fig. 4, we present an illustrative example featuring both types of graphs for a heartbeat. 

While HVGs generally exhibit fewer edges than NVGs due to a more stringent constraint on 

edge presence, leading to reduced computational costs, we find NVGs to be a more fitting 

choice. This preference arises because NVG places more focus and emphasis on the peaks, 

and given that heartbeat peaks play a crucial role in the diagnostic process, it aligns better 

with classification objectives.

To further appreciate the necessity of down-sampling as part of the preprocessing step, note 

that, initially, each heartbeat sample consisted of 300 time points. Creating a visibility graph 

directly from these samples would result in a graph with 300 nodes and numerous edges, 

imposing heavy computational demands for both graph creation and feature extraction. 

Instead, using down-sampled signals results in small graphs with 38 nodes.

2.4. Feature extraction

Three categories of features are extracted from each heartbeat sample. These features 

encompass graph features derived for each node in the visibility graph, temporal and 

entropy-based features extracted from 10-second sliding time windows, and time–frequency 

features.

The graph-based features include degree centrality, Katz centrality, betweenness centrality, 

closeness centrality, eigenvector centrality, Laplacian centrality, degree assortativity 

coefficient, and the graph’s eccentricity. To extract these features, the Python library 

NetworkX was utilized (Hagberg, Swart, & S. Chult, 2008). The emphasis of VG on 

heartbeat peaks led us to choose centrality-based features. These features aim to characterize 

the connections among nodes in the graph and highlight prominent nodes representing the 

peaks of heartbeats.

In addition to these graph features, a set of time-domain features was computed for each 

small sliding window within a heartbeat during the down-sampling process. Subsequently, 

these features were associated with the corresponding node in the VG. These features 

encompass SVD entropy, approximate entropy, permutation entropy, the count of zero-

crossings, Petrosian fractal dimension, Katz fractal dimension, Higuchi fractal dimension, 

and the energy of frequency sub-bands. Moreover, the short-time Fourier transform (STFT) 

was computed for each heartbeat, with window length and overlap matching the down-

sampling step. Consequently, a vector of frequency content was assigned to each node in the 

graph. Ultimately, each node was represented by a feature vector comprising 22 elements. A 

number of previous studies have examined a subset of these features and highlighted their 

relevance.
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Algorithm 1 Processing Flow

Input:Raw ECG recordings
Output:Visibility Graphs
1: for each MLII do
2: y Apply notch filter to MLII
3: y Apply wavelet denoising to y
4: y Apply successive median filters to y
5: for each Rin y do
6: W Select a window of 300 points around R
7: W Apply down‐sampling to W
8: V G Create visibility graph from W
9: V G Extract nodes’ features and add to V G

10: end for
11:end for

2.5. Classification

Prior research has employed a variety of machine learning models for arrhythmia 

classification (Atal & Singh, 2020; Duong, Doan, Chu, & Nguyen, 2023; He et al., 2023; 

Zhang et al., 2021; Zhao, Liu, Han, & Peng, 2022). In this study, we employ three classifiers 

and assess their performance, including GCN, MLP, and RF. Fig. 5 provides an overview of 

the models employed in this context for the six-class arrhythmia classification task.

2.5.1. Graph convolutional neural network—The graph neural network (GNN) 

stands out as a potent neural network designed specifically for processing data structured 

as graphs. Several variations of GNNs, renowned for their robust performance in analyzing 

time-series data, have been extensively explored in prior studies (He et al., 2023; Zhao et 

al., 2022). One noteworthy category within GNNs is the graph convolutional neural network, 

which utilizes convolutional layers to gather information from neighboring nodes based on 

the connectivity within the graph. The number of layers in a GCN plays a crucial role in 

determining the extent to which neighboring nodes influence a given node.

2.5.2. Random forest—Random forest is a notable ensemble learning algorithm 

leveraging the bagging technique, which can be used in regression and classification tasks 

(Breiman, 2001). By constructing an ensemble of decision trees, this algorithm delivers a 

classification prediction determined by the mode of individual tree predictions. Renowned 

for their versatility and robustness, random forests excel in handling complex datasets. To 

employ an RF model, we concatenate all the graph nodes’ features into a single feature 

vector representing that specific heartbeat sample. Consequently, each heartbeat is now 

represented by a vector of size 38 × 22 = 836, where 38 corresponds to the number of nodes 

in each graph, and 22 is the length of the feature vector for a single node. Fig. 5B depicts the 

outlined process.
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2.5.3. Multi-layer perceptron—A multi-layer perceptron is a basic neural network 

architecture characterized by the inclusion of multiple fully connected layers. Our study 

explored the efficacy of MLPs with varying depths, specifically employing configurations 

with 2 to 5 layers.

The overall processing flow is outlined in Algorithm 1, detailing the steps for transforming 

raw ECG samples into visibility graphs. Following the completion of this stage, we proceed 

with the classification process. Algorithm 2 provides a comprehensive description of our 

classification approach, which utilizes the processed visibility graphs to predict arrhythmia 

classes.

Algorithm 2 Classification

Input:Visibility Graphs, Classifier
Output:Predicted Arrhythmia Classes
1:V Gtrain, V Gtest Divide visibility graphs into two sets
2:Y train Extract arrhythmia labels for V Gtrain

3:Y test Extract arrhythmia labels for V Gtest

4: if Classifier is GCN then
5: Xtrain V Gtrain

6: Xtest V Gtest

7:else
8: Xtrain Extract feature vectors from V Gtrain

9: Xtest Extract feature vectors from V Gtest

10:end if
11:Train the Classifier on (Xtrain, Y train)
12:Y pred Predict labels for Xtest

13:Evaluate the Classifier by comparing Y pred and Y test

3. Results

3.1. Performance measures

We investigate four widely used metrics, namely accuracy, precision, recall, and F1-score, to 

assess the performance of the proposed model. These metrics are defined as follows:

Accuracy = tp + tn
tp + fp + tn + fn

(4)

Precision = tp
tp + fp

(5)
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Recall = tp
tp + fn

(6)

F1 = tp

tp + 1
2(fp + fn)

(7)

Here tp, fp, tn, fn represent true positives, false positives, true negatives, and false negatives, 

respectively.

In many cases, solely examining one of these metrics can be misleading and may not 

furnish sufficient information for comprehensive assessments. For instance, in scenarios 

characterized by extreme class imbalance, a naive classifier might label every sample 

as the majority class, yielding a seemingly high accuracy. However, such a classifier is 

inherently undesirable. By incorporating the four aforementioned metrics, we ensure a 

thorough evaluation of the model’s performance.

3.2. Results

We employ an intra-patient approach by consolidating samples from all patients. Following 

this amalgamation, we randomly divide the samples into two non-overlapping sets—one for 

training and the other for testing, with each set comprising 46,497 samples. The presented 

results are obtained by evaluating the performance of the trained models on the testing data.

In our exploration of classifiers, we assess three models: GCN, MLP, and RF. Each model 

undergoes an examination of a diverse range of parameters, including batch size, learning 

rate, the number of layers, the number of neurons in hidden layers, and more. Notably, for 

learning rate, values of 0.0001, 0.001, and 0.01 were explored, with 0.001 selected. These 

selections were made based on commonly used values for learning rates in various studies. 

Regarding batch size, we tested 32, 64, 128, and 256, finding that 32 and 64 achieved the 

highest performance.

For GCN models, we experimented with varying the number of layers from three to seven. 

Initially, we started with smaller models with fewer neurons and observed how incorporating 

additional layers and neurons impacted the performance. Table 2 presents GCN performance 

in several scenarios. Through our experimentation with three different layer configurations 

(3, 5, 7), we observed that employing seven layers resulted in a slightly better outcome, 

achieving an accuracy of 98.20%.

Table 3 showcases the performance of RF across various scenarios. Several choices for the 

number of trees in the forest, maximum tree depth, and minimum samples required to split 

an internal node are explored. In Table 3, unless specified otherwise, the parameter values 

are set to the defaults of the RandomForestClassifier function in sklearn. We also explored 
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the addition of class weights to address data imbalance but found it to be insufficient. Using 

RF classifiers, the highest accuracy achieved was 98.94%.

Table 4 showcases the performance of the proposed algorithm combined with the MLP 

classifier using various parameters. For MLPs, we initiated experiments with smaller 

network architectures comprising two to five layers. We employed configurations with 16, 

32, 64, 128, 256, and 512 neurons and explored various combinations. Optimal performance 

was observed with an architecture comprising 3 layers and neuron counts of 128, 64, and 32, 

respectively. MLP exhibited slightly superior results compared to the other two classifiers, 

achieving an accuracy of 99.02%. Fig. 6 provides a detailed overview of the aforementioned 

classifier for each individual class. The first four classes exhibit higher accuracy, while the 

last two show slightly lower performance. This could be attributed, in part, to the lower 

number of samples associated with these classes in the training data, limiting the model’s 

ability to learn their patterns effectively. Additionally, identifying fusion beats poses several 

challenges due to their complex morphology and variability. Fusion beats can manifest in 

diverse appearances, and the degree of fusion may vary among individuals. The diversity in 

morphology and timing makes it challenging for models to learn a universal representation 

of fusion beats, especially given the limited number of samples available. Furthermore, 

fusion beats may share characteristics with other beat types, such as PVC or normal beats, 

leading to overlap in features that complicates the model’s ability to precisely differentiate 

between these classes (Das & Ari, 2014). Fig. 7 presents the accuracy and loss plots over 

100 epochs for three models.

4. Discussion

Among the three classifiers, GCN demonstrates slightly lower performance. This 

observation may be attributed to the incorporation of graph-based features into the 

nodes’ feature vectors and the subsequent aggregation of information from neighboring 

nodes in GCN, which may introduce redundancy, potentially diminishing the significance 

of aggregating information based on graph connectivity. Furthermore, the efficacy of 

aggregating neighbor information might be less pronounced because of the nature of features 

in comparison to scenarios with more elaborate relationships, such as social networks.

While the MLP stands out as the top performer, it is closely followed by RF. Notably, RF 

gains a distinct advantage by offering valuable insights into the significance of individual 

features. To gauge the importance of features, we can analyze the mean decrease in impurity. 

Features exhibiting a higher mean decrease in impurity hold greater importance in the 

classification process. Scrutinizing these prominent features offers valuable insights into 

the model’s decision-making mechanisms. To enhance interpretability, it is insightful to 

correlate these features with their corresponding nodes in the graph and time points within 

the down-sampled signal. Given the construction of input features for the RF model, a 

mapping exercise is very straightforward and allows us to associate each feature with a 

specific node in the graph or a time point in the down-sampled signal, accompanied by its 

specific feature type. Such a contextualized analysis facilitates a deeper understanding of the 

model’s reliance on specific nodes and characteristics, shedding light on the factors driving 

its classification decisions.
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Analyzing the top 10 features underscores their predominant association with time points 

within the QRS area, notably excluding the R peak itself. In most instances of heartbeats, the 

R peak, serving as the highest point, demonstrates significant connectivity and thus displays 

limited variability across different target classes. Consequently, its utility in the classification 

process is diminished, as it fails to provide substantial discriminatory information. However, 

its neighboring nodes can provide insights into the width and slope of the QRS segment. 

Specifically, in a heartbeat sample with 38 nodes and node R located at time point 18, the 

top 10 features are derived from time points 16, 21, 22, and 23, encompassing node features 

such as Beta sub-band energy, degree centrality, and STFT features. Expanding our scrutiny 

to the top 20 features illuminates a consistent dominance of nodes 16, 17, 20, 21, 22, and 23, 

and feature categories such as Beta sub-band energy, degree centrality, STFT features, alpha 

sub-band energy, SVD entropy, and closeness centrality.

Diverging from the conventional reliance on intricate neural networks for feature extraction, 

our approach involves implementing an innovative methodology that constructs graph 

structures with a specific emphasis on the peaks of heartbeats—the most informative 

components in a heartbeat. Additionally, by incorporating STFT, we integrate frequency 

content into our analysis. This meticulous process results in a comprehensive and insightful 

feature vector that encapsulates crucial aspects of a heartbeat. All three models demonstrated 

comparably high performance, further highlighting the significance of the proposed features 

and their pivotal role in this classification task. It is noteworthy that when utilizing RF 

and MLP as classifiers, although we do not directly leverage the graph structure, we retain 

crucial insights into the visibility graph by utilizing the calculated graph features.

Table 5 offers a detailed comparison between our study and prior research on intra-

patient ECG beat classification using the MIT-BIH database. Our proposed methodology 

outperforms many recent studies by leveraging a novel approach and achieving an accuracy 

of 99.02% on the classification of six arrhythmia classes (Kumar et al., 2023; Li et al., 2017; 

Oh et al., 2018; Wu et al., 2021). While certain studies may initially appear to showcase 

superior performance, it is imperative to acknowledge that they hinge upon considerably 

smaller subsets of recordings from the database (Shi et al., 2021; Yildirim, 2018; Yu & 

Chen, 2007). Using a limited sample size can potentially compromise the robustness and 

generalizability of research findings. Furthermore, it is noteworthy that most of these studies 

concentrate on five arrhythmia classes, whereas our case involves six classes, introducing 

additional complexity to the classification task.

A statistical method for comparing the performance of classifiers involves hypothesis 

testing. The p-value is a statistical measure that quantifies the strength of evidence against 

the null hypothesis and represents the probability of observing more extreme results if the 

null hypothesis were true. A small p-value indicates that the observed data is unlikely to 

occur if the null hypothesis were true, leading to the rejection of the null hypothesis in favor 

of the alternative hypothesis. Conversely, a large p-value suggests that the observed data 

is not unusual under the null hypothesis, providing insufficient evidence to reject the null 

hypothesis. In simpler terms, the p-value helps determine the likelihood of obtaining the 

observed results purely by chance, allowing researchers to assess the statistical significance 

of their findings. A common significance level for hypothesis testing is set at 0.05. In 
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this framework, the null hypothesis posits that two classifiers perform equally well. When 

comparing our classifier to the one studied in Pandey et al. (2023), the obtained p-value is 

0.61. This value, calculated based on accuracy, precision, recall, and F1 values, indicates that 

there is no compelling evidence to reject the null hypothesis. Hence, statistically speaking, 

there is no significant difference between the classifiers. However, it is worth noting that 

our study encompasses a larger sample size and a broader range of arrhythmia classes. 

Furthermore, compared to Wu et al. (2021) and Kumar et al. (2023), p-values of 0.08 and 

0.18 were obtained, respectively, indicating similar outcomes. This comparison supports our 

study, as it performs similarly on a more challenging task (six-class classification) with a 

larger sample size.

One of the challenges we encountered in this study was the data imbalance, particularly 

concerning atrial premature contraction and fusion beats, as shown in Fig. 1B. Our 

exploration of incorporating sample weights to heighten the penalty for misclassifying these 

classes proved insufficient, signaling the need for additional measures to address this issue 

effectively. Consequently, we are considering the prospect of oversampling the minority 

class and undersampling the majority class as a viable solution to mitigate this challenge.

A limitation of this study is its intra-patient focus. Enhancing the reliability and 

generalizability of our classification model requires the accumulation of a more extensive 

array of samples for each arrhythmia class. Furthermore, the inclusion of a broader spectrum 

of patients and adopting an inter-patient paradigm—where the trained model undergoes 

testing on a cohort of entirely new patients not represented in the training process—are 

essential steps. This strategic expansion ensures a comprehensive evaluation of the model’s 

performance across diverse patient populations, ultimately advancing its effectiveness and 

applicability. While the predominant approach in current studies leans towards the intra-

patient paradigm, it is crucial to explore the inter-patient paradigm more extensively. The 

prevalence of the intra-patient paradigm in studies may be attributed to the challenges 

posed by the limited availability of samples for arrhythmic classes. The inadequacy of these 

samples poses a potential hindrance to the development of a comprehensive and generalized 

model. Exploring the inter-patient paradigm on a broader scale is integral to gaining a deeper 

understanding of arrhythmia classification dynamics and ensuring the model’s adaptability 

across diverse patient cohorts.

Our research underscores the efficacy of visibility graphs in analyzing time-series data 

and providing rich insights, particularly in bio-signal analysis, and aligns with previous 

investigations into VG applications (Kutluana & Türker, 2024; Li et al., 2021). By 

further validating the utility of visibility graphs in arrhythmia classification, our findings 

contribute to establishing these representations as valuable tools in bio-signal analysis. 

Additionally, our research emphasizes the importance of exploring novel formats, such as 

graph representations, to extract meaningful insights from complex datasets, enhancing our 

understanding of bio-signals and paving the way for further advancements in this field.

Furthermore, our investigation identifies concerns regarding time complexity when dealing 

with large graphs and addresses them by integrating down-sampling techniques into our 

methodology. This approach aims to improve computational efficiency and enable smoother 
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analysis of large-scale datasets in future studies. Additionally, we recognize the limitation 

posed by data imbalance and recommend exploring advanced techniques to address this 

issue effectively, thereby ensuring more robust model performance. Besides, incorporating 

diverse datasets can mitigate the challenge of limited samples from minority classes and 

further enhance the model’s reliability.

Our study contributes to enhancing the generalizability of arrhythmic heartbeat 

classification. Given the severe implications of arrhythmia, including cardiac arrests and 

mortality, detecting deviations from normal heart function is critical for preventing adverse 

outcomes. Leveraging the distinctive shape of a heartbeat through simple models based 

on graphs and graph features, was shown to be promising. Moving forward, we envision 

exploring the possibility of implementing this paradigm for online detection of arrhythmic 

heartbeats, potentially enabling real-time arrhythmia detection in patients and facilitating 

prompt intervention when necessary.

5. Conclusions

This study introduces an innovative technique for classifying arrhythmic ECG heartbeats, 

utilizing a graph-based methodology. The time-series data is transformed into graphs, from 

which informative features are extracted. Subsequently, the resulting graphs are fed into 

classifiers to determine the target heartbeat class. The chosen classifiers include graph 

convolutional networks, random forests, and multi-layer perceptrons. All three classifiers 

exhibit similar performance, with MLP demonstrating slightly superior results, showcasing 

a promising F1-score of 99%. Random forest achieved a close performance and also 

provided helpful insights on the features. The obtained result underscores the potential of 

the proposed methodology as an excellent model for computer-aided diagnosis of cardiac 

arrhythmias. For future directions, we aim to expand our research by incorporating a 

more extensive range of arrhythmia classes and involving a larger number of patients. 

Additionally, we aim to explore the inter-patient paradigm and investigate alternative 

classification models.
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Fig. 1. 
(A) Distribution of different heartbeat types for individuals in MIT-BIH database. (B) Data 

distribution in both training and testing sets. The dataset exhibits a significant imbalance, 

with the majority of instances belonging to the normal heartbeat class. This leads to 

challenges in training a model that adequately captures patterns in the minority classes.
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Fig. 2. 
(A) Two heartbeat samples and their components. The plot on the right illustrates a normal 

heartbeat, while the one on the left represents a right bundle branch block heartbeat. (B) An 

example of an ECG signal before and after noise removal is shown. Note that black circles 

indicate R peaks. After noise removal, the signal is partitioned into individual heartbeat 

samples. Each sample has a fixed length of 300 time points. To achieve this, the R peaks of 

the preceding and subsequent heartbeats are identified, and RR intervals are calculated. On 

each side of the main heartbeat, if half of the RR interval is less than 150 time points, we 

apply padding to ensure a window of 300 centered around the R peak.
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Fig. 3. 
Natural visibility graph technique.
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Fig. 4. 
An example of NVG and HVG created from the same heartbeat.
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Fig. 5. 
Three classifiers used for arrhythmia classification task. (A) Graph convolutional network. 

The GCN processes natural visibility graphs as input, each comprising 38 nodes. Each 

node is represented by a feature vector of size 1 × 22. The GCN then produces output 

corresponding to one of the six arrhythmia classes. (B) Random forest. Please note that DT 

stands for decision tree. The features of graph nodes are concatenated into a single vector, 

which is then inputted into the classifier. (C) Multi-layer perceptron.
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Fig. 6. 
Classification details for the model achieving the highest performance.
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Fig. 7. 
Accuracy and loss curves for three classifiers. MLP1 is an MLP with three layers (64, 32, 

16), GCN1 is a 5-layer GCN with 150 neurons, and GCN2 is a 5-layer GCN with 100 

neurons. (A) Accuracy plot. (B) Loss plot.
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