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Tumor metabolism supports the energetic and biosynthetic
needs of rapidly proliferating cancer cells and modifies intra- and
intercellular signaling to enhance cancer cell invasion, metastasis,
and immune evasion. Prostate cancer exhibits unique metabo-
lism with high rates of de novo fatty acid synthesis driven by
activation of the androgen receptor (AR). Increasing evidence
suggests that activation of this pathway is functionally important

Introduction

Cancer cell metabolism has been recognized to be important for
cancer progression for decades. Some of the oldest and most effective
cancer therapies are antimetabolites such as 5-fluorouracil (5-FU),
6-mercaptopurine (6-MP), cytarabine, gemcitabine, and methotrex-
ate (1). Yet we are learning that the traditional idea that cancer cell
metabolic programs are optimized for maximal biosynthesis for
proliferation is overly simplistic. Such conclusions are based primarily
on studies of cancer cell lines that have high proliferative rates in vitro
that do not accurately model the growth rate and complexity of human
tumors, and particularly prostate cancer. Recent studies indicate that
metabolism also regulates intra- and intercellular signaling enhancing
overall tumor fitness not only for growth, but also for invasion,
metastasis, and evasion of the immune system (2-4). As such, cell
metabolism is not simply a supporting process of tumorigenesis, but
rather, is critical to the progression of cancer that leads to patient death.

A metabolic feature of many cancers is the ability to generate de novo
fatty acids (5, 6). Historically de novo fatty acid synthesis was thought
to be restricted to adipose tissue, liver, and the lactating mammary
gland (7). In these organs, this pathway functions to store energy in the
form of lipids under circumstances of nutrient surplus. These lipids,
along with dietary lipids, are circulated, taken up, and used by many
other cell types in mammals. The abundance of circulating lipids
was thought to make de novo fatty acid synthesis by other cell types
unnecessary. However, beyond the pathologic setting of tumorigenesis,
de novo fatty acid synthesis is also induced and important for function of
many normal cell types, such as pluripotent stem cells (8), and many
types of immune cells, including T and B lymphocytes (9, 10), macro-
phages (11), and dendritic cells (12). Therefore, the ability to synthesize
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to promote prostate cancer aggressiveness. However, the
mechanisms by which fatty acid synthesis are beneficial to
prostate cancer have not been well defined. In this review, we
summarize evidence indicating that fatty acid synthesis drives
progression of prostate cancer. We also explore explanations for
this phenomenon and discuss future directions for targeting this
pathway for patient benefit.

fatty acids seems to be more generally beneficial for cellular function,
in spite of the perceived rarity of lipid deprivation in vivo.

Prostate adenocarcinoma is different from other cancer types
because it is exquisitely dependent on signaling through the
androgen receptor (AR). Androgen deprivation therapy (ADT) is
arguably the most effective systemic therapy targeting one pathway
for any cancer type with a response rate of about 90% when
synthesis of androgens is blocked from both the testes and adrenal
glands (13, 14). When prostate cancer recurs after ADT (i.e,
castration-resistant prostate cancer, CRPC), it generally remains
dependent on signaling through AR and does so despite low serum
androgens through AR overexpression, amplification, mutation,
production of ligand-independent variants, and reprogramming of
the AR cistrome (15-20).

While AR can regulate hundreds of genes, a key function of AR may
be regulation of cell metabolism. Indeed, testosterone is known to alter
metabolism across many tissue types including skeletal muscle, cardiac
muscle, and adipose tissue (21, 22). In normal prostate epithelial cells,
AR drives unique metabolic flux to promote secretion of citrate and
polyamines into prostatic secretions, which support sperm survival
and function in the female reproductive tract (23, 24). When the
prostate epithelium becomes malignant, and even after development of
castration resistance, AR continues to dictate metabolic flux, now
supporting forward flux through the tricarboxylic acid (TCA) cycle
and driving citrate toward de novo fatty acid synthesis in lieu of
secretion (25, 26). In this review, we assess the evidence that high rates
of de novo fatty acid synthesis, driven by AR activation, occurs in and is
important to progression of prostate cancer, followed by a discussion
of therapeutic implications.

Prostate Cancer May Engage in High
Rates of Fatty Acid Synthesis

Fatty acids generated within the cell are derived from the TCA cycle
intermediate citrate or from acetate (Fig. 1). Citrate is transported out
of the mitochondria via the tricarboxylate transport protein or citrate
transporter protein (CTP) into the cytosol where it can be cleaved by
ATP citrate lyase (ACLY) to generate acetyl-CoA. Acetate can be
converted to acetyl-CoA by ligation with CoA by acetyl-CoA synthe-
tase (ACSS; ref. 27). Cytosolic acetyl-CoA is subsequently carboxylated
by the key regulatory enzyme acetyl-CoA carboxylase (ACC) to
generate malonyl-CoA, which can be combined with acetyl-CoA
to generate the 16-carbon saturated fatty acid palmitate by the
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Simplified schematic of generation of intracellular fatty acids. Fatty acids can be synthesized de novo or taken up from the tumor microenvironment. De novo fatty
acid synthesis originates from cytosolic acetyl-CoA, which can be carboxylated by acetyl-CoA carboxylase (ACC) to generate malonyl-CoA. Malonyl-CoA can be
combined with acetyl-CoA by FASN to generate palmitate. Palmitate can subsequently be elongated by elongases and/or desaturated by desaturases to generate a
wide variety of fatty acids. These fatty acids can be used for biosynthesis of membranes, modification of intra- and intercellular signaling, ROS buffering, and energy

storage. Created with BioRender.com

multi-enzyme protein, fatty acid synthase (FASN). Palmitate can
subsequently be elongated by elongases and/or desaturated by desa-
turases to generate a wide variety of fatty acids. These fatty acids can
subsequently be used to generate membrane molecules such as gly-
colipids and phospholipids, signaling molecules such as diacylglycerol
(DAG) and phosphatidylinositol-3,4,5-triphosphate (PIP3), and ener-
gy storage molecules such as triacylglyerides (TAG).

A comparison of gene expression of 32 cancer types included in
The Cancer Genome Atlas (TCGA) PanCan 2018 normalized analy-
sis (28, 29) indicates that compared with other types of cancer, primary
prostate cancer exhibits high expression of key proteins in the fatty acid
synthesis pathway: CTP, ACLY, ACC, and FASN (Fig. 2A and B). While
high expression of these proteins could be a remnant from a high rate of
fatty acid synthesis in the tissue of origin (for example as may be the case
in hepatocellular carcinoma), a comparison of gene expression in
normal prostate compared with prostate cancer (30) suggests ACLY,
ACC, and FASN are markedly higher in prostate cancer (Fig. 2C). FASN
expression is undetectable by immunohistochemistry in benign prostate
and nearly uniformly positive across prostatic intraepithelial neoplasia
(PIN) and invasive carcinomas, and with particularly high expression in
metastatic tumors (31-33). Moreover, metabolomic studies indicate that
some fatty acids, including palmitate (16:0), laurate (12:0), myristate

4386 Cancer Res; 81(17) September 1, 2021

(14:0), linoleate (18:2n6), and eicosenoate (20:1n9 or 11) are higher in
primary prostate cancer compared with benign prostate, and may be
higher still in metastatic prostate cancer (34-36). Although linoleate is
considered an essential polyunsaturated fatty acid (PUFA) that must be
taken up by the cell, the remainder of these fatty acids can be synthesized
de novo. Conversely, quantity of the fatty acid precursor citrate is
reduced in high versus low Gleason score primary prostate cancer,
which may indicate high utilization (37, 38). Finally, noninvasive
molecular imaging techniques using positron emission tomography
(PET) also support the concept that prostate cancer engages in de novo
fatty acid synthesis. While glucose uptake is generally low in prostate
cancer (as assessed by '*F-fluorodeoxyglucose PET), acetate uptake is
higher (as assessed by ''C-acetate PET) and is predictive of biochemical
relapse after prostatectomy (39, 40). Acetate uptake seems to be used for
de novo fatty acid synthesis because it is diminished by inhibitors of
FASN (41, 42).

While these data suggest that de novo fatty acid synthesis occurs in
human prostate cancer, and with increasing rate with disease pro-
gression (Fig. 2D), this could be assessed more definitively using
isotope tracing followed by assessment of labeling patterns by mass
spectrometry in biopsy samples of patients, as has been performed in
patients with renal cell carcinoma (43). Moreover, given that cellular
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Prostate cancer may engage in high rates of fatty acid synthesis. A, Several types of solid tumors may engage in de novo fatty acid synthesis including prostate cancer.
HCC, hepatocellular carcinoma; RCC, renal cell carcinoma. B, Expression of genes in the fatty acid synthesis pathway across cancer types in the TCGA PanCan 2018
normalized analysis (N = 10,071), ordered by median expression, with prostate cancer in red (28, 29). AML, acute myeloid leukemia; GBM, glioblastoma; Adeno,
adenocarcinoma; LGG, low grade glioma; CS, carcinosarcoma; ccRCC, clear cell renal cell carcinoma; DLBCL, diffuse large B cell lymphoma; PCPG, pheochromo-
cytoma/paraganglioma; RCC, renal cell carcinoma; ACC, adenoid cystic carcinoma. C, Expression of genes in the fatty acid synthesis pathway in prostate cancer
compared with normal prostate (N =150) per publicly available data from Taylor and colleagues (30). D, Rate of fatty acid synthesis appears to increase with prostate
cancer progression from normal prostate to metastatic castration-resistant prostate cancer.

metabolic flux is shaped by both cell-intrinsic factors and the
microenvironment (44), future studies should consider how pros-
tate cancer cell rates of fatty acid synthesis are altered depending on
composition of surrounding cell types (i.e., anatomic location of the
metastasis) and metabolite and oxygen availability. These studies
are critically important not only to better define the pathophysi-
ology of prostate cancer, but also to identify biomarkers of high
rates of fatty acid synthesis that may predict clinical response to
inhibitors of this pathway.

Fatty Acid Synthesis May Drive Prostate
Cancer Development and Progression

Evidence that prostate cancer may engage in high rates of fatty acid
synthesis begs the question of whether activation of this pathway is
important or incidental (i.e., an epiphenomenon) to prostate cancer
development and progression. The former is suggested by the positive
correlation between levels of fatty acid synthesis enzymes and products
and prostate cancer disease stage. In fact, FASN expression level
predicts seminal vesicle invasion or lymph node metastases, indepen-
dent of Gleason score, in primary prostate cancer (45). Among patients
with PTEN loss, high FASN expression was associated with shorter
overall survival (46).

To begin to understand the functional significance of fatty acid
synthesis in prostate cancer, multiple groups have investigated phar-
macologic and genetic modulation of enzymes in this pathway in
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models of prostate cancer. Studies dating back over 20 years showed
that pharmacologic inhibition of FASN using orlistat, cerulenin, or
C75, as well as knock-down of FASN expression using RNAI, slowed
proliferation of prostate cancer cell lines (41, 47, 48). More recently, the
FASN inhibitor IPI-9119 similarly reduced proliferation of CRPC cell
lines and organoids, an effect that could be rescued by addition of
exogenous palmitate, and growth of mouse xenograft tumors (49).
Mice with prostate-specific deletion of both Ptern and FASN were found
to have less extensive areas of PIN and reactive stroma compared with
mice with prostate-specific deletion of Pten alone (46). Conversely,
overexpression of FASN increased proliferation of AR-positive CRPC
cell lines and was sufficient to induce invasive carcinoma in AR-
positive immortalized human prostate epithelial cells (AR-iPrEC),
suggesting FASN can act as a prostate cancer oncogene in the presence
of AR (50).

Inhibition of FASN not only reduces intracellular de novo fatty
acids, but also leads to accumulation of malonyl-CoA, which can
inhibit fatty acid oxidation through CPT1 inhibition (51). However,
inhibition of other enzymes involved de novo fatty acid synthesis that
do not lead to elevated malonyl-CoA levels also inhibit prostate cancer
growth. Inhibition of the rate-limiting enzyme ACC by RNAi-
mediated silencing or by soraphen A reduced proliferation of CRPC
cell lines, which could be rescued by addition of palmitate to the
media (52, 53). Moreover, genetic knock-down of the fatty acid
elongases ELOVL5 (54) or ELOVL7 (26) inhibits growth of CRPC
xenograft tumors and human tumor explants. Interestingly, ELOVL5
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knock-down also reduced metastasis of mouse orthotopic prostate
cancer, and in vitro growth could be rescued by supplementation with
cis-vaccenic acid, the fatty acid product of ELOVLS5 (54). This study
suggests that de novo fatty acid synthesis may be important for
metastasis in addition to proliferation.

Fatty acid synthesis is dependent on ample supply of TCA cycle-
derived citrate. Cytosolic pyruvate is a key precursor of citrate, which
can be transported into mitochondria via the mitochondrial pyruvate
carrier (MPC), converted to acetyl-CoA by the pyruvate dehydroge-
nase complex (PDC), and subsequently combined with oxaloacetate to
generate citrate. Disruption of MPC (55) or PDC (56) activity inhibited
lipogenesis and growth of prostate cancer in murine models. Remark-
ably, in vitro growth inhibition due to genetic knockdown of Pdhal, a
subunit of PDC, could be rescued by supplementation with exogenous
fatty acids, providing additional evidence that prostate cancer cell-
intrinsic production of fatty acids is required for proliferation (56).
Citrate can also be generated from glutamine through both oxidative
metabolism and reductive carboxylation (57, 58). Genetic deletion of
mitochondrial aconitase, Aco2, reduced generation of citrate from
glutamine through both pathways, resulted in diminished lipogenesis,
and reduced prostate cancer growth (59).

Regulation of Fatty Acid Synthesis in
Prostate Cancer

Fatty acid synthesis in prostate cancer appears to be coordinated by
many factors, including AR, sterol regulatory-element binding pro-
teins (SREBPs), PTEN/PI3K/Akt, c-Myc, and AMP-activated protein
kinase (AMPK; ref. 60). Exposure of CRPC cell lines to androgens
leads to upregulation and increased activity of ACLY, ACC, FASN,
and malic enzyme, as well as accumulation of de novo neutral
lipids (61-63). Conversely, AR activation represses expression of
DECRI, reducing fatty acid oxidation (64). AR may coordinate this
lipogenic program through stimulation of SREBPs (62), which regulate
expression of genes involved in fatty acid and cholesterol synthesis (65).
Expression of SREBPs increases through stages of prostate cancer
progression (66). SREBP hyperactivity due to high MAPK activation
increased the abundance of intracellular saturated and monounsatu-
rated fatty acyl chains and development of metastases in a murine
model of prostate cancer (67). This study and others have shown that
the inhibitor of SREBP, fatostatin, reduces prostate cancer prolifera-
tion, invasion, and metastasis (67, 68). SREBP activity is also stimu-
lated by Akt (69) and c-Myc (70). In models of prostate cancer, Akt
activation and c-Myc expression increase fatty acid synthesis (71, 72).
Moreover, SREBP activity is regulated in part by nuclear PDC gen-
eration of acetyl-CoA, which can modify histone acetylation and
transcriptional activation and may coordinate substrate availability
with transcriptional programs of lipogenesis (56).

Negative regulation of lipogenesis can be coordinated by AMPK.
Under circumstances of energetic stress often due to nutrient depri-
vation, the cell is programmed to activate catabolic pathways and
inactivate anabolic metabolism to produce energy needed for survival.
This program is orchestrated by AMPK, which is activated by a high
ratio of AMP to ATP. AMPK activation inhibits fatty acid synthesis by
phosphorylating and inactivating ACC and suppressing SREBP1c
function to reduce FASN and ACC expression (73, 74). AMPK
activation by AICAR or rosiglitazone was shown to inhibit fatty acid
synthesis and proliferation of prostate cancer cells (75). The drug MT
63-78 directly activates AMPK and was also shown to reduce growth
of preclinical models of prostate cancer with exogenous palmitate
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partially rescuing the growth defect (76). However AMPK activation is
also known to be adaptive for tumor cells under stress, as its inhibition
of fatty acid synthesis was shown to conserve NADPH to compensate
for reduced pentose phosphate pathway activity under glucose star-
vation (77). Therefore, the role of AMPK activation in prostate cancer
progression is likely complex (78).

Benefit of Fatty Acid Synthesis for
Prostate Cancer Progression

We can consider how de novo fatty acid synthesis might be beneficial
for prostate cancer progression by considering what it produces and
what it consumes. In other words, activation of this pathway may be
beneficial by producing a growth-stimulatory substance and/or elim-
inating a growth-inhibitory substance.

Certainly a possibility is that increased quantities of intracellular
fatty acids are beneficial. This is supported by experiments that show
that (i) supplementation of fatty acids can rescue growth inhibition due
to inhibition of fatty acid synthesis (49, 54, 56) and (ii) inhibition of
lipid uptake also inhibits prostate cancer growth (79, 80). Indeed the
dogma of de novo fatty acid synthesis in cancer is that it is a critical
source of lipids that serve as biosynthetic building blocks for cell and
organelle membrane formation for rapid proliferation. Yet this expla-
nation feels unsatisfactory in prostate cancer, which may have high
rates of fatty acid synthesis but slow proliferation compared with other
cancer types. Alternatively, de novo fatty acids could function as
intracellular signaling molecules to propagate growth, invasion, and
metastasis. For example, several phosphatidylinositols (PI), which are
critical second messengers in tumorigenic signaling cascades, were
found to be more abundant in prostate cancer compared with benign
prostate using high-resolution matrix-assisted laser desorption/ioni-
zation imaging mass spectrometry (HR-MALDI-IMS) of primary
prostate cancers (81). Fatty acids can also modulate cell signaling
through post-translational modifications of proteins such as palmi-
toylation (82). In prostate cancer, overexpression of FASN may
enhance palmitoylation of WNT-1 and stabilization of 3-catenin (83),
as well as palmitoylation of the GTPase RhoU and cell migration (84).
Finally, de novo production of fatty acids may protect prostate cancer
cells from oxidative damage by limiting the degree of phospholipid
polyunsaturation and reducing lipid peroxidation (85).

An alternate or additional possibility is that de novo fatty acids
regulate intercellular signaling in the tumor microenvironment. Nor-
mal prostate cells are known to secrete extracellular vesicles (EV),
termed prostasomes, that are composed of lipid bilayers that contain
proteases and immunosuppressive agents and regulate spermatozoa
motility, invasion, and immune tolerance within the female repro-
ductive tract (86). Prostate cancer similarly secretes EV's, which some
hypothesize function similarly to increase invasion and immune
tolerance of prostate cancer (87), and production of EVs may increase
demand for fatty acids for EV membrane synthesis. Beyond supporting
production of EVs, cancer cell de novo fatty acid synthesis may increase
the concentration of lipids in the tumor microenvironment, either by
reducing cancer cell uptake of lipids or by cancer cell secretion of lipids.
A tumor microenvironment with high lipid content may support
cancer immune tolerance, as immunosuppressive subtypes of immune
cells, including regulatory T cells (Treg), myeloid-derived suppressor
cells, and M2 macrophages, engage in higher rates of fatty acid
oxidation than effector immune subtypes (88-91). These cells express
high levels of CD36 that allow for uptake of lipids from the environ-
ment, which is required for suppressive function (91, 92). A recent
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study showed increased lipids in the prostate cancer tumor micro-
environment due to reduced stromal cell lipid uptake following
CAVINI knockdown increased M2 macrophage infiltration and
enhanced prostate cancer cell migration and invasion (93). The
effect of prostate cancer de novo fatty acid synthesis on tumor
immunity is underexplored.

Beyond production of fatty acids, fatty acid synthesis may be
beneficial for prostate cancer progression by consuming a growth-
inhibitory substance. Hyperactive fatty acid synthesis, particularly by
high activity of FASN, has the potential to deplete upstream substrates
citrate and acetyl-CoA. Inhibition of FASN increased citrate levels,
which consequently decreased reductive carboxylation by IDHI and
intramitochondrial NADPH levels necessary to buffer reactive oxygen
species (ROS) for tumorigenesis (94). Yet NADPH is compartmen-
talized such that high rates of fatty acid synthesis could theoretically
have differing effects on mitochondrial and cytosolic levels of
NADPH (95), with cytosolic levels decreasing due to high utilization
by FASN. A possibility is that the increased ratio of cytosolic NADP*/
NADPH could promote growth-enhancing metabolism such as ROS
signaling and/or oxidative pentose phosphate pathway (PPP) flux for
nucleotide synthesis. In fact, the first enzyme in the PPP, glucose-6-
phosphate dehydrogenase (G6PD), consumes NADP" and has high
expression and activity in prostate cancer, which may have prognostic
significance (96, 97).

Given that cholesterol synthesis is under similar regulation as fatty
acid synthesis, it should be considered that accelerated fatty acid
synthesis could be a bystander effect of a selective advantage provided
by heightened cholesterol synthesis. Beyond the role of cholesterols in
membrane synthesis, they may be used for steroid synthesis including
perhaps production of intratumoral androgens that might promote
castration resistance (98, 99). Moreover, a tumor microenvironment
high in cholesterol was shown to induce CD8* T-cell exhaustion and
tumor immune tolerance (100). Yet this hypothesis would not explain
why selective inhibition of fatty acid synthesis would inhibit growth.

Targeting Fatty Acid Synthesis as
Treatment for Patients with Prostate
Cancer

Inhibition of fatty acid synthesis has been proposed as a viable
therapeutic strategy for treatment of cancer because activation of this
pathway seems to be restricted to alimited number of normal tissues in
adults, potentially creating an acceptable therapeutic index (101). Fatty
acid synthesis can be inhibited directly by inhibiting the enzymes in
this pathway or, perhaps indirectly, by activating AMPK.

The development of agents that directly inhibit fatty acid synthesis
has historically focused on inhibiting the multifunction enzyme
FASN (102), and more recently, the rate-limiting enzyme ACC. FASN
is an attractive target because, although mice with global deletion of
FASN are not viable and appear to die prior to implantation (103),
conditional deletion of FASN in adult animals in the prostate and other
organs tends to be tolerated with the exception of inactivation within
the colonic epithelium, which resulted in death 0of 20% of animals (104).
Among the first FASN inhibitors to be studied were cerulenin and C75.
Cerulenin is a mycotoxin produced by the fungus Cephalosporium
caerulens that inhibits FASN by binding to the active site cysteine
of B-ketoacyl-acyl carrier protein (ACP) of the FASN complex (105).
C75 is a synthetic inhibitor of FASN that structurally lacks the
reactive epoxide present on cerulenin, which enhances chemical
stability (106). Both agents inhibit cancer cell growth in vitro and in
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mouse models (106-109), however they were also found to rapidly and
dramatically induce weight loss in mice due to build-up of the FASN
substrate malonyl-CoA that mimicked the fed state and inhibited
feeding (110). Moreover, while high levels of malonyl-CoA typically
inhibit fatty acid oxidation through inhibition of carnitine palmitoyl-
transferase I (CPT1) to avoid a futile cycle of concurrent fatty acid
synthesis and fatty acid oxidation (51), C75 was found to compete with
malonyl-cCA to stimulate CPT1, paradoxically increasing fatty acid
oxidation despite high malonyl-CoA, and further enhancing the
reduction of adipose tissue and fatty liver beyond simple fasting (111).
Therefore enthusiasm for C75 as treatment for cancer waned due to
concerns for exacerbation of cachexia in this patient population,
despite lack of this side-effect in mouse models of prostate cancer (108).
Other agents including the green tea polyphenol epigallocatechin-3-
gallate (EGCG), other naturally occurring flavonoids such as luteolin,
quercetin, and kaempferol, the antibiotic triclosan, IPI-9119, and
TVB-2640 appear to inhibit prostate cancer growth by inhibiting
FASN, but only TVB-2640, has been studied in human trials (101).

TVB-2640 is an oral, reversible inhibitor of the 3-ketoacyl reductase
domain of the FASN enzyme complex being developed by Sagimet
Biosciences. It has been tested in a phase I clinical trial for patients with
advanced solid tumors as monotherapy or in combination with a
taxane (112). This study suggested TVB-2640 engaged the target and
was safe, with the dose-limiting toxicities being skin and ocular effects.
This agent has also been tested in a phase I clinical trial for patients with
obesity, in which it was found to reduce hepatic de novo lipogenesis
as assessed by acetate isotope tracing and decrease intrahepatic
triacylglycerols (113). Results from a phase II study of TVB-2640
in combination with the VEGF inhibitor bevacizumab for patients
with glioblastoma has been reported in abstract form at the Euro-
pean Society for Medical Oncology (ESMO) virtual conference
2020 and suggested this regimen was well tolerated and improved
progression-free and overall survival compared with historical
controls (114). Clinical trials are ongoing testing safety and efficacy
of this agent for patients with KRAS-mutated non-small cell lung
cancer (NCT03808558), resectable colon cancer (NCT02980029),
and HER2-positive advanced breast cancer (NCT03179904). To our
knowledge, there are no ongoing trials testing TVB-2640 in patients
with prostate cancer.

An alternate method of directly inhibiting fatty acid synthesis is
through inhibition of ACC, which is the rate-limiting step. This
strategy is different from inhibition of FASN, because it may lead to
decreased levels of malonyl-CoA and therefore may stimulate fatty
acid oxidation. While the macrocyclic myxobacterial natural product
soraphen A, which inhibits ACC, has been a useful research tool (53),
its poor pharmacokinetic properties limit its clinical utility. More
recently, a series of potent and specific ACC inhibitors, including
ND-630, ND-646, and ND-654, have been identified that prevent
dimerization of both isozymes, ACC1 (cytosolic) and ACC2 (mito-
chondrial), to inhibit their enzymatic activity (115). In an open-label
prospective randomized phase II clinical trial, ND-630 (also called
GS-0976 or firsocostat) was shown to reduce hepatic de novo lipo-
genesis and hepatic steatosis in patients with nonalcoholic steatohe-
patitis (116). Notably this agent led to an asymptomatic increase serum
triglycerides (>500 mg/dL) in some patients. ND-654 is modified for
enhanced hepatic uptake and was shown to reduce development of
hepatocellular carcinoma in rat models (117). ND-646 is broadly
distributed and was shown to reduce development of non-small cell
lung cancer and be well tolerated in mouse models (118). To our
knowledge, there are no ongoing clinical trials testing ACC inhibitors
as treatment for cancer.
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An alternative strategy to inhibit fatty acid synthesis may be
activation of AMPK, which can potently inhibit ACC. Metformin is
an agent that is already approved by the Food and Drug Admin-
istration for use in humans that can lead to activation of AMPK and
inactivation of fatty acid synthesis due to inhibition of mitochon-
drial complex I (119-121). Retrospective studies have suggested
that, among diabetic patients with prostate cancer, those on met-
formin have better prostate cancer outcomes than those not on
metformin (122, 123). Yet prospective studies in patients with
prostate cancer have been disappointing to date - the TAXOMET
trial, a randomized phase II study of docetaxel and metformin
versus docetaxel and placebo, suggested no benefit by the addition
of metformin to docetaxel (124), and the MetAb-Pro trial, a single
arm trial of metformin and abiraterone for patients progressing on
abiraterone, suggested no benefit from metformin in this set-
ting (125). These trials included limited correlative studies so the
effect of metformin on prostate cancer cell metabolism in patients
remains unclear, however inadequate potency and transport-
mediated accumulation may limit efficacy. Recently a novel agent
IAC-010759 was described to be a highly potent and selective small-
molecule inhibitor of mitochondrial complex I that leads to AMPK
activation that can inhibit malignant cell growth in models of
glioblastoma and acute myeloid leukemia (126). This agent was
well tolerated in animal models, and initial reported results from the
phase I clinical trial suggested good tolerance in humans with the
most common side-effect being raised lactate without acidosis (127).
The phase I trial included three patients with CRPC and reported
one patient with heavily pretreated disease who exhibited a RECIST
partial response and resolution of CRPC-related pain. Complex I
inhibition has many effects on metabolism of cancer cells so it is
unclear to what extent inhibition of fatty acid synthesis may
contribute to efficacy of this agent.

Finally, recent studies suggest there may be therapeutic opportunity
in targeting downstream handling of fatty acids in advanced prostate
cancer, which is likely carefully coordinated to minimize maladaptive
effects of fatty acid accumulation such as lipotoxicity and susceptibility
to ferroptosis. For example, CRPC appears to increase activity of
DECRI, an interesting potential therapeutic target, which facilitates
oxidation of PUFAs and reduce susceptibility to ferroptosis (64, 128).
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Conclusions

While there is ample evidence that de novo fatty acid synthesis is
important to progression of prostate cancer in preclinical models, the
best evidence will come from testing of inhibitors of this pathway in
humans. Prime candidate agents to test include TVB-2640 and
firsocostat, which have already been shown to be safe in humans.
Clinical trial designs should consider assessment of predictive bio-
markers, inclusion of correlative studies to define mechanisms of
sensitivity and resistance, and testing of rational combination thera-
pies. Biomarkers that indicate high rates of fatty acid synthesis,
including high tumor uptake of ''C-acetate by PET, loss of Pten, and
high expression of c-Myc, may predict response to inhibitors of this
pathway. Correlative studies should measure change in both cancer
cell flux of de novo fatty acid synthesis, as well as total quantity and
composition of intracellular lipids to determine relative compensation
by fatty acid uptake. Moreover, a clinical trial in patients with
metastatic prostate cancer offers an opportunity to learn about tumor
immunometabolism. Given that de novo fatty acid synthesis is impor-
tant for function of many effector immune subtypes, its inhibition may
be immunosuppressive. Ultimately, this may have no effect on efficacy
of these agents, as the immune system appears to be highly tolerized to
metastatic prostate cancer at baseline. Alternatively, relative depletion
of fatty acids in the tumor microenvironment may inhibit fatty acid
oxidation and function of suppressive immune cell subtypes. The
assessment of this effect, direct effects on cancer cell fitness, and
ultimately patient survival in a clinical trial of fatty acid synthesis
inhibition will determine whether de novo fatty acid synthesis is a
vulnerability or epiphenomenon in advanced prostate cancer.
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