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Genome‑wide association study 
and Mendelian randomization 
analysis provide insights 
for improving rice yield potential
Jing Su1, Kai Xu1, Zirong Li1, Yuan Hu1, Zhongli Hu2, Xingfei Zheng3, Shufeng Song4, 
Zhonghai Tang5 & Lanzhi Li  1* 

Rice yield per plant has a complex genetic architecture, which is mainly determined by its three 
component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per 
plant (TP). Exploring ideotype breeding based on selection for genetically less complex component 
traits is an alternative route for further improving rice production. To understand the genetic basis 
of the relationship between rice yield and component traits, we investigated the four traits of two 
rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of 
genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components 
traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly 
controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene 
affected component traits to further enhance yield is recommended. Mendelian randomization design 
is adopted to investigate the genetic effects of loci on yield through component traits and estimate 
the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or 
TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects 
(positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than 
KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an 
indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved 
yield. A combination of direct and indirect effects may better contribute to the yield potential of 
rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice 
yield, which will be helpful for further understanding the genetic basis of yield and provide valuable 
information for improving rice yield potential.

Abbreviations
GPP	� The number of grains per panicle
KGW	� Kilo-grain weight
TP	� Tillers per plant
GWAS	� Genome-wide association study
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MAS	� Marker-assisted selection
MR	� Mendelian randomization
SNP	� Single-nucleotide polymorphism
YD	� Yield
MAF	� Minor allele frequency
IVW	� Inverse-variance weighting
LD	� Linkage disequilibrium
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CI	� Confidence intervals
SD	� Standard deviation

Rice is a staple food crop for about half of the world. Improving rice productivity has been the main goal of rice 
breeding research since the growth of population and the loss of arable land. However, rice yield per plant has 
a complex genetic architecture, which is determined by various physiological processes changing temporally 
during the growing period. These processes often matched the yield component traits that are genetically less 
complex than yield1. Therefore, selecting the component traits of yield was proposed as a complementary route 
for further improving rice production, which also has been emphasized by national and international rice breed-
ing programs2. Studying the genetic relationship between rice yield and component traits, and selecting the 
component traits to improve rice yield, will provide new clues for enhancing rice yield potential.

Rice yield per plant is a very complex agronomic trait mainly determined by its three component traits: the 
number of grains per panicle (GPP), kilo-grain weight (KGW) and tillers per plant (TP), which are typical quanti-
tative traits that are affected by multiple genes and the environment, with low heritability3. With the development 
of high-throughput technology, a large number of genes/quantitative trait loci (QTLs) of the three component 
traits were identified using QTL mapping and genome-wide association study (GWAS) methods4,5. At the end 
of 2019, 209, 223, and 239 genes/QTLs for GPP (TO: 0000445), KGW (TO: 0000382), and TP (TO: 0000152) 
were identified respectively (http://​www.​grame​ne.​org/), which densely distributed across the 12 chromosomes. 
Some of them have been applied in the rational design of super rice by marker-assisted selection (MAS) breed-
ing, in which multiple defined genes with superior alleles pyramided to increase rice yield6. Liu et al. introduced 
the DEP1 and Gn1 genes introduced into the restorer line 93–11, then the yield of the DEP1 / Gn1-9311 line was 
significantly improved, due to resource allocation improved7. In 2020, Wang et al. compared the transgenic lines 
with GNP1 or NAL1 to the transgenic lines with both genes. They found the latter had a significantly higher yield, 
which indicated the two gene combinations may enhance the source-sink relationship8. In the above researches, 
only a small number of genes combined for super rice breeding, if more genes are selected for pyramiding, the 
trade-offs between different traits need to carefully consider9. Therefore, understanding the nature and strength 
of the relationship between yield per plant and its components will be helpful for efficient gene selection in MAS 
breeding10.

The relationship between rice yield per plant and its components was investigated by various researchers 
with different materials and methods, but they were inconsistent. In Huang et al.’s study, the superior alleles of 
grain number generally had a positive effect on yield, while the superior alleles of grain weight generally have 
a negative effect on yield11. Path analyses were performed by Oladosu et al. on rice yield and component traits 
revealed that three component traits possessed a positive effect with yield12. Xu et al. conducted a correlation 
analysis between yield and its components of 300 rice germplasms. Their result indicated that yield was signifi-
cantly correlated with GPP or KGW, but non-significant correlations of yield were found with TP13. One possible 
explanation for the conflicting results is that the bias caused by the small sample size and lack of proper control 
for potential unmeasured confounders. For allowing the synthesis of results from different studies to estimate 
a common summary effect, the meta-analysis was recognized as the appropriate method to achieve adequate 
sample sizes and optimal power14. Meta-analysis of GWAS is powerful in dissecting complex human diseases. It is 
the statistical synthesis of information from multiple cohorts independent GWAS studies, which increases power 
and reduces false-positive findings15. Compared to humans, plants were planted in multiple years, environments, 
and locations. Meta-analysis is a useful way to narrowing down confidence intervals of QTL by compiling QTL 
information from multiple years and locations16. A recent meta-analysis of GWAS in tomato demonstrated the 
benefits obtained from meta-analysis in plants. Meta-analysis can assess the heterogeneity of studies, which can 
be caused by many factors, such as phenotypic structure, genetic structure, linkage disequilibrium, imputation 
accuracies or interaction between genotype and environment17,18.

Recently, the Mendelian randomization (MR) approach is a popular technique to assess the causal relation-
ship between disease and environmental risk factors within a meta-analysis framework in epidemiology19. MR 
method was used to investigate the role of ATP citrate lyase inhibitors in cardiovascular disease20, in which the 
potential unmeasured confounders could be well protected from the observed association. In the MR approach, 
genetic variants were used as instrumental variables to avoid the possibility of confounding, because the genetic 
variants are randomly allocated at meiosis21. Thus, combine meta-analysis and MR for complex traits will help 
researchers to obtain a more reliable conclusion of their genetic relationship and further understand the genetic 
basis of rice yield.

GWAS has been proved to be a new strategy for explaining the genetic basis of complex traits, which has 
the advantage of improving the efficiency of detecting natural variations22. Most GWAS studies focused on dis-
secting the genetic basis of single yield traits23,24, but the study on clarifying the genetic basis of the relationship 
between the yield and component traits of rice is few. Here we carried out meta-analyses of GWAS results from 
two populations (575 + 1495 F1) in different environments and adopted an MR design to further estimated the 
genetic relationship between yield per plant (YD) and component traits of rice. We aimed to detect significant 
single-nucleotide polymorphisms (SNPs) associated with yield or component traits, to analyze the genetic bases 
contributing to the relationship between them, and to investigate possible utilization pattern for selecting the 
component traits of yield in breeding practice to further understand the genetic basis of yield and improve the 
rice production. The study will provide theoretical guidelines for enhancing rice yield potential.

http://www.gramene.org/
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Results
Meta‑GWAS analyses.  Meta-analyses of GWAS were performed based on four datasets’ (two locations 
for each population) GWAS results (Supplementary Figs. S1–S4). Manhattan plots and quantile–quantile plots 
of meta-GWAS are shown in Fig. 1. A total of 3592 significant loci were identified (Supplementary Table S1), 
including 2450, 1116, 23 and, 3 significant associated loci were separately detected for GPP, KGW, TP, and YD, 
which were distributed on all of the rice chromosomes except for chromosome 10. According to the information 
of RAP-DB (http://​rapdb.​dna.​affrc.​go.​jp/), candidate genes were searched in a genomic region of 200 kb around 
the associated SNPs (Supplementary Table S2). We discovered 6, 7 and 3 cloned genes separately associated with 
GPP, KGW and TP. A total of three candidate genes associated with different traits, among which OsBZR1 and 
OsSPL14 have been reported previously25,26, and Os02g0106966 was novelty discovered. This gene was annotated 

Figure 1.   Meta-analyses result for GWAS. (a,b) Manhattan plots and quantile–quantile plots of GPP. (c,d) 
Manhattan plots and quantile–quantile plots of KGW. (e,f) Manhattan plots and quantile–quantile plots of 
TP. (g,h) Manhattan plots and quantile–quantile plots of YD. The genome-wide significant P-value threshold 
P < 10–6 is indicated by a horizontal line. The loci with well-characterized genes are indicated near the association 
peaks.

http://rapdb.dna.affrc.go.jp/
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as a gene similar to EMB1507 (embryo defective). Many embryo defective genes were identified in Arabidopsis27 
(David W. Meinke, 2020), among which EMB1507 caused the embryo lethal phenotype28. Both OsBZR1 and 
OsSPL14 were detected in KGW and GPP, Os02g0106966 was detected in KGW and TP. In this study, only 3 
significant loci for YD were detected, but 3589 significant loci for the component traits were detected. It may be 
because rice yield has a low heritability which is mainly affected by many minor-effect genes, the low heritability 
of rice yield is also showed in our previous study29. These results suggested that selecting the component traits of 
yield as a complementary route to improve rice production is recommended.

The genetic relationship between GPP and YD.  As required for MR analysis, a total of 2450 SNPs 
reached genome-wide significance for GPP (P < 1E−06) in meta-analyses of GWAS, among which 16 SNPs were 
not associated with KGW or TP (P > 0.05). We calculated the r2 of all pairs between the 16 SNPs, and then dis-
carded SNPs in LD (r2 > 0.01) based on larger P-value. The remaining six SNPs were selected as instrumental 
variables to estimate the genetic relationship between GPP and YD (Table 1). For MR analysis, these loci mainly 
had a positive genetic effect on yield through GPP and a positive genetic relationship between GPP and YD were 
observed with the inverse-variance weighting (IVW) method (Table 4, Fig. 2a). One standard deviation (SD) 
genetic higher GPP was associated with a 0.086 SD higher YD (Beta = 0.086, 95% CI: 0.030 ~ 0.141, P = 0.003). 
In sensitivity analyses, Cochran’s Q-test illustrated no obvious heterogeneity (I2 = 5%, P = 0.38). The weighted 
median method also showed GPP had a positive effect on YD (Beta = 0.081, 95% CI: 0.009 ~ 0.152, P = 0.028). 
MR-Egger regression indicated no evidence of directional pleiotropy for the associations of GPP with YD (inter-
cept = 1.387, P = 0.061). It is worth noting that some cloned genes were detected in the meta-GWAS on GPP, the 
phenotype of transgenic plants with these genes had a similar phenomenon. For example, the OsSPL14 mutant 
produced more grain number per panicle, enhanced rice yield26. Compared with the control non-transgenic 
plants, the over-expression of OsBZR1 plants showed the 1000-grain weight was increased by about 3.4% and the 
spikelet number per panicle was increased 21.9%, that resulting in enhanced yield25. The cd1 mutant exhibited a 
variety of phenotypic traits, such as a reduction in grain number and panicle length, the biomass was lower than 
that of the wild type30. 

The genetic relationship between KGW and YD.  As required for MR analysis, a total of 1116 SNPs 
reached genome-wide significance for KGW (P < 1E−06) in meta-analyses of GWAS, among which 395 SNPs 
were not associated with GPP or TP (P > 0.05), we calculated the r2 of all pairs between the 395 SNPs, and dis-
carded SNPs in LD (r2 > 0.01) based on larger P-value. The remaining eleven SNPs were selected as instrumental 
variables to estimate the genetic relationship between KGW and YD (Table 3). For MR analysis, we observed that 
a part of SNP for KGW had a positive effect on YD, a part of SNP for KGW had a negative effect on YD (Table 2, 
Fig. 2b). To further understand the genetic relationship between KGW and YD, the SNPs with different direc-
tions of genetic effects were studied separately in our study. These loci with positive effect showed that KGW 
had a positive effect on yield, while these loci with negative effect showed that KGW had no significant negative 
effect on yield (Fig. 3). In sensitivity analyses, Cochran’s Q-test illustrated no obvious heterogeneity (I2 = 0%). 
The weighted median method also confirmed the results of the IVW method. MR-Egger regression indicated no 
evidence of pleiotropy for the associations of KGW with YD (Table 4). The cloned gene GW2 was detected in the 
meta-GWAS on KGW has been reported to have the potential to enhance rice yield31. 

The genetic relationship between TP and YD.  As required for MR analysis, a total of 23 SNPs reached 
genome-wide significance for TP (P < 1E−06) in meta-analyses of GWAS, among which four SNPs were not 
associated with KGW or GPP (P > 0.05), we calculated the r2 of all pairs between the four SNPs, and discarded 
SNPs in LD (r2 > 0.01) based on larger P-value. The remaining three SNPs were selected as instrumental vari-
ables to estimate the genetic relationship between TP and YD (Table 3). For MR analysis, these loci had a posi-
tive genetic effect on yield through TP and a positive genetic relationship between TP and YD were observed 
with the IVW method (Table 4, Fig. 2c), 1 SD genetic higher TP was associated with a 1.865 SD higher YD 
(Beta = 1.865, 95% CI: 1.035 ~ 2.694, P < 0.0001). Compared with KGW (Beta = 1.016) and GPP (Beta = 0.086), 
TP (Beta = 1.865) has a greater effect on yield. In sensitivity analyses, Cochran’s Q-test illustrated no obvious 
heterogeneity (I2 = 0%, P = 0.43). The weighted median method also showed TP had a positive effect on YD 
(Beta = 1.54, 95% CI: 0.353 ~ 2.727, P = 0.011). MR-Egger regression indicated no evidence of directional pleiot-

Table 1.   Information about instrumental variables. All the SNP markers are named after the chromosome_
position.

SNP Chromosome Position

GPP YD

Beta P-value Beta P-value

chr03_29979498 3 29,979,498 − 18.724 1.12E−07 − 0.633 0.543

chr03_898774 3 898,774 18.953 2.92E−07 1.254 0.299

chr05_7226049 5 7,226,049 − 7.242 2.25E−08 − 1.329 0.005

chr08_25257522 8 25,257,522 − 16.559 8.58E−07 1.178 0.553

chr09_12464309 9 12,464,309 − 7.538 4.49E−07 − 0.974 0.066

chr12_22633431 12 22,633,431 15.738 3.01E−07 1.439 0.158
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Figure 2.   Genetic effect estimates of yield and its components. Estimates are derived from IVW method of 
MR analyses. (a) Effect estimates between GPP and YD. (b) Effect estimates between KGW and YD. (c) Effect 
estimates between TP and YD.

Table 2.   Information about instrumental variables.

SNP Chromosome Position

KGW YD

Beta P-value Beta P-value

chr01_3547491 1 3,547,491 0.706 7.14E−08 − 0.036 0.948

chr01_5524333 1 5,524,333 1.018 6.56E−07 0.310 0.840

chr02_1118809 2 1,118,809 0.786 1.56E−09 1.030 0.082

chr02_334316 2 334,316 − 1.474 2.38E−07 0.948 0.505

chr02_7792121 2 7,792,121 − 1.256 9.21E−08 0.029 0.980

chr03_17810847 3 17,810,847 0.651 4.74E−07 0.711 0.394

chr03_33060865 3 33,060,865 − 0.505 2.03E−08 − 0.978 0.027

chr04_13785932 4 13,785,932 0.739 3.16E−07 0.623 0.406

chr05_16393143 5 16,393,143 0.466 4.71E−07 0.029 0.955

chr07_23215227 7 23,215,227 0.952 1.09E−07 − 0.308 0.715

chr08_25464238 8 25,464,238 − 0.875 2.01E−09 − 0.004 0.997
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Figure 3.   Genetic effect estimates of KGW and YD. Estimates are derived from IVW method of MR analyses. 
(a) Positive effect estimates between KGW and YD. (b) Negative effect estimates between KGW and YD.

Table 3.   Information about instrumental variables.

SNP Chromosome Position

TP YD

Beta P-value Beta P-value

chr02_21604477 2 21,604,477 − 1.279 8.25E−07 − 1.977 0.043

chr06_1578700 6 1,578,700 − 0.639 4.52E−07 − 1.691 3.21E−04

chr11_26492375 11 26,492,375 − 0.507 7.04E−08 − 0.720 0.043

Table 4.   MR results of the relationship between yield and its component traits. CI confidence intervals, P 
statistically significant associations with a P < 0.05

Trait Methods Beta 95% CI P

GPP

IVW 0.086 0.030 ~ 0.141 0.003

Weighted median 0.081 0.009 ~ 0.152 0.028

MR-Egger − 0.029 − 0.160 ~ 0.103 0.668

MR-Egger(intercept) 1.387 − 0.063 ~ 2.836 0.061

KGW (positive)

IVW 1.016 0.242 ~ 1.791 0.010

Weighted median 1.123 0.122 ~ 2.124 0.028

MR-Egger 0.480 − 2.743 ~ 3.704 0.770

MR-Egger(intercept) 0.349 − 1.690 ~ 2.388 0.737

KGW (negative)

IVW − 0.233 − 1.092 ~ 0.626 0.595

Weighted median − 0.156 − 1.150 ~ 0.839 0.759

MR-Egger − 0.710 − 3.853 ~ 2.434 0.658

MR-Egger(intercept) 0.464 − 2.480 ~ 3.407 0.757

TP

IVW 1.865 1.035 ~ 2.694  < 0.0001

Weighted median 1.540 0.353 ~ 2.727 0.011

MR-Egger 1.797 − 1.633 ~ 5.228 0.304

MR-Egger(intercept) 0.046 − 2.165 ~ 2.256 0.968
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ropy for the associations of TP with YD (intercept = 0.046, P = 0.968). The cloned gene OsPIN2 was detected in 
the meta-GWAS on TP. Chen et al. found that the OsPIN2 transgenic plants had a more effective tiller number, 
lower 1000-grain weight, and higher yield32.

Loci for component traits had an indirect effect on yield.  We identified five significant loci that had 
an indirect effect on yield by MR analyses (Fig. 2, Supplementary Table S3). Among them, the SNP chr05_7226049 
(Fig. 2a) for GPP had an indirect effect on yield and was located nearby the cloned gene OsPYL11. Kim et al. 
reported that compared with the control plants, the transgenic plants overexpressing OsPYL11 showed no sig-
nificant difference in tiller number, but the yield was severely reduced33. Our study indicated the yield severely 
reduced may be caused by the number of grains decreased. The SNP chr03_33060865 (Fig. 2b) for KGW is 
in the vicinity of the cloned gene EL1, which is a key regulator of the gibberellin response, Kwon et al. dis-
covered the plants that loss of EL1 showed the 500-grain weight and yield significantly reduced34. The SNP 
chr06_1578700 (Fig. 2c) for TP closed to the D62 (a gene regulating tillers). Li et al. found that the tiller number 
of D62 mutant rice was less than that of the wild type35. The SNPs chr02_21604477 and chr11_26492375 for TP 
also had indirect effects on yield (Fig. 2c, Supplementary Table S3), which were first detected in our research. 
The SNP chr02_21604477 is closest to Os02g0567900 (2101  bp from it). This gene was annotated as a gene 
similar to H0818E04.14 protein and involved in nucleic acid binding (GO:0003676) and nucleotide binding 
(GO:0000166). The SNP chr11_26492375 is closest to Os11g0660000 (12 bp from it). This gene was annotated as 
sodium/calcium exchanger membrane region domain containing protein, which regulated magnesium/proton 
exchanger (K03452) and also related to transmembrane transport (GO:0055085) and is integral to the mem-
brane (GO:0016021). These findings provided new information for further improve rice yield potential.

Pyramiding superior alleles of significant loci.  The average yield performance of F1 lines with different 
superior allele numbers of significant loci with direct effect, indirect effect, and direct plus indirect effect was 
shown in Fig. 4. Three loci that had a direct effect on yield were detected in the meta-GWAS on YD (Supplemen-
tary Table S3), among them, the average yield of the lines without superior alleles was 41.29 g, and the average 
yield of the lines with one superior allele was 44.26 g (Fig. 4a, Supplementary Table S4). The superior alleles of 
five loci that had an indirect effect on yield were also pyramided in the study. The results showed that the average 
yield of F1 lines with 0 to 4 superior alleles was: 42.22 g, 42.75 g, 42.76 g, 44.54 g, 47.49 g, respectively. In general, 
the yield of F1 hybrids rises with increases of the superior alleles (Fig. 4b, Supplementary Table S4). A similar 
phenomenon was also found in pyramiding the direct plus indirect loci (Fig. 4c, Supplementary Table S4). Other 
research reported that the phenotype performance improved by pyramiding the superior alleles of loci associ-
ated with agronomic traits11, our results suggested the yield enhanced also by pyramiding the superior alleles of 
loci that had an indirect effect on yield. Hybrid lines pyramiding all the superior alleles of direct (3 loci) and indi-
rect loci (5 loci) not be observed in this study. Our results indicated rice production improved with the increase 
of the superior alleles, it is possible that a combination of direct and indirect effects will better contribute to the 
yield potential of rice.

Figure 4.   The average yield performance of F1 lines with different superior allele number of significant loci. (a) 
Direct loci, (b) Indirect loci, (c) Direct plus indirect loci.
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Discussion
In this study, a total of 3592 significant SNPs were detected in meta-GWAS on yield or its component traits, which 
provide more information for rice agronomic traits breeding. It is worth noting that only 3 loci were detected 
in meta-GWAS on yield, this may be the results from that rice yield has a low heritability and minor-effect loci 
hardly to be detected. For a low-heritability trait (such as yield), highly correlated auxiliary traits (such as GPP, 
etc.) will help improve the selection of traits with low heritability since they reflecting a shared biological basis36.

MR model was carried out to investigate the genetic effects of loci on yield through component traits. The 
loci for GPP or TP mainly had a positive genetic effect on yield, which was consistent with previous studies26,32. 
The loci for KGW had a different direction of effects (positive effect or negative effect) on yield. Huang et al. 
conducted GWAS on 1495 hybrid rice lines and found the superior alleles of grain weight generally had a nega-
tive effect on yield11, but some genes that regulate KGW have been reported to have the potential to enhance rice 
yield, such as GW737 and GS538. To some extent, our results confirmed both of their findings, which indicated 
our study had greater power and more comprehensive by synthesizes different data. Then these loci were used 
to explore the relationship between rice yield and its component traits through these loci by MR method. The 
results of MR provided some evidence that selecting the component traits of yield to improve rice production, 
which is consistent with the improvement of rice production achieved by genetic manipulation of the compo-
nent traits in previous studies37,39. The MR analyses provided a rationale for using component traits as indirect 
indices to enhanced rice yield.

Five loci were identified with an indirect effect on yield by MR analysis, providing new information for 
enhancing the yield potential of rice. A previous study indicated that pyramiding the superior alleles of signifi-
cant associated loci increased yield11. Our results suggested the improvement of yield also by pyramiding the 
superior alleles of loci with an indirect effect on yield. In this study, due to the limitation of sample size, hybrid 
lines pyramiding all the superior alleles of direct (3 loci) and indirect loci (5 loci) not be observed. However, it 
is interesting to note that the average yield performance of hybrid lines with 1 to 3 superior alleles of indirect 
loci improved with an increase of the superior alleles when adding superior alleles of the direct locus to the 
pyramid, the average yield performance of hybrid lines was increased. Similar to the performance of the supe-
rior alleles of four indirect loci, the yield of the superior alleles of five direct plus indirect loci also be improved 
(Fig. 4). Our results indicated rice production improved with the increase of the superior alleles, it is possible 
that a combination of direct and indirect effects will better contribute to the yield potential of rice. In addition, 
Huang et al. revealed numerous superior alleles that contribute to heterosis by the genomic analysis of hybrid 
rice varieties. They concluded that the accumulation of numerous rare superior alleles with positive dominance 
is an important contributor to the heterotic phenomena11. In our study, we also found some superior alleles for 
improvement of rice yield, which may contribute to the parent selection of hybrids. For example, the superior 
allele of the SNP chr01_9982003 is AA in the F1 population, which suggested that to obtain higher yields hybrid, 
parents’ allele genotype with AA at this locus is preferred. The superior allele of SNP chr06_1780896 is TC in the 
F1 population. It indicated that the genotype at the locus chr06_1780896 with the TT parent and the CC parent 
hybridization would produce a relatively high yield progeny. It would be possible to generate higher-yielding 
lines by combinations of parents selected according to these superior alleles.

The strengths of the study are: (i) a meta-analysis of GWAS data from multiple population and environments 
to estimate a summary effect provided greater statistical power14; (ii) The MR approach could less prone to 
confounders since the genetic variants used as instrumental variables21; (iii) Using MR method to analyze the 
genetic relationship between quantitative traits in this study, which weighted the effects of multiple independent 
SNPs into a summary effect, for quantitative traits, most of them are affected by multiple genes or the interaction 
of genes, while the individual SNP only explain a small fraction of the variation in the quantitative traits. Since 
the MR analysis may be biased by the possibility of invalid instrumental variables, it is difficult to completely 
exclude type I error and the potential influence of pleiotropy since the instrumental variables derived from 
the meta-analysis of GWAS in the study. Thus, we conducted a weighted median method and the MR-Egger 
method to do sensitivity analysis. Compared to the IVW method40, the weighted median method showed bet-
ter finite-sample Type I error rates. The estimator was consistent even if up to 50% of the information comes 
from invalid instrumental variables41. The results of the MR-Egger and heterogeneity test indicated the genetic 
variants had no pleiotropic effects on yield to some extent42. These results strengthened our confidence in the 
validity of assumptions.

In conclusion, we analyzed the genetic basis of the relationship between yield and its component traits by 
GWAS and MR methods, providing genetic insights for further improving rice yield potential. Our results sug-
gested the improvement of rice production by pyramiding the superior alleles of genes regulating component 
traits, and a combination of direct and indirect effects may better contribute to the yield potential of rice in breed-
ing practice. These findings will provide theoretical guidelines for the rational design of rice by MAS breeding.

Methods
Materials and phenotyping.  Two populations of rice hybrid varieties were used in our study. One of the 
populations consists of 575 F1 hybrid rice lines, which produced by 115 varieties (restorer lines of 29 three-line 
wild-deficient hybrid rice and 86 accessions of micro-core germplasm) as male parents were crossed with 5 
sterile lines (4 two-line sterile lines and 1 three-line sterile line) as female parents. The 575 hybrid lines were 
grown both in Huazhong Agricultural University and Wuhan University in 2012. The other population from the 
national center for gene research of Chinese academy of sciences, which including 1,170 lines were bred from the 
three-line system and 325 lines were generated from the two-line system. The 1495 hybrid lines were grown in 
Hangzhou and Sanya respectively11. Genotypic and phenotypic data of the 1495 lines were downloaded for sub-
sequent analysis in this study. A total of four agronomic traits including GPP, KGW, TP, and YD were recorded 
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in both populations. The phenotyping standards for these agronomic traits are the same in both populations, 
which were measured for at least three samples of each accession, and the average measurement was taken as the 
phenotypic value for GWAS analysis.

Resequencing and genotyping.  The population of 575 hybrid rice lines was sequenced on the Illumina 
HiSeq2500 platform at 11 × genome coverage on average. By quality control, we obtained 1,894,012 high qual-
ity SNPs with minor allele frequency (MAF) > 5% and missing rate < 20% across the 575 accessions. The high 
diversity SNP maps of 1495 hybrid rice varieties are publicly available (http://​www.​ncgr.​ac.​cn/​RiceH​ap4). The 
genomes of 1495 hybrid lines were sequenced on the Illumina HiSeq2000 at twofold genome coverage, and 
1,531,463 SNPs passing quality control (MAF > 1%).

Genotype imputation and GWAS analysis.  3000 rice genomes project (https://​snp-​seek.​irri.​org/​downl​
oad.​zul) as the reference panel was used to perform SNP imputation in the genotype data of 575 and 1495 hybrid 
rice lines by using beagle software (version 5.0)43, and all imputed SNPs with MAF < 1% were filtered. Among 
the 3000 rice genomes project44, the 4.8mio filtered SNP dataset is used as the reference panel in the study, with 
an average sequencing depth of 14 × and all SNP passed the quality control (MAF > 1%, missing rate = 0%). Then 
conducting separate GWAS for two populations in two different environments using mixed-linear-model asso-
ciation (MLMA) in GCTA software45 and collecting the summary statistics to run a meta-GWAS.

Meta‑GWAS analyses.  Meta-GWAS is a meta-analysis of summary data (beta, standard error and p-val-
ues of each SNP) from each GWAS results. Imputation increased the genome-wide SNP densities, a total of 
1,838,525 common SNPs from four GWAS datasets were used for meta-analysis. We used the fixed-effect model 
in METAL as the primary approach to conduct the meta-analyses46. The fixed-effect model adopts the inverse 
variance weighting method, which weighted each study according to the inverse of its squared standard error. 
Then the Cochran’s Q-test was performed to heterogeneity test47. For those SNPs where heterogeneity occurs 
(I2 >  = 50%), the random effect model in METASOFT was adopted48 (Han et al. 2011). The genome-wide sig-
nificant P-value for meta-GWAS was set as P < 1E−06 (− log10P = 6). According to the information of RAP-DB 
(http://​rapdb.​dna.​affrc.​go.​jp/), candidate genes were searched in a genomic region of 200 KB around the associ-
ated SNPs. If there was a cloned gene reported to be related to yield-traits in a 200 kb genomic region, the cloned 
gene would be selected as the candidate gene; if not, the gene closest to the significant SNP would be selected as 
the candidate gene.

MR analysis.  For the genetic effect of rice yield and each component trait to be consistently estimated, the 
genetic variants were selected according to the three assumptions in MR analysis38, (i) the genetic variants were 
obtained from the results of meta-GWAS that associated with the single component trait at a genome-wide 
significant level (P < 1E−06); (ii) the genetic variants are not associated with any confounders; (iii) the genetic 
variants only affect yield through the single component trait, not through other component traits (P > 0.05). 
Since the selected SNPs in linkage disequilibrium (LD) may result in confounding21, we calculated the r2 (LD) 
of all pairs between all selected SNPs using plink (version 1.90)49 and discarded SNPs in LD (r2 > 0.01) based on 
larger P-value.

The IVW method was conducted for MR analysis to assess the effect of component traits on yield, which by 
summarizing the effects of multiple independent SNPs38. In sensitivity analyses, the weighted median method39 
and MR-Egger method40 are used for MR analysis, which is more robust due to pleiotropic or invalid instru-
ments involved.

Analysis of superior alleles of significant associate loci.  Calculated the average phenotypic measure-
ment corresponding to genotypes of each significant SNP, and the least significant difference method was used 
for multiple comparisons. Following Huang et al.’s method11, the genotype of SNP with the highest-level yield 
or component trait was set to be the superior allele (for example, the allele corresponding to the largest number 
of grains per panicle was set to be the superior allele). Calculated the number of superior alleles in each hybrid 
rice line and recorded their corresponding average yield measurements. Omitted the number of superior alleles 
with less than 3 hybrid lines.

Data availability
The datasets supporting the conclusions of this article are provided within the article and its electronic sup-
plementary material, the datasets and the code used to execute the GWAS are available from the corresponding 
author on reasonable request.
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