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The linguistic rules of medical terminology assist in gaining acquaintance

with rare/complex clinical and biomedical terms. The medical language

follows a Greek and Latin-inspired nomenclature. This nomenclature aids

the stakeholders in simplifying the medical terms and gaining semantic

familiarity. However, natural language processing models misrepresent rare

and complex biomedical words. In this study, we present MedTCS—a

lightweight, post-processing module—to simplify hybridized or

compound terms into regular words using medical nomenclature.

MedTCS enabled the word-based embedding models to achieve 100%

coverage and enabled the BiowordVec model to achieve high

correlation scores (0.641 and 0.603 in UMNSRS similarity and

relatedness datasets, respectively) that significantly surpass the n-gram

and sub-word approaches of FastText and BERT. In the downstream task

of named entity recognition (NER), MedTCS enabled the latest clinical

embedding model of FastText-OA-All-300d to improve the F1-score

from 0.45 to 0.80 on the BC5CDR corpus and from 0.59 to 0.81 on the

NCBI-Disease corpus, respectively. Similarly, in the drug indication

classification task, our model was able to increase the coverage by 9%

and the F1-score by 1%. Our results indicate that incorporating a medical

terminology-based module provides distinctive contextual clues to

enhance vocabulary as a post-processing step on pre-trained

embeddings. We demonstrate that the proposed module enables the

word embedding models to generate vectors of out-of-vocabulary

words effectively. We expect that our study can be a stepping stone for

the use of biomedical knowledge-driven resources in NLP.
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1 Introduction

Familiarity with medical terminology assists medical

practitioners and other stakeholders like doctors, nurses, and

clinicians to understand rare and complex vocabulary. The

evolution of medical terminology presents challenges in

promoting the use of electronic health and medical records.

For example, most medical terms originate from Greek and

Latin words, making reading and spelling difficult Henderson

and Dorsey (2019); Banay (1948). Medical researchers acquire

conceptual skills with thorough learning of medical terms,

dictionaries, and references such as Merriam-Webster

Merriam-Webster (2018), WebMD WebMD (2012), and

MedicineNet MedicineNet (2007), etc.

The electronic health records (EHRs) contain the diagnoses,

pharmacological, and drug-disease concepts that provide a

complete view of a patient’s health. EHRs can inform drug

discovery, treatment pathways, and real-world safety

assessments. Unstructured text from EHRs can be encoded in

a structured format (vectors) for downstream analysis using NLP

methods. Unfortunately, the word embedding models faced the

Out-of-vocabulary (OOV) words problem or used ineffective

sub-word representations that caused low performance in

intrinsic tasks to retrieve conceptual properties.

Popular embedding models including BERT (Devlin et al.,

2019), ELMO (Peters et al., 2018), and FastText (Bojanowski

et al., 2017) solve the OOV problem by using pre-processing

tokenization techniques based on WordPiece (Wu et al., 2016),

characters, and n-grams. These traditional NLP approaches are

not built to understand the unique vocabulary and grammar of

medical texts. For example, mastodynia is a disease whose

meaning can be approximated from related and simple words

like breast, pain, and discomfort rather than to approximate it

with its non-logical sub-words or n-grams like

[CLS],mast,##ody, and ##nia [SEP].

Biomedical and clinical terms have unique and complex

characteristics such as prefixes, roots, suffixes, etc., therefore

requiring a more focused effort around methodologies within

the medical NLP domain (Banay, 1948; Meystre et al., 2008;

Cohen and Demner-Fushman, 2014; Leaman et al., 2015;

Henderson and Dorsey, 2019). In recent years, biomedical and

clinical embedding models such as BioWordVec (Zhang et al.,

2019) and BioNLP (Chiu et al., 2016) models have been trained

under low capacity resource requirements like the Gensim library

(Řehřek and Sojka, 2011). However, these models generally

follow the Word2Vec (Mikolov et al., 2013a; Mikolov et al.,

2013b) and GloVe (Pennington et al., 2014) algorithms, which

face the OOV problem. The embedding models trained using the

FastText algorithm (Bojanowski et al., 2017) claim to have solved

the OOV problem, however they are ineffective.

The pre-trained embedding models generate either context-

sensitive or distributed representations of word vectors. The

context-sensitive models generate multiple embeddings for a

word that capture the context based on its positional

encoding learned using transformers or recurrent neural

networks (RNN). Bidirectional Encoder Representations from

Transformers (BERT) is a popular embedding model (Devlin

et al., 2019), that has been extended to clinical and biomedical

domains [ClinicalBERT Huang et al. (2019) and BioBERT Lee

et al. (2020)]. These models tackle the OOV problem with the

WordPiece algorithm (Wu et al., 2016) that represents a word by

its frequent sub-words, e.g., immunoglobulin →
(i,mm,uno,g,lo,bul,in). Embeddings from Language Models

(ELMO) is another context-sensitive model that generates

word-level embeddings using multiple convolutional neural

networks (CNNs) with bi-directional LSTM (BiLSTM) (Peters

et al., 2018). ELMO has also been extended to generate

biomedical and clinical embeddings (Zhu et al., 2018; Jin

et al., 2019; Subramanyam and Sangeetha. 2020). These

studies deal with the OOV problem through character-level

embeddings. Boukkouri et al. showed that character-level

embedding was a better approach to removing biases in sub-

words for biomedical terms than WordPiece e.g.,

choledocholithiasis → (cho,led,och,oli,thi,asi,s) (Boukkouri

et al., 2020; Wu et al., 2016). The context-sensitive models are

expensive, both in terms of computational and space resources

since they train millions of hyperparameters with multiple

attention heads.

The distributed representation models learn embeddings

based on the word usage in a given corpus. The resultant

vectors capture the contextual similarity between words. These

static models generate a single vector per word and are trained

either under Word2Vec (Mikolov et al., 2013b), GloVe

(Pennington et al., 2014), or FastText (Bojanowski et al.

(2017)). FastText enriches each word vector with its respective

n-grams. It handles the OOV problem by leveraging the sum of

n-gram vectors of the unknown word, e.g., n = 3, myocarditis

→<my, myo, yoc, oca, car, ard, rdi, dit, iti, tis, is> . On the other

hand, the embedding models trained by Word2Vec and GloVe

face the OOV problem. These models replace unknown words

with tags such as <UNK> or a randomly generated vector,

where different unknown words lose their uniqueness.

In this study, we proposed MedTCS, a novel medical

terminology-based module that assists the pre-trained

embedding models to generate vectors for unknown words

and compound terms. It is an innovative post-processing

solution that explores the given search space for those terms

that are not directly present but whose semantic information is.

MedTCS turns the word into its meaningful sub-words using the

biomedical segmentation model. Ultimately, MedTCS helps the

distributed representation models handle the OOV problem

effectively.

We have compared MedTCS with recent state-of-the-art

embedding models to investigate the effectiveness of capturing

semantic information without encountering OOV problems. Our

results showed that MedTCS enhanced the performance of pre-
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trained models significantly in terms of coverage and/or semantic

correlation. Moreover, we conducted experiments to assess the

usefulness of enriched embedded vectors for downstream NER

tasks (disease name identification and drug indication

classification). MedTCS performed better than FastText in

terms of performance and resource consumption on all tasks.

The MedTCS module enhanced the performance of the FastText

word vectors as compared to the n-gram and sub-word

approaches used for unknown words (Flamholz et al., 2022).

Furthermore, MedTCS is extensible with new terminologies and

content.

2 Methodology

MedTCS is a lightweight module implemented in Python. It

is a knowledge-driven system for forming terms by pluralizing,

singularizing, and deconstructing words.

2.1 Meta-data collection

2.1.1 Word component dictionary
In MedTCS, we build meta-dictionaries for the prefixes,

roots, and suffixes defining the meanings of medical term

components. In addition to the lexical normalization and

plural conversion of the unknown term, we have developed

medical terminology-based look-up dictionaries for the parser

by collecting information from “Medical Terminology for

Dummies” (Henderson and Dorsey, 2019). The three semantic

dictionaries contain 467 root words, 432 prefixes, and

112 suffixes, along with their corresponding meanings as

shown in Figure 1.

2.1.2 Word segmenter model
MedTCS used Morfessor as a word segmenter model (Smit

et al., 2014). In order to train the semi-supervised Morfessor

2.0 model, we used a corpora of 240 k words consisting of

medical academic word list, e-biology, e-chemistry, and NLTK

words (Bird and Loper, 2004; Wang et al., 2008).

2.2 MedTCS framework

Figure 2 provides a high-level description of our MedTCS

module to encode OOV words from a set of sentences or words.

In step (a), the OOV words are normalised for multiple

morphological rules (represented as Nr
1,...,n). In step (b), the

remaining OOV words are exchanged with its plural or

singular form by applying medical terminology-based rules

(represented as Rr
1,...,n). At each step, the normalized terms are

encoded into vectors. In the succeeding steps (c) and (d), the

words are passed to the parser, where dictionaries of prefix p, root

r, and suffix s are used to tokenize them (represented as Pp,r,s
1,...,n).

Each component of the term is replaced with their respective

meaning in the dictionary as a word list (represented as

M
pwi,..wk

,rwi ,..wk,swi ,..wk
1,...,n ). The encoder encodes the tokens into its

mean vector. Finally, the remaining non-encoded words are

FIGURE 1
Understanding biomedical terms by mapping term components to human organ system.

Frontiers in Molecular Biosciences frontiersin.org03

Saeed and Naveed 10.3389/fmolb.2022.928530

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.928530


FIGURE 2
MedTCS framework: (A) MedTCS detector normalizes the unknown terms and search in vocabulary; (B) Rule-based pluralizer or singularizer
sub-module used to normalize the unknown terms; (C) Architecture for term-parser, where the compound words encode for its components that
infer from the dictionary for its semantic words that encode as its mean vector; (D) Architecture for term segmenter, a pre-trained segmentation
model segments the word into subwords that encodes as its mean vector.

TABLE 1 Statistics of Datasets.

Evaluation Dataset Corpus size Type

Intrinsic Evaluation UMNSRS-similarity Pakhomov et al. (2010) 566 term pairs Pairwise similarity

UMNSRS-relatedness Pakhomov et al. (2010) 588 term pairs Pairwise relatedness

MyoSRS Pakhomov et al. (2011) 101 term pairs Pairwise relatedness

EHR-RelB Schulz et al. (2020) 3630 term pairs Pairwise relatedness

Extrinsic Evaluation Dataset

BC5CDR Wang et al. (2019) 1500 articles Disease Name

NCBI-Disease Wang et al. (2019) 793 abstracts Disease Name

DICE Bhatt et al. (2021) 7231 sentences Drug Indication
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passed to the pre-trained term segmenter model to intra-tokenize

into meaningful words (that are also encoded as mean vectors).

2.2.1 MedTCS OOV word detector
The MedTCS OOV word detector identifies whether a token

is known or unknown for a given vocabulary. The unrecognized

word is passed through multiple normalization steps: 1) lexical

property of the alphabetic case is applied, 2) intra-term

punctuation marks are retained while ignoring starting and

ending symbols, and 3) apostrophe symbols for OOV word

detection are normalized.

2.2.2 MedTCS pluralizer/singularizer
TheMedTCS pluralizer is based on the plural rules defined in

medical terminology and implemented as a finite state machine.

The sigularizer acts as a reverse finite state machine of the

pluralizer.

2.2.3 MedTCS term parser
The MedTCS term parser was applied to an unknown word

in two parts. First, the rule-based parser breaks the word into

components of medical terminology, i.e., root, prefix, and suffix.

Second, this parser implemented a dictionary lookup algorithm

on each component to map its meaning. These dictionaries

contained the definitions of the components of the medical

terms collected from medical notes (Banay, 1948; Cohen and

Demner-Fushman, 2014; Henderson and Dorsey, 2019). Each

component in the dictionary belonged to one of the following

human organ systems as shown in Figure 1 e.g., -pnea →

breathing was a suffix belonging to the respiratory system.

The root component is normalized for its combined form, like

pneum/o → lung. Each component incrementally contributes in

generating the vector representation of the unknown word. Each

discovered vector by MedTCS term parser belonged to the lexical

part of the unknown word and had attributes defined in the

medical terminology. For example, choledocholithiasis →
[“choledoch” (prefix)]+[“o”]+[“lithiasis” (suffix)] → [common

bile duct]+[calculus or stone]. In case the term parser does not

return a valid vector, the term segmenter was executed to

determine meaningful sub-words of the unknown word.

2.2.4 MedTCS term segmenter
The MedTCS term segmenter is a wrapper around the

Morfessor 2.0 module to acquire the meaningful sub-word

units of an unknown term (Virpioja et al., 2013; Smit et al.,

2014). We trained the system on a subset of Biology, Chemistry,

and English corpora. Our word-level segmentation system

returned the average vector of meaningful sub-words of an

unknown term (like seasickness → sea + sick + ness).

2.3 Datasets

In addition to the widely tested UMNSRS similarity and

relatedness datasets (Pakhomov et al., 2010), and the MyoSRS

dataset (Pakhomov et al., 2011), our intrinsic evaluation included

the latest and comparatively large benchmark named the EHR-

RelB dataset Schulz et al. (2020). These datasets consist of word

FIGURE 3
Comparison of performance variations in biomedical embedding model after adding MedTCS module on datasets of Table 1 for intrinsic
evaluation.
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pairs with their similarity or relatedness scores assigned by

medical experts.

We checked the applicability of the MedTCS module to

extract disease names from two publicly available datasets

[NCBI-Disease and BC5CDR-Disease, Wang et al. (2019)]

using the BIO scheme. BIO is used to encode entity

annotations as token tags, where B indicates the beginning

of the phrase, I is the element within the phrase, and O is the

element outside of the phrase. Table 1 gives the details of

benchmark datasets used for performance evaluation. We

also used the Drug Indication Classification and

Encyclopedia (DICE) dataset Bhatt et al. (2021) to check

the performance enhancement achieved by MedTCS on

classifying a sentence into indication or non-indication

defined for five categories (indications, contradictions, side

effects, usage instructions, and clinical observations). The

dataset contained 7,231 sentences that were categorized into

4,297 indications, 1,673 clinical observations,

FIGURE 4
Comparison of performance variations in clinical embeddingmodel after adding MedTCSmodule on datasets of Table 1 for intrinsic evaluation.

TABLE 2 Comparison of sub-word embeddings with word embedding + MedTCS on the UMNSRS-Similarity datasets.

Model Version Sp

BERT BERT Devlin et al. (2019) bert-base-uncased 0.07

BioBert Lee et al. (2020) dmis-lab/biobert-v1.1 0.30

BlueBert Peng et al. (2019) bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12 0.36

Bio_ClinicalBERT emilyalsentzer/Bio_ClinicalBERT 0.23

Model Alsentzer et al. (2019) allenai/scibert_scivocab_uncased 0.18

SciBERT Beltagy et al. (2019)

PubMedBERT Gu et al.(2022) microsoft/BiomedNLP-PubMed BERT-base-uncased-abstract-fulltext 0.23

CODER Yuan et al. (2022) GanjinZero/UMLSBert_ENG 0.47

Word2Vec PubMed-w2v PubMed-w2v.bin 0.52

+MedTCS

PubMed-PMC-w2v // 0.49

Model +MedTCS

Wiki-PubMed-PMC-w2v // 0.49

+ +MedTCS

Bio-NLP-30 Chiu et al. (2016) Bio-NLP-30 0.63

MedTCS +MedTCS

BioWordVec Zhang et al. (2019) BioWordVec 0.64

+MedTCS
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701 contraindications, 492 usage instructions, and 68 side

effects.

All the datasets discussed in Table 1 are publicly available in

split form.

2.4 Evaluation metrics

In NLP, intrinsic evaluation extracts the semantic properties

of pre-determined ground truth concepts with encoded vectors.

On the other hand, extrinsic evaluation decodes the encoded

information of embedding models and evaluates their efficiency

in performing downstream tasks like NER. For the extrinsic

evaluation, the coverage percentage is based on the number of

encoded tokens of a dataset with the respective embedding

model.

cosine_similarity A, B( ) � A.B
‖A‖×‖B‖, (1)

recall � TruePositives

TruePositives + FalseNegatives
, (2)

precision � TruePositives

TruePositives + FalsePositives
, (3)

F1_score � 2 × precision × recall( )

precision + recall
. (4)

In intrinsic evaluation, the similarity scores are computed

between the encoded term pairs using the cosine similarity as

given in Eq. 1. Furthermore, these similarity scores are used with

TABLE 3 Comparison of the word embedding + MedTCS best scores with latest reported results.

Model UMNSRS-Similarity UMNSRS-
Relatedness

Model description

#566 Sp #587 Sp

BioWordVec+ 480 0.629 473 0.590 A combined model of Graph

Graph convolutional network (GCN)

Embeddings a path-based graph embedding

(GCN) Mao and Fung (2020) with BioWordVec embedding

Context2Vec+ 471 0.634 484 0.561 Composite model of contextual

BioWordVec+ embedding with BioWordVec

PubMed + PMC concatenated with PubMed and

Singh and Jin (2020) PMC word embedding to

achieve these results

CoderBERT 543 0.543 564 0.473 A BERT-based model obtained

Kalyan and Sangeetha (2021) by fine-tuned a pre-trained

BioBERT on UMLS

synonyms and relations

SapBERT-S 543 0.585 564 0.505 A BERT-based model fine-tuned

Kalyan and Sangeetha (2021) a pre-trained PubMedBERT on

UMLS using a self-alignment

objective to cluster the term

concept

BioWordVec 566 0.641 587 0.603 BioWordVec with our composed

+MedTCS MedTCS module, to extract the

vector representation of a known

and unknown term

Results with highest values of correlation and coverage scores are shown in bold.
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the rankings by human experts to compute the Spearman (Sp)

correlation coefficients with SciPy (Virtanen et al., 2020).

In extrinsic evaluation, the task of tagging the biomedical

entities is performed by using a machine learning model trained

on the encoded vectors. The performance measures used for this

are recall, precision, and F1_score (Eqs 2–4).

3 Results

We compared the semantic and conceptual functionality of

MedTCS with the pre-trained sub-word models (derivative

models of BERT Devlin et al. (2019) and FastText Bojanowski

et al. (2017)) for the biomedical and clinical domains.

3.1 Intrinsic evaluation

We evaluated the capability of MedTCS to enable the pre-

trained word embedding models for encoding the OOV terms.

MedTCS assisted the pre-trained word embedding models to

achieve full coverage of all the conceptual pairs in the datasets.

Moreover, we compared our model with related embedding

models trained with FastText and BERT algorithms.

FIGURE 5
Comparison of performance variations in biomedical word embeddingmodel after adding MedTCSmodule on datasets of Table 1 for NER task.

FIGURE 6
Comparison of performance variations in clinical FastText embedding model after adding MedTCS module on datasets of Table 1 for NER task.
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In this experiment, we included popular embedding models as a

baseline, such as BioWordVec (Zhang et al., 2019), BioNLP (Chiu

et al., 2016), PubMed-w2v, PubMed-PMC-w2v, and Wiki-PubMed-

PMC-w2v (Moen and Ananiadou, 2013), most of which are defined

under theWord2Vec algorithm (Mikolov et al., 2013b). Our baseline

has the same encoder and decoder method for the NLP task without

the MedTCS module. As the selected datasets include multi-word

terms; therefore, the average vectors of each word are calculated with

and without the MedTCS module.

Our analysis showed that the MedTCS module enabled all pre-

trained embedding models to achieve full coverage with persuasive

correlation scores on all datasets (Figure 3). For example, on the

EHR-RelB dataset, the coverage of the BiowordVec model was

enhanced from 2,857 terms pair to 3,630 terms pair and the

Spearman (Sp) correlation also improved from 0.393 to 0.405.

Overall, our results show that all models achieved 100% coverage

of all the datasets with a slight decrease in correlation scores. As the

OOV words are being approximated, therefore, a slight decrease in

correlation scores is naturally expected.

We also enhanced the latest clinical word embedding models

with MedTCS. The PMC Open Access Subset-Case reports (OA-

CR) embedding models trained using word2vec/GloVe

encountered the OOV word problem while working on the

UMNSRS-Similarity dataset (Flamholz et al., 2022). MedTCS

improved the coverage of all word embedding models from

approximately 62% → 98% Supplementary Case S1.

Similarly, we analyzed the functionality of FastText to handle

the OOV problem on the PMC Open Access subsets - Clinical

Report (OA-CR) models and the PMC Open Access subsets - all

manuscripts (OA-All) models (Flamholz et al., 2022). FastText

trains each word vector along with its n-gram vectors. In the case

of any OOV word, the average of its n-gram vectors are used to

encode it (Bojanowski et al., 2017). For the FastText based OA-

CR-600 embedding model, the Spearman (Sp) correlation value

improved from 0.38 → 0.47 Supplementary Case S2. In

conclusion, the MedTCS module enabled the different variants

of OA-CR models to encode the vector for OOV terms from its

search space effectively.

The OA-CR models have a small vocabulary; MedTCS

enabled these models to achieve 100% coverage on all

datasets as shown in Figure 4. Moreover, the MedTCS

assisted the OA-CR models and the OA-ALL models to have

significantly improved correlation scores, e. g., the FastText

OA-All-300d model on the EHR-RelB dataset achieved 100%

coverage and improved the Spearman (Sp) correlation scores

from 0.25 → 0.35. The results on other variants of the OA-CR

and OA-ALL embedding models for intrinsic evaluation are

similar, as shown in Supplementary Figure S3.

On the other hand, BERT models use sub-words to solve the

OOV word problem. We compared the proposed model with

BERT and its derivative models defined for the clinical and

biomedical domain [available on HuggingFace Wolf et al.

(2019); Wolf et al. (2020)]. MedTCS outperformed BERT-

based models by a significant margin in terms of correlation

scores on the UMNSRS-Similarity dataset (Table 2). Moreover,

in (Table 3), we have compared our best achieved results with

recently reported scores of UMNSRS datasets (Mao and Fung,

2020; Singh and Jin, 2020; Yuan et al., 2022). MedTCS achieved

significantly better coverage and correlation scores.

3.2 Extrinsic evaluation

Extrinsic evaluation requires training a system for the related

downstream NLP tasks like NER, classification, etc,. The existing

word embedding models achieve sub-optimal results due to the

ineffective handling of OOV words (encoded unknown words

with their n-gram vectors or a randomly generated vector). We

FIGURE 7
Model performances enhanced with MedTCS for Drug indication classification.
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tested the enriched vectors (by MedTCS) in identifying disease

names from documents. We trained a bidirectional long-short

term memory with a convolutional neural network (BiLSTM-

CNN) Chiu and Nichols (2016) on the annotated corpus of

BC5CDR and NCBI-disease (Table 1).

Figure 5 showed the performance enhancement in terms of

coverage and F1 score (in percentage) achieved after replacing

the randomly generated vector approach with our MedTCS

module for OOV words. The MedTCS module with PubMed-

w2v embedding enabled improved the coverage up to 13% on the

NCBI-Disease dataset. Overall, MedTCS enabled word

embedding models to achieve 100% coverage with an

improved F1 score.

Similarly, we compared the MedTCS module with the

n-gram approach for the NER task. Figure 6 showed that

MedTCS improved the F1-score between 10 and 20% for the

various embedding models as compared to the FastText n-gram

vectors under the same parameters as for the BiLSTM NER

system (Chiu and Nichols, 2016). The FastText OA-All-300d

model with MedTCS achieved an F1-score of 0.80 (an

improvement of 0.35) on the BC5CDR corpus and an F1-

score of 0.81 (an improvement of 0.32) for the NCBI-disease

TABLE 4 Examples of the sub-word tokenization schemes followed by the different algorithmswith themedical terminology-basedMedTCSmodule.

Term MedTCS FastText BioBert CODER

Bojanowski et al. (2017) Lee et al. (2020) Yuan et al. (2022)

mastodynia breast, pain <ma,mas,ast [CLS],mast,## [CLS],mast,##

discomfort sto,tod,ody ody,##nia, [SEP] odynia, [SEP]

dyn.yni,nia,ia>

prostatism prostate, gland <pr,pro,ros,ost,sta [CLS],pro,##sta [CLS],prost,##

state,of,or,condition tat,ati,tis,ism,sm> ##tism, [SEP] atism, [SEP]

prostatorrhea prostate, gland <pr,pro,ros,ost.sta [CLS],pro,##sta [CLS],prost,##

flow, excessive tat,ato,tor,orr,rrh ##tor,##r,##hea ator,##rh,##ea

discharge rhe,hea,ea> [SEP] [SEP]

blepharospasm eyelid,or,eyelash <bl,ble,lep,eph,pha [CLS],b,##le,## [CLS],ble,##

sudden,or har,aro,ros,osp,spa pha,##ros,## pha,#rosp,##

involuntary pas,asm,asm> pas,##m, [SEP] asm, [SEP]

dyslipidemia painful,fat,a <dy,dys,ysl,sli,lip [CLS],d,##ys,## [CLS]

blood, condition pii,pid,ide,dem lip,##ide,## dyslipidemia

emi,mia,ia> mia, [SEP] [SEP]

dyspnea painful, breathing <dy,dys,ysp,spn [CLS],d,##ys,## [CLS],dyspnea

pne,nea,ea> p,##nea, [SEP] [SEP]

urethrorrhea urethra, flow <ur,ure,ret,eth,thr [CLS],u,##ret,## [CLS],ureth,##

excessive hro,ror,orr,rrh,rhe hr,##or,##r,## ro,##r,##rh,##

discharge hea,ea> hea, [SEP] ea, [SEP]

arteriosclerosis artery, hardening <ar,art,rte,ter,eri [CLS],art,##eri [CLS],arterio

rio,ios,osc,scl,cle ##os,##cle,## ##sc,##ler,##

ler,ero,ros,osi,sis,is> rosis, [SEP] osis, [SEP]

dermatitis Skin <de,der,erm,rma [CLS],der,##mat [CLS]

inflammation mat,ati,tit,its,ts> ##itis, [SEP] dermatitis

[SEP]
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corpus. Similar results were achieved on the other variants of the

OA-CR and OA-ALL embedding models for the NER task

(Supplementary Figure S4).

Bhatt et al. (2021) recently developed a Drug Indication

Classification and Encyclopedia (DICE) based on FDA approved

human prescription drug labeling. They also generated

“DrugLabelling-W2V” embeddings based on Word2Vec

and used them to classify each sentence into one of the

five classes (indications, contradictions, side effects, usage

instructions, and clinical observations). We enhanced the

“DrugLabelling-W2V” embedding with the MedTCS

module and improved the coverage by 9% and the

F1_score by 1% (Figure 7).

4 Discussion

Curating a large corpus is the traditional approach in NLP

to cover more concepts and enhance the vocabulary of word-

level embedding models. For example, meta-data from

dictionaries, meta-thesaurus, and hierarchical relationships

from ontologies were also used as corpus. In the biomedical

and clinical domains, the larger corpus of PubMed-PMC from

MEDLINE and Wikipedia (Denoyer and Gallinari, 2006) was

used to enlarge the vocabulary. Similarly, the NCBI sources,

including the Medical Subject Heading (MeSH) (Lipscomb,

2000), the Unified Medical Language System (UMLS)

metathesaurus concepts (NLM, 2004), and the Systemized

Nomenclature of Medicine—Clinical Terms (SNOMED CT)

concepts (Donnelly, 2006) have also been used as meta-

corpus. The semantic content of the ontologies and the

meta-data like Web Ontology Language (OWL) has also

been used to train embedding vectors (Grau et al., 2008).

In spite of these efforts, while encoding some rare terms and

concepts, the embedding models still faced the OOV problem

like in the BioWordVec embedding model (Zhang et al.,

2019).

We have developedMedTCS, amodule that generates the vector

representation for unknown words based on medical knowledge.

Different approximation techniques derived from medical

knowledge bases have been used to encode the OOV words. To

the best of our knowledge, this is the first-ever post-processing and

run-time solution for the OOV problem that is specifically designed

for pre-trained biomedical/clinical word embedding models. Each

OOV word is parsed into its components, which are replaced with

their meanings to generate the semantic vectors. In addition,

MedTCS’s segmentation model tokenizes compound words into

its word units, as shown in Figure 2. The MedTCS module

outperforms the FastText n-gram approach to handle OOV

words as shown in Figure 4.

In an empirical analysis of the BERT and its derivative

models, we have observed that these models can have a high

cosine similarity value between pairs given in datasets (Table 1).

However, in the task to measure the degree of contextual

relatedness and similarity between biomedical and clinical

terms, they showed decreased performance (Table 2).

Furthermore, according to our findings on BERT models,

CODER Yuan et al. (2022) has better performance, probably

because it encodes most of the words without splitting them into

their sub-words, as shown in Table 4.

Word embedding models are of great importance for

various biomedical NLP applications, however they

currently face a major problem of assigning vectors for

unknown and rare words. To fill this gap, we have

developed the MedTCS module to facilitate the pre-trained

word representation models in encoding medical terms. We

hope that our module will be considered as a standard

medical term tokenizer for the application of NLP in the

biomedical domain. MedTCS can also allow other biomedical

NLP researchers to develop knowledge-based modules in a

variety of real-world applications. Moreover, our research

highlighted that there is a need to not only train large

embedding models but also some knowledge-driven

modules for the medical and clinical domains. According

to our knowledge, MedTCS is the first post-processing and

run-time solution for the OOV problem that improves the

applicability and semantic efficiency of pre-trained

embedding of medical terms.
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