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Abstract

Background: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based
methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high
fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools.

Results: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator
for Metagenomics). Combining complete genomes currently available, a community composition table, and sequencing
parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the
explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to
improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing
coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM
supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing
units) version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from
NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many
aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is
more than one-order of magnitude faster than MetaSim.

Conclusions: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop
tools and evaluate strategies for metagenomics analysis and it’s freely available for academic users at http://cbb.sjtu.edu.cn/
,ccwei/pub/software/NeSSM.php.
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Introduction

Metagenomics studies all genetic materials recovered directly

from environmental samples. It is a new research area full of

promising since it can provide insight to a large unexplored field of

uncultured microbes, while traditional isolate-and-culture methods

can only analyze a tiny fraction of total microbes [1,2]. For

example, metagenomics methods have been applied to analyze

numerous microbial communities [3] and new organisms or

enzymes have been found by using metagenomics methods [4,5].

High-throughput sequencing technologies play a key role here,

especially for shotgun sequencing-based metagenomics analysis

[6,7]. Over all, these new sequencing platforms, which are called

Next-Generation Sequencing (NGS) technologies in general, have

revolutionized the sequencing landscape in the past a few years

[8,9]. Due to their high throughput and cost-performance

efficiency, NGS platforms have made it possible to apply

metagenomics methods to a wide range of research areas.

In order to reduce the resources, cost and time for a

metagenomics project, it’s better to evaluate and compare the

sequencing strategies in advance [10]. This is particularly

important when applying a metagenomics method to a new

research area. A metagenome sequencing simulation system can

be helpful for this purpose [11]. Besides, it can help develop

subsequent analysis tools, such as assembly and classification

[12,13]. In addition, since no gold standard is available for

metagenomic data analysis, performance evaluation based on

simulated metagenome sequencing is still the most effective way

[14].

In NGS sequencing simulation, several important technical

specifications of the NGS sequencing platforms need to be

considered. First, the sequencing errors should be simulated since

it can be critical to the subsequent analysis. For example, a better

microbial diversity is extracted when the sequencing errors in 454

sequencing platforms are considered [15]. The sequencing errors

vary a lot for different NGS platforms. For example, in Illumina
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platform, mismatches happen more frequently than indels, while it

is opposite in 454 platform [16]. Second, sequencing coverage bias

should be considered as well. In both Illumina and 454 platforms,

the bases in a genome are not sequenced equally [17], which is

defined as sequencing coverage bias. Sequencing coverage bias

can also affect subsequent analysis, such as community diversity

estimation [18]. Therefore, it is necessary to simulate both the

sequencing errors and sequencing coverage bias for metagenome

sequencing simulations. At the mean time, the simulation of

metagenome data is becoming more time consuming since the

throughput of the NGS sequencing platforms is huge. For

instance, the latest version of Illumina HiSeq 2000 can produce

more than 600 G bps in a single run. Therefore, the simulation

speed should be considered as well.

Sequenced genomes are required for metagenome sequencing

simulation. During the past a few years, the number of sequenced

microbial genomes has increased quickly. Particularly, the human

microbiome project (HMP) planed to complete and deposit more

than 1,000 bacterial genomes and 375 had been completed and

deposited in 2009 [19]. There are 1,080 bacterial genomes

deposited up to Dec 2, 2012 (http://www.hmpdacc.org/

HMRGD/). In addition, phylogenetic tree driven sequencing

projects have created genomes distributed more evenly across the

polygenetic tree, which makes the microbial genome database

much more representative [20]. Overall, there are 2,358 of

bacterial and archaeal species with complete genomes available in

NCBI genome database on Apr. 8, 2013 (ftp://ftp.ncbi.nih.gov/

genomes/).

Currently, there exist some simulation systems for NGS

sequencing. Some systems, like ART [21] and pIRS [22], are

designed for single genome sequencing or re-sequencing simula-

tion. In recent years, MetaSim, GemSIM and Grinder [16,23,24]

are developed to facilitate the development of metagenomics

analysis systems. MetaSim is a popular simulator for metagenome

sequencing and in a single run it uses fixed probabilities of

sequencing errors (insertions, deletions and substitutions) for the

same base in different reads. GemSIM can estimate the error

model from the sequenced datasets. Grinder can simulate PCR

amplification and shotgun sequencing with a specific community

structure, but its error models are similar to MetaSim’s. However,

neither MetaSim nor Grinder takes sequencing coverage bias into

consideration, and their sequencing quality values are fixed at the

same positions of all reads.

In this paper, we first introduce the Next-generation Sequencing

Simulator for Metagenomics (NeSSM). In its error model, each

position contains an explicit distribution of sequencing quality

values. Sequencing coverage bias can be considered in NeSSM. In

addition, it can obtain metagenomic community compositions

from existing sequencing data, which can be helpful to improve

the fidelity of metagenome simulation. Subsequently, the perfor-

mance of NeSSM is evaluated. Finally, NeSSM and several

existing simulation systems such as MetaSim, GemSIM and

Grinder are compared.

Materials and Methods

Database of Complete Microbial Genomes
NeSSM contains a database of complete microbe genomes

currently available. Bacterial genome sequences (together with

archaeal genome sequences) were downloaded from NCBI

genome database (ftp://ftp.ncbi.nih.gov/genomes/). Up to the

date Apr. 8, 2013, this dataset contained genomes from 2,358

species with a size of 7.8 GB.

The System Diagram of NeSSM
As shown in Figure 1, NeSSM system can be divided into three

steps: I, community composition extraction; II, error models and

sequencing coverage bias estimation; and III, sequencing simula-

tion. Step III is the main part of the system. Step I and II can be

skipped if the corresponding information is available.
Step I: community composition extraction. NeSSM takes

input files in one of the two types: 1, a table of community

composition, which contains a list of microbes and their

corresponding proportions; 2, metagenomic sequence data in

FASTA or FASTQ format. Step I is required only for the latter

input type. The quality control (QC) processes such as removing

adaptors, contaminations and low-quality reads are also required

in step I in order to get better performance. Details for step I are

described below.

First, the metagenome sequencing reads are mapped back to the

database of complete microbial genomes with BWA, a popular

sequence mapping tool [25]. Different algorithms of BWA are

adopted according to the read lengths. For reads shorter than

200 bps, the BWA options are ‘‘-I -N’’ in ‘‘aln’’ step and ‘‘-n 100’’

in ‘‘samse/sampe’’ step; and for reads longer than 200 bps, the

option ‘‘bwtsw’’ is used.

Second, the mapping results are analyzed to generate the

number of reads for each genome, from which an initial

community composition of the metagenome will be calculated.

Pseudo-counts (0.001 by default) can be used for genomes. If a

read can be mapped to one genome only, the read number for this

genome will be added by one. However, if a read can be mapped

to multiple genomes, the read counts for those mapped genomes

will be increased with weights according to the following equation.

wi~(RNi � GSi)=
X

j~1,::n

(RNj � GSj),

where wi is the weight for genome i; RNi is the number of reads

assigned to genome i; GSi is the size of genome i; RNj is the

number of reads assigned to genome j; GSj is the size of genome j;

and n is the total number of mapped genomes for this read.

After all reads are assigned, the total number of reads assigned

to each genome is obtained. Genomes with read numbers greater

than a certain threshold (10 by default) will be added into the

candidate list. Then the proportions of all genomes in the

candidate list will be calculated according to their read counts.

In the end of step I, the resulted community composition is

saved in a table containing the genome names and their

abundances.
Step II: error models and sequencing coverage bias

estimation. Users can set their own error models, which can

come from specific publications or be estimated from an existing

sequencing dataset. The existing sequencing dataset can be either

an initial sequencing dataset or a publicly available sequencing

dataset, from the same platform as the user plans to use. Perl

scripts for estimating error models from existing sequencing data

are provided. The pipeline is described as follows.

First, the sequencing error probability at each base is estimated

from the sequencing data according to the quality values. For each

base in the FASTQ file, the error probability p is calculated from

the quality value Q through the PHRED score [26,27]:

PHRED = 210*log(p);

Q = PHRED+64 (for Illumina platforms);

Q = PHRED+33 (for 454 platforms).

It is shown that sequencing quality values at each base follow

non-standard distributions (Figure 2 and Figure S1) and the

distributions vary for different bases as well. Therefore, explicit

NeSSM:NGS Simulator for Metagenomics
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distribution, rather than an average value, is utilized to represent

the errors at each base in NeSSM simulation.

Subsequently, the proportions of different error types (substitu-

tions, insertions, and deletions) are estimated. This part can be

further divided into two parts (Figure 3): first, proportions of

substitutions, insertions, and deletions are estimated; second,

proportions of different substitutions are calculated.

In order to count the numbers of different error types, mapping

results from step I will be adjusted using Samtools [28] if reads

(used in the mapping) are greater than 200 bps. Next, information

of MD (Mismatching positions/bases), NM (Editing distance) and

CIGAR (alignment information) are extracted from the mapping

results.

Then, the proportions of insertions, deletions and sum of

different kinds of substitutions are calculated from the counts of

NM and CIGAR. For Illumina sequencing, the default error

proportions are set to 0.01, 0.005 and 0.985 for insertion, deletion

and substitution, respectively; for 454 sequencing, the default error

proportions are set to 0.2, 0.15 and 0.65 for insertion, deletion and

substitution, respectively. All the default parameters are estimated

from sequencing data listed in Table S1.

At the end, the proportions of different kinds of substitutions can

be calculated from MD and CIGAR values. Table 1 shows the

substitution errors for 454 sequencing. The substitution errors for

Illumina sequencing are listed in Table S2.

The sequencing coverage bias information can be extracted

from an existing metagenome sequencing dataset. First, each

metagenome read is mapped back to its genome using BWA with

parameters described in the above section. Next, all genomes are

divided into intervals of 100 bps. One mapped read adds 1 count

to the corresponding interval. In addition, an initial pseudo-count

(0.1) is given to each interval. Finally, the sequencing coverage of

the genome is calculated based on the read counts for the intervals

(more details in Figure 4).

Figure 1. The pipeline of NeSSM system. Step I: extraction of community composition from metagenome sequencing data. This step can be
skipped if users have the community composition table already. Step II: estimation of sequence error model and sequencing coverage bias
information. Step III: sequencing simulation.
doi:10.1371/journal.pone.0075448.g001

Figure 2. The distribution of quality values at each base. X axis:
the coordinates of reads (0-based); Y axis: the PHRED scores. The blue
dots represent the average quality values and the red dots represent
the median. In each picture, distributions of quality values at five
different bases are shown as examples: (A) the distributions of quality
values from an Illumina sequencing dataset; and (B) the distributions of
quality values from a 454 sequencing dataset. Both datasets contain
experimental sequencing data from the sequence read archives of NCBI.
See Table S1 for details of the datasets. This figure is plotted by vioplot
[42].
doi:10.1371/journal.pone.0075448.g002

Figure 3. The pipeline of error model estimation. Estimation of
the error model can be divided into two parts: 1. Estimation of the
proportions of substitutions, insertions and deletions; 2. Estimation of
proportions of different type of substitutions.
doi:10.1371/journal.pone.0075448.g003

NeSSM:NGS Simulator for Metagenomics
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Step III: sequencing simulation. In the sequencing simu-

lation step, the number of reads for each genome is first

determined. Then reads are generated for each genome.

Simulation details are described below.

The expected read number for each genome is determined

according to its abundance and genome size. For example, if the

composition structure table contains two genomes: A and B, with

abundances of 0.4 and 0.6 respectively, and their genome sizes of

15 M bps and 10 M bps respectively, then the expected read

numbers for these two genomes are the same. If the total number

of simulated reads is 2 million, the expected read number will be 1

million for each genome. In practice, the read number of each

genome is simulated according to a multinomial distribution with

the probability of every genome set as the ratio of the expected

number of reads and the total number of reads.

After the number of reads for each genome is determined, reads

are generated from the selected microbial genome. First, according

to the sequencing parameters provided by the user, the exact read

is simulated as follows. For each read, a coordinate in the

corresponding genome is generated randomly with even distribu-

tion or according to the sequencing coverage bias if it is provided;

then the read length is determined according to the read length

distribution; at last a piece of sequence exact to its origin genome is

generated. The read length distribution can be of fixed length,

normal distribution or explicit length distribution. Second, errors,

including substitution and indel errors, are added to the sequence

to generate the final read. In order to add errors, first, it should be

decided whether an error or errors will be added. If an error or

errors will be added, it should be decided what kind(s) of error(s)

should be added according to the error models.

GPU Version of NeSSM
Graphics processing units (GPUs) are originally designed to

accelerate graphic display only. In the past few years, GPUs have

evolved to GPGPUs (general purpose GPUs) and provide a

massive parallel platform for scientific and engineering computing.

Next-generation sequencing data analysis is a good application

field for GPUs since millions of reads need to be processed in the

same way, which can be parallelized easily. GPUs have been used

in the bioinformatics area, including a popular sequence mapping

program, SOAP3 [29], a metagenomics analysis program,

Parallel-META [30], and MetaBinG [31], a fast metagenomic

classification program. A GPU version of NeSSM based on

Table 1. The proportions of substitution errors used in 454
sequencing simulation.

Substitute Real A T C G

A 0.06474 0.05735 0.12439

T 0.05378 0.13480 0.06577

C 0.05298 0.11709 0.06752

G 0.12384 0.06784 0.06990

doi:10.1371/journal.pone.0075448.t001

Figure 4. The comparison of sequencing coverage before and after simulation. X axis: the coordinate of the genome of Acinetobacter
baumannii ATCC 17978. Each interval contains 100 bases and only the first 3,000 intervals are shown; Y axis: the read numbers mapped in each
interval. A: the sequencing coverage in the Dataset F; B: the sequencing coverage in NeSSM’s simulation; C: the sequencing coverage in MetaSim’s
simulation; D: the sequencing coverage in GemSIM’s simulation; E: the sequencing coverage in Grinder’s simulation; and F: the sequencing coverage
in pIRS’s simulation.
doi:10.1371/journal.pone.0075448.g004
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CUDA (Compute Unified Device Architecture) is also developed

to accelerate the simulation. It works as follows.

First, the number of reads to be simulated for each genome is

decided on CPUs. Then the corresponding genome sequence and

its read number are loaded to GPUs. The sequencing simulation

process is similar as in CPUs except that every 20,000 reads (by

default) are generated and output from GPUs in a batch. If the

number of reads to be generated is smaller than 20,000, only the

required number of reads are output from GPUs.

Datasets
In order to assess the performance of NeSSM, six datasets

(Dataset A to F) with different complexity are obtained. Three of

the six datasets are simulated metagenomes: Dataset A, low

complexity dataset (LC); Dataset B, median complexity dataset

(MC); and Dataset C, high complexity dataset (HC). A single

genome sequencing dataset from Illumina platform (Dataset D) is

used to evaluate error models and distributions of quality values in

NeSSM’s simulation. A 454 sequencing dataset from an artificial

metagenome (Dataset E) and an Illumina sequencing dataset from

a mock metagenome in the HMP project (Dataset F) are used to

compare the performance of NeSSM and existing simulators such

as MetaSim, GemSIM, and Grinder. Details for these datasets are

shown below.

Dataset A: LC dataset. The Dataset A contains two

microbial species with one dominant species. It is also called the

dataset with low complexity (LC dataset). Details are listed in

Table S3.

Dataset B: MC dataset. The Dataset B contains nine

microbial species divided into five abundance levels, with two

dominant genomes. It is also called the dataset with medium

complexity (MC dataset). Details are listed in Table S3.

Dataset C: HC dataset. The Dataset C contains eleven

microbial species with the same relative abundance for all species.

It is also called the dataset with high complexity (HC dataset).

Details are listed in Table S3.

Dataset D: A single genome illumina sequencing

dataset. Dataset D contains Illumina sequencing reads for a

single genome downloaded from SRA (run number SRR524810)

in NCBI. It contains 4,353,518 reads. After QC (see more details

bellow), 1,890,277 reads with lengths of 120 bps are obtained.

Dataset E: An artificial metagenome by 454 sequencing

platform. Dataset E is an in vitro simulated metagenome [32]

(SRR033549 from SRA in NCBI). In this artificial metagenome,

Morgan et al. mixed 10 microbial species with equal numbers of

cells. Subsequently, the DNA of the metagenome was extracted

and sequenced by 454 platform. At last, 505,962 reads with an

average read length of 243 bps were obtained. After QC (see more

details bellow), 475,694 reads with an average length of 193 bps

are remained.

Dataset F: An artificial metagenome dataset by illumina

sequencing platform. At the start of HMP project, a synthetic

mock community of 21 known organisms was used to evaluate

different protocols (http://www.hmpdacc.org/HMMC/). This

dataset (SRR172902 from SRA in NCBI) contained 6,562,065

reads with lengths of 75 bps (Illumina platforms). Three organisms

in the community have no complete genomes available in NCBI,

but only contigs (more details in Table S4). After QC (see more

details bellow), reads from these organisms are removed according

to the BWA result and 2,975,345 reads are remained.

QC for Sequencing Datasets D, E and F
The program IlluQC.pl in NGSQCToolkit [33] has been

adopted to do the quality control. For Dataset D and F, the

parameters are ‘‘-se 6 4–l 90’’. In order to reduce the effect of ‘‘N’’,

only the first 120 bps of each read are retained for Dataset D. For

Dataset E, the first 4 bps bases are deleted and the ‘‘Ns’’ in the

ends are also deleted. After that, the last 50 bps of each read are

removed because of primers. Finally, only the reads with length

more than 60 bps are retained in Dataset E.

Measuring the Difference between Two Datasets
BC-distance [34] is adopted to measure the difference between

two vectors. Let X and Y be two vectors with n dimensions, the

BC-distance between X and Y can be calculated as below.

BCX ,Y ~

Pn

k~1

Dxk{yk D

Pn

k~1

(xkzyk)

where xk and yk are the kth dimension values of X and Y

respectively, xk§0, yk§0 and
Pn

k~1

xk~
Pn

k~1

yk~1.

In this paper, the BC-distance has been applied to measure the

degree of similarity of community composition, error rates and

sequencing coverage between a simulated data and an experi-

mental data. For metagenome community composition compar-

ison, X represents the composition table from the simulated data

and Y represents the composition table from the other data. For

sequencing errors between the simulated sequences and experi-

mental sequences, X represents the error ratios of insertion,

deletion and substitution from simulated data and Y represents

those from existing data. The BC-distance has also been applied to

measure the difference between sequencing coverage of each

genome in a simulated metagenome sequencing data and an

experimental data. In this case, each genome is divided into an

array of windows with a certain size. The average number of reads

per window is counted and normalized as the element of X and Y.

Machine Configurations
All simulations listed in this paper are carried out on a CentOS

5.8 Linux machine with Xeon e7-4807 CPU, 64 GB memory and

an NVIDIA Tesla C2050 GPU.

Results

The Performance of NeSSM
In order to evaluate the accuracy of NeSSM’s simulation,

simulated reads were mapped to the genomes from which they

were generated. For Dataset A, B, and C, two types of 454

sequencing reads were simulated with different parameter settings:

150,000 reads with an average read length of 100 bps, and 60,000

reads with an average read length of 250 bps. In total, 6 datasets

were simulated. After simulating, Blast [35] was utilized to map

those reads back to genomes with default parameters. Next,

MEGAN [36] was applied to check how many reads can be

mapped back correctly to the genomes where they were generated.

The rates of successfully mapped reads were calculated. As a

result, most simulated reads could be mapped to their reference

genomes, and a small proportion of simulated reads couldn’t be

mapped back due to the sequencing errors (Table 2). It

demonstrated preliminarily that NeSSM could simulate metage-

nomic data with necessary sequencing errors and with fidelity as

well. Results of simulation with Illumina platform was similar (data

not shown).

NeSSM:NGS Simulator for Metagenomics
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Next, NeSSM’s ability to estimate and enforce the error models

was evaluated using Dataset D. Error models were derived from

Dataset D. These error models were then used by NeSSM to

generate simulated reads. First we checked the total number of

sequencing errors from the simulated data. The number of

sequencing errors per read was 0.1461, which was consistent with

the value derived from Dataset D directly (0.1452 errors per read).

Next, the proportions of different type of errors (insertions,

deletions and substitutions) were further investigated. As a result,

the ratios of insertions, deletions and substitutions were 0.00498,

0.00985 and 0.98518 respectively in the simulation, and the ratios

were 0.00489, 0.00997 and 0.98514 respectively in dataset D and

their BC distance (see Methods part for more details) was 0.00012.

In addition, substitution rates were also consistent with those

estimated from Dataset D directly (Table 3). Subsequently, the

distributions of quality values were also evaluated based on the

same simulated data and Dataset D. We showed that the

distribution of quality values at each base didn’t follow a normal

distribution (Figure 5A), nor was it fixed. In order to conquer this

issue, an explicit distribution at each base was utilized in NeSSM

and the simulation was consistent well with Dataset D (Figure 5A

and 5B). It demonstrated NeSSM could simulate NGS sequencing

reasonably.

Thirdly, we showed why explicit distribution was required for

read length simulation, especially for 454 sequencing platform.

Figure 6 showed the distribution of reads length in the Dataset E

(for 454 platform). The read length distribution in Dataset E was

not a fixed length distribution, not a uniform distribution and not a

normal distribution as well. Therefore, explicit length distribution

was required for Dataset E and NeSSM was able to simulate reads

with an arbitrary length distribution.

Finally, NeSSM’s ability to simulate sequencing coverage bias

was evaluated. The composition structure table, error models and

information of sequencing coverage bias were estimated from a

mock data with 21 known organisms (Dataset F). Then, NeSSM

simulated a metagenome. (Like in Dataset D, the ratios of

insertions, deletions and substitutions were 0.0359, 0.0171 and

0.9470 respectively in the simulation, and the ratios were 0.0361,

0.0171 and 0.9468 respectively in dataset F. The BC distance of

sequencing errors was 0.0002. In addition, substitutions rates were

also consistent with those estimated from Dataset F directly (Table

S5).) By mapping reads of Dataset F back to their reference

genomes, we found that Acinetobacter baumannii (ATCC 17978)

held the largest number of reads (Table S4). The sequencing

coverage of the Acinetobacter baumannii in the simulation was

compared with that in Dataset F. As shown in Figure 4A, the bias

of sequencing coverage was significant in Dataset F. The

sequencing coverage of the simulated reads was shown in

Figure 4B. The BC distance and the correlation coefficient

between the sequencing coverage of Acinetobacter baumannii in

simulated data and Dataset F were 0.093 and 0.950 (calculated

from the first 3,000 intervals), respectively. (The BC distances and

the correlation coefficients between the sequencing coverage of

other genomes in the simulated data and Dataset F were listed in

Table S6.) Therefore, we demonstrated that NeSSM could

simulate sequencing coverage bias. If there is no existing

sequencing dataset available to estimate the sequencing coverage

bias of related genomes, users can remove the NeSSM option ‘‘-b’’

to switch off the ‘‘sequencing coverage bias’’ correction feature.

Some existing systems, such as pIRS [22], could simulate the

sequencing coverage bias. However, pIRS only simulated pair-end

reads and it was not designed for metagenome simulation. In order

to test its performance in sequencing coverage bias, Acinetobacter

baumannii (ATCC 17978) was simulated using pIRS with 606,771

reads (according to Table S4 and the total reads in Dataset F). The

error model was evaluated from Dataset F with scripts supplied by

pIRS and only the forward reads in pair-end reads were

considered. The result was in Figure 4F. NeSSM had a better

performance than pIRS.

Table 2. The proportions of unique, not unique and not hit
reads for 454 simulation datasets from NeSSM.

read number % unique % not unique % not hit

LC-100 150,000 99.936 0 0.064

LC-250 60,000 100 0 0

MC-100 150,000 78.116 21.597 0.287*

MC-250 60,000 79.158 20.83 0.012

HC-100 150,000 99.299 0.008 0.693*

HC-250 60,000 99.977 0 0.023

Unique: the read is mapped back only to its original genome; Not unique: the
read is mapped back to more than one reference genomes; Not hit: the read
can’t be mapped back to any reference genome. LC-100 is the simulated data
from the low complexity metagenome (Dataset A) with read length 100 bps
and other datasets are named similarly for simulated data derived from Dataset
B and C.
*most reads of not hit are because of the repeats in the reads so that they can’t
be mapped back uniquely by Blast.
doi:10.1371/journal.pone.0075448.t002

Table 3. The comparison of the proportions of different kinds
of substitutions before and after simulation.

A T C G

A 0
0

0:03524
0:03652

0:06336
0:09077

0:15622
0:13535

T 0:03530
0:03919

0
0

0:17644
0:13355

0:06416
0:09191

C 0:08767
0:05597

0:11925
0:15614

0
0

0:02113
0:02429

G 0:13131
0:15264

0:08259
0:06317

0:02733
0:02049

0
0

The values above the black lines are estimated from Dataset D and the values
below are calculated from NeSSM’s simulation. For example, the row of base
‘‘A’’ shows probabilities of substitutions errors from A to other bases.
doi:10.1371/journal.pone.0075448.t003

Figure 5. The comparison of distributions of quality values
before and after simulation. A: the distributions of PHRED score
from the dataset D at five different coordinates; B: the distributions of
PHRED score in NeSSM’s simulation. The meaning of blue and red dots
is the same as in Figure 2.
doi:10.1371/journal.pone.0075448.g005
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Comparison of NeSSM and Existing Simulation Systems
NeSSM, MetaSim, GemSIM and Grinder were compared in

terms of accuracy and speed. The accuracy evaluation was based

on the fidelity of the simulation as well as the assembly results of

simulations. The comparisons of the assembly of the simulations,

the length distribution of reads and sequencing coverage bias are

described below.

First, MetaSim and Grinder utilized fixed probabilities to

describe the errors at each base in different reads, while NeSSM

and GemSIM utilized explicit distributions, which was more

consistent with real sequencing data. Second, MetaSim, GemSIM

and Grinder simulated all bases from a genome equally (Figure 4),

while NeSSM could incorporate the sequencing coverage bias.

Besides, NeSSM and GemSIM could simulate reads based on

parameters estimated from an existing sequencing dataset.

Moreover, NeSSM can extract the community composition from

the sequencing dataset, which was quite useful. More comparison

was in Table 4.

The speed of NeSSM, MetaSim, GemSIM and Grinder was

compared by simulating 90,000,000 reads on both Illumina

platform (with read lengths of 36 bps) and 454 platform (with an

average read length of 250 bps). NeSSM’s CPU version was more

than 2.5 times faster than MetaSim and NeSSM’s GPU version

was more than 18 times faster than MetaSim (Table 5). The speed

of GemSIM and Grinder was very slow even compared to that of

Figure 6. The distributions of read lengths. X axis: the lengths of
reads. Each interval is 10 bps. For example, every read with length from
100 bps to 109 bps is counted to the bin of 100 bps; Y axis: the number
of reads with lengths in a certain interval. The distributions in NeSSM
and GemSIM are close to the actual distribution in Dataset E.
doi:10.1371/journal.pone.0075448.g006

Table 4. The comparison with existing simulation systems.

Systems NeSSM MetaSim GemSIM Grinder pIRS

Sequencing
platform

454
Illumina

Sanger
454
Illumina

454
Illumina

Sanger
454
Illumina

Illumina

Language C, Perl
CUDA C

Java Python Perl C++
Perl

Single or
pair-end

Both Both Both Both Pair-end

Error
Types

Indel
Substitution
Coverage bias

Indel
Substitution
Homopolymer

Indel
Substitution
SNP

Indel
Substitution
Homopolymer

Indel
Substitution
Coverage bias

Length
Distribution

Fixed
Normal
Explicit

Fixed
Normal

Fixed
Explicit

Fixed
Normal
Uniform

Fixed

Output file FASTQ FASTA FASTQ FASTA
FASTQ

FASTQ

Quality value
fixed *

No Yes No Yes No

Application
Field

Metagenome Metagenome Metagenome Metagenome
Amplicon

Single genome

Estimating error
models#

Yes No Yes No Yes

Operating system Linux Linux
Windows
Mac

Linux Linux Linux

*In a sequencing run, whether the quality value is fixed or not for the same positions in different reads;
#Whether the system supplies tools or not to estimate error models from an existing sequencing data.
doi:10.1371/journal.pone.0075448.t004

Table 5. Comparison of the speed of NeSSM (CPU and GPU
versions) and existing tools on HC metagenome simulation.

Software Platform Read number Read length Time(s)

NeSSM_CPU Illumina 90 million 36 763

NeSSM_GPU Illumina 90 million 36 200

MetaSim Illumina 90 million 36 3,821

GemSIM* Illumina 90 million 36 90,600*

Grinder* Illumina 90 million 36 2,143,078*

NeSSM_CPU 454 90 million 250 5,560

NeSSM_GPU 454 90 million 250 773

MetaSim 454 90 million 250 13,968

GemSIM* 454 90 million 250 631,359*

Grinder* 454 90 million 250 2,236,412*

*predicted by a linear extension of the times for a series of small datasets.
doi:10.1371/journal.pone.0075448.t005

NeSSM:NGS Simulator for Metagenomics

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e75448



MetaSim. Therefore, NeSSM could be very efficient to simulate

large size datasets, especially when GPU card was available.

The assembly results of NeSSM, MetaSim, GemSIM and

Grinder simulation were also compared for both 454 platforms

and Illumina platforms.

For 454 platforms, Dataset E was used as a standard. First, with

the community composition provided by Morgan et al., 4 metagen-

omes were simulated by NeSSM, MetaSim, GemSIM and Grinder.

Second, a re-estimated community composition table was generated

from Dataset E using NeSSM. In order to investigate the impact of

the re-estimation of community composition and compare different

systems, other 4 metagenomes were simulated by NeSSM,

MetaSim, GemSIM and Grinder with the re-estimated community

composition table. In all simulations, MetaSim and Grinder used

their own error models. NeSSM and GemSIM used the error

models estimated from Dataset E. In order to be comparable,

475,694 reads (with average read lengths of 193 bps) were simulated

for each dataset. Subsequently, these datasets were assembled by

SOAPdenovo [37] with default parameters and statistics based on

contigs with lengths greater than 300 bps were compared. The

statistics of the contigs included 1, numbers of contigs; 2, average

lengths of contigs; 3, N50s and 4, maximum lengths of contigs. The

distributions of read length were also compared for those datasets

generated by simulation systems (Figure 6).

The re-estimated community composition was similar to the

original one supplied by Morgan et al. (Table S7). The BC distance

between the two community compositions was 0.02593. It

demonstrated that community composition estimation system of

NeSSM was reasonably effective. Subsequently, 8 simulated

metagenomes were assembled by SOAPdenovo. Results of the

assembly showed that metagenomic data simulated by NeSSM

were much closer to Dataset E than those simulated by MetaSim,

GemSIM and Grinder (Table 6 and S8). In addition, the

performance of MetaSim, GemSIM, Grinder and NeSSM using

the re-estimated community composition was comparable to those

using the original community composition. It provided further

evidence that community composition estimation system of

NeSSM was effective.

For Illumina platforms, NeSSM, MetaSim, GemSIM and

Grinder were compared based on Dataset F (see Methods for

details). First, a community composition was estimated with

NeSSM. MetaSim and Grinder used their own error models.

NeSSM and GemSIM used the estimated error models from

Dataset F. In order to be comparable, 2,975,345 reads with length

75 bps were simulated by the four systems. SOAPdenovo with the

default parameters was used to assemble the simulated datasets

and Dataset F to evaluate the fidelity of simulation. The results

showed that NeSSM simulated metagenomes better than Meta-

Sim, GemSIM and Grinder (Table 7 and Table S9).

Using NeSSM to Evaluate Different Metagenome
Assembly Methods

NeSSM could be used to evaluate metagenome sequencing

data analysis tools. Two assembly systems, SOAPdenovo and

MetaVelvet [38] (based on Velvet [39]), were evaluated.

Table 6. Comparison of NeSSM and existing tools (MetaSim, GemSIM and Grinders).

Number
(contig length. = 300 bps)

Max contig length
(bps)

Average contig length
(bps)

N50
(bps)

Dataset E 24,999 6,358 709 810

NeSSM# 23,541 5,712 756 881

NeSSM* 23,660 5,905 764 894

MetaSim# 10,578 1,124 391 378

MetaSim* 10,792 1,204 390 379

GemSIM# 23,665 2,680 498 504

GemSIM* 23,932 3,111 501 507

Grinder# 21,648 2,247 459 457

Grinder* 21,876 2,425 463 462

Simulations are based on Dataset E, an artificial 454 metagenome. The number, average length and N50 of contigs are all calculated based on contigs longer
than 300 bps.
#The community composition was supplied by Morgan et al; and * the community composition was re-estimated by NeSSM.
doi:10.1371/journal.pone.0075448.t006

Table 7. Comparison of NeSSM and existing tools (MetaSim, GemSIM and Grinder) on Dataset F.

Number
(contig length. = 200 bps)

Max contig length
(bps)

Average contig length
(bps)

N50
(bps)

Dataset F 37,011 26,131 554 707

NeSSM 36,686 53,469 551 685

MetaSim 33,720 12,184 627 921

GemSIM 32,119 46,796 728 1,350

Grinder 32,321 58,173 733 1,391

The number, average and N50 are all based on those contigs of more than 200 bps.
doi:10.1371/journal.pone.0075448.t007

NeSSM:NGS Simulator for Metagenomics

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e75448



MetaVelvet was developed to assemble metagenomic data.

However, SOAPdenovo was originally developed to assemble

single genome.

Several simulated datasets were created by NeSSM to evaluate

two assembly systems. 3 million, 24 million and 30 million reads

from Illumina sequencing platform with read length of 36 bps

were simulated for Dataset A, B and C, respectively.

The results of assembly were shown in Table 8. Although

MetaVelvet was created originally to assemble metagenomes and

SOAPdenovo for single genomes, in most cases, the metagenome

assembly results from SOAPdenovo were similar with MetaVelvet.

Both SOAPdenovo and MetaVelvet got some contigs longer than

10,000 bps.

Discussion

Evaluating the performance of methods for metagenome

sequence analysis is an interesting problem with a large number

of audiences. Simulation is still the most effective way to do it.

However, simulating metagenome sequencing is not a straightfor-

ward task. Here we present a simulation system for next-

generation sequencing of metagenomes. It has four highlights:

1. The community composition of a metagenome can be

estimated from existing metagenomic data, which will make

the simulated metagenome sequencing data more similar to the

experimental metagenome sequencing data.

2. Sequencing errors with an explicit distribution at each base are

incorporated in the simulation, and they can be estimated from

some initial sequencing results.

3. Sequencing coverage bias may be also incorporated in the

simulation.

4. NeSSM is a fast tool for metagenome sequencing simulation.

GPU version of NeSSM is more than one-order of magnitude

faster than MetaSim.

One of the systems similar to NeSSM is MetaSim. It provides a

graphic interface for users. However, it does not provide a tool to

simulate reads from existing metagenomic data and its error

models are not flexible enough to represent the distribution of

errors at each base, no sequencing quality value is simulated and

the sequencing coverage bias is not fully covered in MetaSim.

Other systems similar to NeSSM are GemSIM and Grinder. Their

features were listed and compared in Table 4.

NeSSM is useful for development of tools in metagenomics and

has been successfully used in the development of an ultra-fast

metagenomic sequence classification system, MetaBinG [31].

There are numerous metagenomics projects on going now.

However, many questions exist. How deep should a metagenome be

sequenced? What sequencing technologies (platforms) should be

used? Which data analysis tool(s) should be used? And for selected

tools, what values should be set for the parameters? It is difficult to

answer any of these questions without simulations. Currently,

people’s answers to these questions depend on their experiences

rather than on calculation. It is time-consuming and cost-intensive

to try and go experimentally. Our system adds one better option to

test strategies of complicated metagenomics analysis based on

simulations. Combining with other metagenomic analysis tools,

NeSSM can be applied to determine some critical parameters for

these projects. For example, if metagenome sequencing methods is

applied to get the full genome sequence of an uncultured microbe,

the minimum coverage of this genome or the number of reads for

this genome is a critical parameter [40], and it may be decided by

simulations followed by subsequent analysis.

However, NeSSM has limits, especially, for some samples where

the number of complete genomes currently available is not enough

to simulate a reasonable metagenome. For example, there are very

few complete genomes that can be mapped with the shotgun

sequencing data from some environments such as the rumen.

Consequently, it’s hard to simulate a reasonable metagenome for

those environments. In addition, only the organisms with complete

genomes can be put in the reference database for the current

version of NeSSM. In the near future, NeSSM should be extended

to include organisms with contigs only in the reference database.

Besides, the information of sequencing coverage bias can only be

estimated from existing sequencing data using script provided by

NeSSM. There are evidences that the sequence biases are affected

by G+C content. The simulator pIRS uses the G+C content to

simulate sequencing coverage [41], but the correlation is not very

strong. Therefore, NeSSM still uses an explicit distribution for

sequencing coverage bias.

Conclusions

In this paper, we present NeSSM, a fast Next-generation

Sequencing Simulator for Metagenome sequencing with custo-

mizable community composition and estimated sequencing error

models. Overall, NeSSM can be helpful to develop tools and to

determine some critical parameters for projects based on

metagenome sequencing.

Availability and Requirements
The NeSSM system is available freely for academic users at

http://cbb.sjtu.edu.cn/,ccwei/pub/software/NeSSM.php. The

simulated datasets and parameters used in this paper are also

provided in this website. It was implemented with C programming

language, CUDA (GPU version 4.0 or up) and Perl (5.8 or higher)

in a Linux operating system.

Supporting Information

Figure S1 The distributions of quality values at each base

plotted by vioplot.

(TIF)

Table S1 A complete list of public datasets used in this paper.

(XLSX)

Table 8. Evaluation of assembly tools SOAPdenovo and
MetaVelvet using simulation datasets.

LC MC HC

Number
(contig. = 100 bps)

SOAPdenovo 1,324 51,387 52,710

MetaVelvet 1,042 55,497 55,369

Max contig
length(bps)

SOAPdenovo 25,860 51,815 17,004

MetaVelvet 25,859 46,391 18,570

Average contig
length(bps)

SOAPdenovo 1,875 427 824

MetaVelvet 2,343 400 787

N50(bps) SOAPdenovo 6,361 1,366 1,279

MetaVelvet 6,170 1,051 1,223

The number, average and N50 are all based on those contigs of more than
100 bps.
doi:10.1371/journal.pone.0075448.t008
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Table S2 The proportions of substitution errors used in Illumina

sequencing simulation.

(DOCX)

Table S3 A complete list of genomes in LC, MC and HC

datasets.

(XLSX)

Table S4 Details of the mock Dataset F: species and their

abundance estimated by NeSSM.

(XLSX)

Table S5 The comparison of the proportions of different kinds

of substitutions before and after simulation in Dataset F. The

layout of this table is similar to that of Table 3.

(DOCX)

Table S6 The correlation coefficient and BC distance between

the sequencing coverage bias of each genome in Dataset F and

that in the simulated data.

(XLSX)

Table S7 The community composition together with the

abundance supplied by Morgan et al. and NeSSM.

(XLSX)

Table S8 Comparison of assembly of NeSSM’s and existing

tools’ (MetaSim, GemSIM and Grinder’s) simulation based on

Dataset E.

(XLSX)

Table S9 Comparison of assembly of NeSSM’s and existing

tools’ (MetaSim, GemSIM and Grinder’s) simulation based on

Dataset F.

(XLSX)
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